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Abstract. In general terms some situations are described 
which require the exploitation of heuristics either to solve a math­
ematical optimization problem or to analyse results. A possibility 
to implement heuristic knowledge for selecting a suitable algorithm 
depending on available problem data and information retrieved 
from the user, is investigated in detail. We describe some infer­
ence strategies and knowledge representations that can be used in 
this case, an.d the rule-based implementation within the EMP sys­
tem for nonlinear programming. Case studies are presented which 
outline on the one hand the heuristic recommendation of an op­
timization code and the achieved numerical results on the other 
hand. 
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1. Introduction. Whenever a practical optimization 
problem is to be solved, heuristic decisions must be made in 
many different situations. Among them are the questions, how 
to model a given real-life problem, how to select and execute 
a mathematical programming algorithm and how to analyse 
and interpret the results. 

Whenever the decision maker possesses sufficient expe-
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rience on the decision to be made, i.e. on the mathematical 
model, the numerical algorithms and their performance, there 
is certainly nQ need to assist him in form of special software 
tools. On the other hand, we often observe that mathematical 
optimization algorithms' are in the hands of unexperienced or 
occasional users who do not posses the knowledge and practi­
cal experience about the model and the algorithms, to be able 
to find the best compromise between all decisions that must 
be made. 

Thus the main intention of this paper is to discuss pos­
sible heuristic decisions and to present a way to implement 
them in form of a special software code. Although we will not 
investigate the structure of numerical algorithms in detail, we 
concentrate all conlusions on the general nonlinear program­
ming problem of the following form: 

minf(x) 

gj(x) = 0, 

x E ~n : gJ{x) ~ 0, 

j = 1, ... ,me 

j = me + 1, ... ,m 

Certainly part of the approach can be applied to other 
areas as well, in particular the inference mechanism presented. 

In the above mathematical description various special 
problem types are hidden which can be solved by numeric~ 
algorithms that were entirely developed for them, e.g. least 
squares problems, global optimization problems, smooth or 
nonsmooth problems. In other words, there does not exist 
one 'black box' algorithm that is capable to solve the gen­
eral mathematical programming problem without any further 
restrictive assumptions. 

N everthless we will try to discuss the mathematical pro,.. 
gramming problem as general as possible by describing heuris­
tic reasoning as implemented in the EMP-system, cf. Schitt-
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kowski (1987a). This interactive software system allows in­
put of general nonlinear functions in form of FORTRAN­
statements, the automatic generation of FORTRAN-programs 
with respect to a selected algorithm, their execution and inves­
tigation of results which are kept in a data base. Heuristics are 
exploited to assist a user when choosing a suitable optimiza'­
tion algorithm and when analysing possible error messages to 
recommend remedies. 

Due to the general structure of the optimization prob­
lems that can be treated by EMP, the recommendations either 
of algorithms or remedies in failure situations must be quite 
vague. Much more precise exploitation of human experience 
by means of a software implementation can be attained when 
concentrating the decisions to be made, on a special-area, e.g. 
structural mechanical optimzation. We mention here with­
outgoing into details, that in a very similar way, heuristic 
reasoning systems were implemented by the author to assist 
non-experienced users of the structural optimization system 
LAGRANGE, cf. Schittkowski (1989) and Kneppe, Kram­
mer (1987), to select a suitable algorithm and to interprete 
failures. Since the problem structure is more restrictive, spe­
cialized data and knowledge is available in this case, so that 
the resulting conclusions are more precise. 

The subsequent section of this paper describes the neces­
sity for applying heuristics in mathematical programming. To 
implement heuristic reasoning, v~rious inference algorithms 
and knowJedge representations are 'known from artificial in­
telligence. In Section 3, two traditional approaches are pre­
sented which are based on forward and backward reasoning 
and a suitable corresponding knowledge base. Both are paf't 
the language SUSY, see Schittkowski (1988), which can be 
considered as an expert system shell at least in the framework 
discussed in this paper. A rough outline of SUSY is also given 
in Section 3. 
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In Section 4, the expert system EMP is introduced. In 
particular the evaluation of experience factors and the imple­
mentation of the heuristic reasoning subprocesses for propos­
ing a suitable algorithm and remedies in failure situations are 
described. Moreover some case studies are evaluated to show 
the feasibility of the approach. We compare the heuristic de­
cisions of the system with the numerical results obtained. The 
results are summarized in Section 5. 

2. Heuristics in mathematical programming. First 
we have to realize that in this paper, we do not consider any 
possibilities to include heuristic decisions into a numerical al­
gorithm itself e.g. by introducing a hybrid structure to switch 
to another variant or algorithm based on interaction with the 
user .. The basic idea is to accept available optimization algo­
rithms as they were developed by numerical analysts and to 
facilitate or automize only access to these algorithms or the 
interpretation of results. 
Thus we consider some situations in which heuristic knowledge 
must be exploited by a decision maker. One of them will be 
analysed in subsequent sections of this paper in more detail. 

a) Model selection: Here we assume that one has to select a 
mathematical model depending on available data. Typ­
ical example is parameter estimation, where a suitable 
model function given either explicitely or in form of a 
differential equation, must be determined depending on 
the structure of the data and the application. In such a 
case, the'acceptance of a model is often more important 
than the achieved numerical results. In other words a 
qualitative answer is desired and not a quantitive one. 
To make the forecast which model is the most accept­
able one, is however often difficult and can be made only 
by experts. 

b) Algorithm selection: Let us assume that, as in many 
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real situations, more than one optimization algorithm 
, '. is available, and that a decision must be made to select 

"llot only an algorithm, but also a suitable combination of 
. input parameters that control the execution. The more 
.specialized the class of optimization problems under con­
,sideration is, the more human experience is available and 
can be evaluated. Any decision will always depend also 
on available results that were ontained in the past anc:i 
that are evaluated whenever the new problem is some­
what related to an old one. This situation is analysed in 
the subsequent sections in more detail. 

cIE::ailure analysis: We cannot expect that an optimization 
algorithm is always capable to solve a problem in the 
class for which the algorithm was designed. There may 
be many instabilities in the problem data, e.g. round­
off errors, ill-conditioning, bad scaling, that prevent a 
successful numerical solution. On the other hand, we 
have to expect also failures in the problem data itself, 
e.g. empty feasible domain, or even programming errors 
either in function or, more frequently, in gradient eval­
uation. However a numerical algorithm will break down 
with an error message that is a consequence of the error, 
e.g. by reporting that a line search could not terminated 
successfully. The conclusion which reason caused the 

,failure, is often difficult and requires detailed knowledge 
on the numerical algorithm and at least some fundamen­
tal mathematical optimization theory to understand the 
error message. Moreover any conclusion based only on 
the error message and some data, must be very vague 
without further investigations. 

d) 'Acceptance of a solution: Even if an optimization 
method reports that an optimal solution was found, the 
solution might be unacceptable. One reason is that the 
algorithm is-only capable to check some stopping condi-
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tions which can be met too early e.g. due to badly scaled 
problem functions. Another reason is the possibility to 
achieve only a local solution which must be rejeCted in 
special situations. Worst of all, even a known global 
optimal solution is sometimes unacceptable in the sense 
that the underlying model turns out to be incorrect, e.g. 
as in parameter estimation. Thus one has to analyse an 
achieved answer of an optimization algorithm very care­
fully to decide whether the solution is acceptable or not. 
Experience and knowledge is necessary to get a decision 
which does depend heavily on heuristics. 

In the following, we consider only the selection of a suit­
able optimization code whithin the EMP-system in detail to 
give ap example how heuristics can be embedded in an inter­
active system. The application of the proposed methodology 
to the other si tuations is straightforward. For understanding 
why the infe rence procedures introduced in the subsequent 
section, work in these cases, we have to know that all conclu­
sions are very vague in generaL Without deeper information 
on the model structure, the data and in particular available 
experience we are unable to get more precise answers. 

Again it must be mentioned that bY,no means the soft­
ware tools presented, can replace a human expert. The basic 
idea is to exploit the available experience of a human expert 
and to im plement it so that other users who do not have direct 
contact with him, are assisted at least by a software tool. It is 
hoped that the user will get then his own· expertise about the 
mathematical optimization model he is investigating, so that 
he might become able after some experimentation to solve his 
problem without any external help. 

3. Inference mechanisms. The interactive optimiza­
tion system EMP that incorporates some of the heuristics 
mentioned ill the previous section, is written in the SUSY 
(support system) language, see Schittkowski (1988). The ba-
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sic structure of SUSY is procedural and commands are inter­
preted. By the following lines, a brief summary of the main 
features of the procedural part of SUSY is to. be given first. 

The programming language SUSY was designed to de­
velop interactive software systems like data management sys­
tems, interactive user interfaces, intelligent software systems 
(expert systems), or integrated problem solving systems. 
Since a SUSY program can interact directly ".jth the oper­
ating syst.em and therefore with existing programs written in 
any other language, possible applications are: 

• Interactive processing of problem data and results in a 
data base 

• Construction of formatted input files for an existing 
system 

• Problem dependent selection and linking of existing 
modules 

• Automatic start of an external solution method 

• Information retrieval of performed solution attempts 

• Interpretation of results 

• Report writers 

Since SUSY supports the generation of include-files which 
are interpreted, even large software systems can be imple­
mented with minimum core storage needed. The main im­
portant facilities of SUSY are: 

• Permanent and temporary variables of various data 
types (CHAR, NAME,INTEGER, DECIMAL, 
STRING, LINE, TEXT, TABLE, FILE) 

• Structured data types (RECORD, STRUCTURE) 

• Assignment, compound and goto-statements 
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• Logical and arithmetic expressions 

• Brief in-. and output commands (':' - in- and output 
from terminal, '<' - output to file, '>' - input from file, 
'T - display of help-text ) 

• Support of monitor representation (COLOUR, 
SCROLL, ENLARGE, ... ) 

• Windows with input mascs, scrolling table columns, 
hand calculator and help windows, overlapping win­
dows (WINDOW FROM ... TO ... , ENDWINDOW) 

• Da.ta base commands (NEW, LAST, FIRST, NEXT, 
DELETE, SEARCH, SORT, ... ) 

• Table calculation (MIN, MAX, AVERAGE, SUM, ... ) 

• File management (RESET, REWRITE, SEARCH, 
SORT, ... ) 

• Interactive input of SUSY commands 
(INTERACTIVE) 

• Include files and macros (INCLUDE, MACRO) 

• Direct input and execution of arbitrary operating sys­
tem commands ($ <command>, GO, EXECUTE) 

• Interactive help and system documentatiori (HELP, 
DOCUMENTATION) 

• Editor and programming environment (EDIT) 

• Text formatter and automatic hyphenation (FORMAT, 
HYPHENATE) 

An interactive installation programm facilitates the gen­
eration of a new software system to be written in SUSY. 
Maintenance and debugging is supported by a programming 
environment. The SUSY language was also used to imple­
ment larger practical integrated software systems, e.g. an 
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interface for the mechanical structural optimization system 
LAGRANGE, see Schittkowski (1989), or an interactive mod­
elling and parameter estimation system GAUSS, see Schit­
tkowski (1990). Also in these cases, the systems are self­
learning, heuristic rules were used for selecting a suitable al­
gorithm or model in dependance on the problem to be solved, 
and to analyse failures for proposing suitable remedies. 

SUSY has the additional option to execute two different 
inference strategies to process heuristic knowledge represented 
in form of rules. The corresponding knowledge base consist­
ing of different types of rules, of actions, goals and other con­
structs, is defined separateley in a SUSY program, i.e. ei­
ther in the declaration part or in include files. Several rule 
systems of the same or different types can be part of one pro­
gram and are executed whenever needed by special commands 
(REASONING). One rule system is allowed to call other rule 
subsystems, arbitrary SUSY commands or even operating sys­
tem commands. 

One of the two inference procedures in SUSY is based of a 
knowledge representation in form of suLject-object-attribute­
value-tupels and uses backward-chaining, see Kummert (1989) .. 
Goals must be defined which are then tried to be satisfied re­
cursively by available rules. Ifa fact in the antecedent of a rule 
is unknown, the user will be asked. In this situation an expla­
nation component can be executed to get information on the 
local status and the subgoal that is to be fullfilled. Certainty 
factors are used· to express uncertain facts and conclusions 
and are evaluated in a way similar to MYCIN, d. Shortliffe 
(1976). Further components are automated knowledge aqui­
sition, tracing, meta-rules and variable facts, goals, rules and 
meta-rules. 

The heuristic reasoning processes implemented in EMP, 
however, use forward chaining because of the relatively simple 
structure of decision trees. Thus vye describe this SUSY option 
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a bit more detailed. 
The reasoning process allows the storage and procesl'iing 

of heuristic knowledge based on rules with certainty fa:bt6'r~ 
and actions. A typical rule is of the form .• ,; i r 

IF < antecedent> 
THEN < consequent> lV IT H < cf > 

'H f' 

Antecedents can be logical expressions or actions, .W,11f~F 
the consequent must be an action, i.e .. an arbitrary seq1.-len,~~ : ," .. , 

of SUSY commands. The reasoning process allows additiql[lClrl 
bounds for the antecedent certainty factors, logical combina~ 
tion of antecedents, repeated execution of rules, automatic 
alteration of certainty factors in case of executing a rule, mod­
ifying certainty factors 'by hand', and an explanation compo­
nent. The system one is only capable to give local inforniation 
or information on decision history, but not on a goal to .be at­
tained. 

All actions will gd an internal certainty factor . when 
starting the inference procedure. If an antecedent is. satis­
fied, the ('('dainty factor of the action in the consequent part 
is updated according to some formulas similar to the MYCIN 
implementation, see Shortliffe (1976). An antf'ccdcnt is satis­
fied, if eitllf'r the logical expression is true or if the certainty 
factors of all actions are between the predetermiued bounds. 

The SUSY conllnauds of the actiou that got the largest 
certainty factor within one loop, are then f'xf'('uted. If nec­
essary, the certainty factor of a rule is updated according to 
the arithmetic expression defined by the \VITH-part of the 
consequent, if any. This allows also repeated executions of 
rules. 

Since all certainty factors can be provided in form ofsys­
tem variables, they can be modified within actions. In addi­
tion it is possible to use variable expressions in defining n~iles 
and actions, which are replaced symbolically. . . '.' 
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4. Heuristic reasoning in EMP. EMP is an in­
teractive programming system that supports model building, 
numerical solution and data processing of constrained math­
ematical programming problems, cf. Schittkowski (1987a). 
Various options are available in EMP to facilitate the formu­
lation of problem functions. The objective function e.g. may 
be a linear or quadratic function, a data fitting function, a 
sum or maximum of functions, or a general function without 
a structure that could be exploited. More precisely the fol­
lowing mathematical models are available for facilitating the 
formulation of objective or constraint functions and exploiting 
special structures mathematically whenever possible: 

• Linear programming 

• Linear regression 

• Quadratic programming 

• Nonlinear L1 and Lao-data fitting 

• Nonlinear L 2 - or least squares data fitting 

• Multicriteria optimization 

• Min-max optimization 

• Non-smooth optimization 

• Global optimization 

• General nonlinear programming 

All problems may have bounds for the variables and lin­
ear or nonlinear constraints. In both cases it is possible to 
proceed from two-sided bounds for the restrictions. Data fit­
ting problems are either composed of a sequence of arbitrary 
nonlinear functions or of one model function, where the ex­
perimental data are provided separately. 
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For most optimization problems, several different, algo­
rithms are available, which were either de,·elopcd by the au­
thor or taken over from libraries and other authors in original 
form, i.e. witbmllt any adaptions to the E~IP system. The 
present versioDl of EMP contains mathematical methods of 
the following type: 

• Sequential quadratic programming methods for nonlin-
ear programmmg 

• Bundle methods for non-SIIlooth problems 

• Stochastic global optimization methods 

• Levenberg-1\larquardt, Gauss-Newton, Newton, and 
quasi-Newton methods for nonlinear least squares 
problems 

• Ellipsoid method for smooth and non-SIIlooth optimiza~ 
tion 

• Dual and primal methods for quadratic programming 

• Adapted sequential quadratic programming methods 
for constrained L 1-, L 2-, Loo-norm and min-max prob­
lems 

EMP includes program generators for codes of the fre­
quently used optimization libraries NAG and IMSL, and the 
algorithm, base is extended steadily. 

For objective flUlctioIl and constraints, the input of quad­
ratic or linear fimdions reduces to definition of some vectors 
and matrices, respectively, where sparsity can be exploited. 
Gradients of nonlinear and nonquadratic functions are approx­
imated llullH"rically, but can also be provided by the user in 
analytical form. For nonlinear problem functions that can be 
represented either by analytical expressions or statements of 
a simple modelling language, gradients can be evaluated au­
tomatically, i.e. exactly without differentiation 'by hand', see 
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Liepelt (1990). The input of sequences of similar objective or 
constraint functions and variables is facilitated, if they differ 
at most by an index. 

Only the problem relevant data need to be provided by a 
user in an interactive way. General functions must be defined 
by sequences of FORTRAN statements addressing a numerical 
value to a user pro- vided function name. All generated prob­
lems are star.ed in form of a data base system, so that they 
are easily retrieved, modified, or deleted on request. EMP 
proposes a suitable mathematical algorithm and writes a com­
plete FORTRAN source program. The system executes this 
prograrn and stores the numerical results in the data base, so 
that they are available for further processing. Since individual 
names for functions and variables can be provided by a user, it 
is possible to get a problem dependable output of t.he achieved 
solut.ion. 

The user will be asked whether he wants to link the gener­
ated FORTRAN program wit.h some of his own files or whether 
he wants to insert additional subroutines, declarat.ion and ex­
ecutable st.atements to formulat.e t.he problem. It. is possible 
to generat.e t.he same programs aut.omatically, that must be 
generated by 'hand' otherwise. 

All actions of E:tvfP are controlled by se,1f-explained com­
mands which are displayed in form of menues. Step by step 
the user will be informed how to supply new dat.a. When­
ever problem data are generated or altered, t.he corresponding 
information will be saved on a user provided file. Besides 
commands to generate, solve or edit a problem, there are oth­
ers to transfer data from one problem to another, to delete a 
problem, to sort problems, to get a report on prohlem or solu­
tion data, to halt the system and to get. senne information on ' 
the system,' t.he mathematical models and the available algo­
rithms. It is even possible to insert arbitrary operating system 
commands without lea.ving EMP. 
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The main intention of EMP is to prevent the organisa­
tional 'ballast' otherwise required to solve a nonlinear pro­
gramming problem with a special algorithm. Once the system 
is implemented, it is not necessary 

• to define special in-, or output files for each problem to 
he solved, ' 

• to select a suitable mathematical algorithm 'by hand', 

• to read any documentation of the used mathematical 
programming algorithm, 

• to write long lists of declaration statements, e.g. for di­
mensioning auxiliary arrays required by the algorithm, 
or to call the mathematical programming code with a 
long list of parameters that are to be defined initially, 

• to provide the problem functions and their gradients in 
a special form required by the mathematical program­
ming algorithm, 

• to make the results readable for a decision maker. 

Thus the domain of application of EMP is summarized 
as follows: 

(a) Programming neighbourhood for developing a first ex­
ecutable program version solving a specific practical 
problem (or class of problems). 

(b) Investigation of different model variants fitting best to 
a given real world situation. 

(c) Testing certain types or modifications of mathematical 
programmmg algorithms for solving ~ class of prob­
lems. 

( d) Collecting numerical experience on sol11 tion methods 
for optimization problems. 
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(e) Teaching students on model building (e.g. structural 
optimization courses in engineering science) or on nu­
merical behavior of optimization algorithms (e.g. op­
timization courses in mathematics). 

EMP allows a user to concentrate all his efforts on the 
problem he wants to solve and takes over the additional work 
to select a suitable algorithm and to organize the data, the 
execution of the problem functions and the program structure. 
It should be possible to solve optimization problems of the 
class under consideration within a minimal fraction of time 
needed otherwise. 

EMP is implemented in the SUSY language described 
briefly in the previous section, cf. Schittkowski (1988). The 
system is running at present on VAX/VMS, HP-UNIX wd 
MS-DOS computing environments. 

In various ways the system is capable to learn and to 
store its own experience on the success of solution attempts. 
The proposals offered by EMP, will therefore become better 
and better with increasing knowledge on the numerical struc­
ture of the user provided models. A rule-based failure analysis 
explains some reasons for possible false terminations and pro­
poses remedies to overcome numerical difficulties. 

The solution of an optimization problem by EMP is to 
be explained more precisly now, in particular the evaluation of 
learning factors and the heuristic proposal of numerical algo­
rithms. After input of the problem name, a user has the option 
to require the display of all a~lable codes that could solve 
his optimization problem. The list contains a certainty factor 
for each proposed program which indicates a very rough ap­
proximation of a measure for the numerical performance of an 
algorithm. A value of 100 is the maximum attainable degree of 
belief, whereas a value of 0 indicates a very poor performance 
of the algorithm on previous runs. The numerical values of the 
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certainty factors are defined and updated in three different 
ways: 

L Initially every code obtains a certain permanent de­
fault value of the system author which is based on his 
own subjective experience. 

2. Whenever a code could solve a problem succcessfully, 
so that the stopping criteria are satisfied subject to 
the provided tolerances, the corresponding permanent 
certainty factor of the code is increased. H, on the 
other hand, a failure is reported, then the permanent 
certainty factor is decreased. The factor is not altered 
at all if the iteration was interrupted due to the fact 
that the maximum number of iterations was attained. 

3. When starting the solution of a problem, a local cer­
tainty factor is defined which gets the value of the per­
manent one, and all previous numerical solution at­
tempts for this problem are investigated. H the prob­
lem could not be solved by a specific algorithm, then 
the local certainty factor is decreased significantly, and 
enlarged otherwise. 

The local certainty factors are displayed to support the 
selection of a suitable code. It is hoped that the choice of 
these factors reflects the influence of special model structures 
and that EMP is capable to learn, i.e. to propose better and 
better sOlution methods in dependance on the problem to be 
solved. 

Moreover the user is asked whether he wants to select a 
code 'by hand', where he may exploit the experience r~flected 
by the certainty factors, or whether he prefers to initiate a 
rule-based code selection by the system. In this case, some 
additional questions must be answered and the outcome is the 
display of a list of codes in the order of their certainty. The 
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evaluation of the certainty factors is based on the given ex­
perience factors described above, some internal problem data 
like number of variables or constraints, numerical differentia­
tion etc., and on the answers of the user. More precisely the 
following data and information are imbedded in the decision 
process: 

• structure of the model (e.g. least squares) 

• number of variables 

• number of constraints 

• type of constraints (e.g. bounds, linear) 

• calculation type of (sub-)gradients (e.g. numerically) 

• smooth problem functions 

• noise in evaluating problem functions 

• expected number active constraints 

• ill-conditioned problem 

• approximation of global solution 

• location of starting point 

• expensive function evaluations 

Rules are evaluated by forward chaining as described in 
the previous section. To give an example, a few rules support­
ing or rejecting the sequential quadratic programming routine 
NLPQL of Schittkowski (1985/86) are listed in somewhat sim­
plified form: 

if active with 50 to 100 
then nlpql with 30 

if nonoise with 50 to 100 
then nlpql with 10 
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if degene with 70 to 100 
then nlpql with 30 

if nonglobal with 50 to 100 
then nlpql with 20 

if smooth with 50 to 100 
then nlpql with 10 

if expensiv with 50 to 100 
then nlpql with 40 
if stclose with 50 to 100 
then nlpql with 20 

if large with 50 to 100 
then nlpql with 10 

if noise with 30 to 70 
then not nlpql with 40 
if noise with 70 to 100 
then not nlpql with 80 

if nonsmooth with 50 to 100 
then not nlpql with 20 

if manyrest with 50 to 100 
then not nlpql with 50 

295 

There must be some other rules to initiate the ruling 
procedure and to set the actions used above, in an appropriate 
way by retrieving the information either from the available 
data base or from the user. 

It is selfevident that a user may reject the algorithm 
which got the largest certainty value, and to choose another 
one. The described evaluation of heuristic knowledge is avail­
able only for the general nonlinear programming or the nonlin­
ear least squares model, since only in these situations, a larger 
number of different codes is available to solve the problem. 

Subsequently some additional decisions must be made 
by a user, e.g. the choice of a suitable output flag. It is 
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possible that a previously computed and eventually inaccurate 
approximation of the solution is available. Then the user is 
asked whether he wants to accept this guesS as a starting point 
for the actual run or not. H some additional output from the 
underlying mathematical programming algorithm is required, 
then the information is displayed on the terminal in original 
form, in particular without individual user-provided names for 
functions or variables. 
" 

The generated FORI'RAN code is written. on a text file 
with the name 'EMPCODE.FOR'. The code consists of a 
main program and, if the problem functions are nonlinear, two 
subroutines for evaluating problem functions and correspond­
ing gradients in a form required by the selected optimization 
method. EMP compiles the object code, link'S it WIth a cho­
sen nonlinear programming algorithm and eventually some ob­
ject files of the user, and executes the resulting program. All 
numerical results, performance data and termination reasons 
are stored automatically in the underlying data base and are 
available for further processing. Afterwards the main-menue 
of EMP is displayed again and the user may select any addi­
tional actions, e.g. to investigate the obtained results. Note 
that after leaving the system, the last generated FORTRAN 
program is still available and could also be used furtheron in­
dependently'from EMP. It is possible to direct the output of 
an optimization program to an existing file on request. 

5. Numerical results. We want to test now the heuris­
tic proposaJ. process within the EMP system and to compare 
the recommendations of the system with the numerical results 
obtained. We consider only the class of general nonlinear pro­
gramming problems, similar conclusions would be obtained for 
least squares problems. Since the decision process starts from 
available and eventually modified experience factors, we use 
always the initial default values. The EMP intedace contains 
a corresponding reset option. 
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To evaluate certainty factors, 11 different test cases are con­
structed, see Table 1. The table contains in its first column 
an identification number, then the source, some dimension­
ing parameters and the answers to the questions presented by 
EMP. Source information beginning with 'TP' indicates that 
the test problem was taken from the test problem collections 
Hock and Schittkowski (1981) or Schittkowski (1987b). The 
following abbreviations are used for identifying the situation: 

n - number of variables 
m - number of constraints (without bounds, equality 

and inequality ones) 
1 -- number of equality constraints 
S - smooth problem 
N - noisy problem functions (N-no noise, W-weak noi­

se, B-big noise) 
D -- dege:q.erate problem functions, i.e. highly nonlin-

ear at a solution 
G - global solution desired 
E - expensive function evaluation 
C - starting point close to a solution 
W --- well-scaled problem functions and variables 

Usually the table entry is 'Y' for yes or 'N' for no. Be­
sides of the dimensioning parameters, there are no attempts to 
qualify the other problem features in a quantitative way. Since 
we do not want o,! are unable to evaluate them numerically, 
the information as obtained from the user, is processed sym­
bolically. Of course, the real system has also the option to give 
the answer 'D' standing for 'do not know' or any intermediate 
classification. 

There are some other items influencing the decision pro­
cess, e.g. number of constraints expected to be active at an 
optimal solution. But in this paper, we ,want to give only 
an impression how heuristic reasoning can be used in mathe-
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matical optimization, and investigate therefore only the data 
mentioned above, which are required to understand the sub­
sequent tests. 

Table 1. Test problem characteristics 

No Source n m I S N D G E C W 
1 TP87 6 4 4 N N Y N N N Y 
2 TPI 2 0 0 y N N N N N Y 
3 " / weak noise 2 0 0 y W N N N N Y 
4 " /big noise 2 0 0 y B N N N N Y 
5 Mifflin (1982) 2 0 0 N N N N N N Y 
6 Branin (1972) 2 0 0 y N N Y N N Y 
7 " /expens. 2 0 0 y N N Y Y N Y 
8 TP299 100 0 0 y N N Y N N Y 
9 TP343 3 2 0 Y N N N N Y Y 
10 " /scaled 3 2 0 Y N N N N Y N 
11 TPI06 8 6 0 Y N Y N N N N 

In some cases, the original problem description was slight­
ly modified or a corresponding situation was only simulated. 
Test problem TP87 is one of the famous Colville (1968) prob­
lems. The objective function is piecewise linear and not con­
tinuous, the constraints are highly nonlinear equality restric­
tions. TP87 is considered as a degenerate problem, since 
the third equality constraint possesses a very small multiplier 
value, cf. Hock and Schittkowski (1981). 

The term 'weak noise' indicates, that a value of the form 
'EPS*RAN' was added to all problem functions, where RAN 
is a randomly generated number between 0 and 1 and EPS 
is set to l.E-7. Since all gradients are evaluated numerically 
by forward-differences with a steplength of l.E-7, the induced 
error should perturb the gradient heavily. For obtaining a 'big 
noise', we set EPS to l.E-3. Both situations reflect the pres­
ence of round-off errors in function and, in particular, gradient 
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evaluations, which often occur in real life situations. It should 
be mentioned here that all numerical computations were car­
ried out in double precision FORTRAN on a 32 bit machine 
(VAX 8600). We test the influence of noise for the Rosen­
brock function TP1, which has a polynomial, banana-shaped 
objective function with a zero value at the optimal solution. 

Test problem no. 5 of Mifflin (1982) is a typical non­
smooth test problem, since the objective function is composed 
of the maximum of smooth nonlinear functions. 

No. 6 was often used to compare global optimization 
problmes, since it possesses 6 different local minima. It is the 
'six-hump camel-back' problem introduced by Branin (1972). 
Algorithms for global minimization use a large number offunc­
tion evaluations. To simulate expensive function evaluations, 
the problem was used to define test case no. 7. It was de­
clared that the evaluation of problem functions would be ex­
pensive. In both cases, we define the starting point by (1,1), 
which differs significantly from the global optimal solution at 
(0.08983,-0.7126). 

The Rosenbrock function TP 1 can easily be extended to 
very many variables, as done for test problem no. 8. The 
problem has 100 variables. We assume in this case' that the 
user gave the answer 'V' when the system want'ed to know 
whether a global solution is to be calculated, only for testing 
the reasoning process. 

Test problem TP343 was used to simulate some another 
situation which arises quite often in practical situations. No. 
9 is the original smooth and well-scaled problem. For defining 
no. 10, we omitted the scaling factor l.E-7 in the objective 
function and scaled the second restriction by l.E+ 7, to get a 
badly scaled test problem. Also we can suppose in these cases 
that the starting point is close to an optimal solution. 

Test problem no. 11 is considered to be a degenerate one, 
since the multipliers differ significantly at an optimal solution. 
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Also the problem seems to be badly scaled. 
To understand the whole idea behind the tests presented, 

it is important to note that the whole decision procedure is an 
experimental one from the viewpoint of the author. We know 
that many rules may be added to describe further experiences 
that may influence the selection of an algorithm in the one or 
other case. However the underlying structure of an optilniza­
tion problem is very general, since it is hidden behind some 
sequence of FORTRAN-statements which cannot be analysed 
by the system. Thus the basic idea is to outline the methodol­
ogy and to develop the tools that can then be applied to more 
specialized areas in more detail. 

As noted before, we investigate only the dass of gen­
eral mathematical programming problems without further as­
sumptions on the model structure. Table 2 shmvs the algo­
rithms that were implemented in the E~dP system to solve this 
problem type, and gives a brief information on the mathemat­
ical method. More details can be retrieved from the literature 
or the EMP documentation. 

Table 2. General mathematical programming algorithms 
in EMP 

Code CF Source Method 

NLPQL 80 Schittkowski (1985/86) sequential quadratic progr. 

E04VDF 80 NAG/Gill e.al. (1983) sequential quadratic progr. 

ZXMWD 60 IMSL/Fletcher (1972) penalty method 

M1FC1 60 Lemarechal e.al. (1981) bundle method 

BT 60 Schramm, Zowe (1989) bundle/trust region method 

UNT 40 Torn, Zilinskas (1989) stochastic global search 

GLOPT 40 Torn, Zilinskas (1989) randOlll search 

ELL 20 Schittkowski (1986) ellipsoid method 

The column headed by CF shows the default. cf'rtainty 
factors which are set initially when starting E~IP wit 11 elll 
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empty data base. They must be taken into account when 
analysing the subsequent system recommendations, since the 
evaluation of certainty factors is started from the above val­
ues. They reflect theidea that when nothing is known about 
a problem, we may suppose that some algorithms are more 
preferable than others. In fact EMP contains also some mod­
ifications of the NLPQL-code for solving problems with very 
many constraints and for solving problems with automatic dif­
ferentiation. They are omitted here since these modifications 
do not influence the basic algorithmic structure. 

It must be noted here, that some of the algorithms are un­
able to take nonlinear constraints into account. In this case, 
a penalty function is formulated which, however, makes the 
problem eventually ill-conditioned. Only GLOPT and UNT 
are gradient-free, all other codes need the evaluation of gradi­
ents either numerically, as in our tests, or ~nalytically. Since 
ZX~v1\VD uses an internal numerical differentiation routine, 
the corresponding entries for NG are zero in the subsequent 
tables. The code ZXMWD uses different starting points to 
attempt to approx.imate a global solution. 

The subsequent tables contain the results of the decision 
process on the one hand and the numerical data obtained by 
tht' optimizatioll codes. Only the results of those algorithms 
are considered, that got a certainty factor greater than 40. 
The algorithms were executed with their default parameters 
as included in E:tv'IP with the exception, that the maximum 
number of iterations was increased in some cases. When com­
paring the results, we have to consider the achieved function 
values and to relate them to the number of fuilction and gradi­
ent evaluations. Of course the proposals made by the system, 
are very temptative and vague, but reflect the situation that 
also a human expert would have difficulties to yield a bet ter 
result based only on the available information. The tables use 
the folluwing abbreviations for the columns: 
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Code 
CF 
IF 

NF 

NG 

Heuristic reasoning 

- optimization algorithm 
- certainty factor evaluated by EMP 
- termination code reported by the al-

gorithm 
- number of objective function evalua­

tions 
- number of gradient evaluations of ob­

jective function 
OBJECTIVE- objective function value 
CON - violation of constraints 

A termination reason '0' indicates that the optimality 
conditions of the algorithm were satisfied, and '1' that the 
maximum number of iterations or function evaluations, re­
spectively, was attained. All other failure codes are the origi­
nal messages of the optimization algorithms. 

Table 3. Test results for test case no. 1 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 72 0 131 57 0.892759E+4 0.47E-9 
E04VDF 72 0 45 45 O.892764E+4 O.66E-IO 
BT 47 1 267 267 O.923081E+4 O.47E-4 
MIFCl 47 5 384 384 O.253764E+5 O.92E+O 

Test case no. 1 (Table 3): 
Although we declared, that the problem functions would be 
nonsmooth, the special purpose algorithms BT and MIFCl 
got significantly lower certainty factors for several reasons. 
First we declared that the problem would be degenerate due to 
highly nonlinear equality constraints, which cannot be handled 
directly by the codes. Then we are using numerical approx­
imations for gradient evaluations which is not very useful in 
this case. Also both algorithms are basically designed to solve 
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convex problems which should be at least continuous. The· 
recommendation of EMP, however, was subsequently verified 
by the numerical results, since it turns out that the 'jump' 
in the objective function is close to an optimial solution, but 
fortunately not identical with it. 

Table 4. Test results for test case no. 2 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 88 0 41 33 0.566069E-7 0.0 
E04VDF 88 0 33 33 0.839D24E-9 0.0 
ZXMWD 68 0 931 0 0.349837E-24 . 0.0 
BT 64 0 79 79 0.519446E-9 0.0 
M1FC1 64 0 113 113 0.499141E-5 0.0 
GLOPT 46 1 3000 0 0.199429E-3 0.0 
UNT 46 0 90 0 0.417657E+1 0.0 

Test case no. 2 (Table 4): 
The test problem TP1 is highly nonconvex making it impossi­
ble for BT to approach the solution. Also UNT has difficulties 
to get a better approximation. -

Table 5. Test results for test case no. 3 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 66 4 51 30 0.317379E+0 0.0 
E04VDF 66 2 78 78 0.273508E-1 0.0 
ZXMWD 59 0 1009 0 0.406197E-6 0.0 
BT 56 0 76 76 0.783571E-1 0.0 
M1FC1 56 0 106 106 0.151011E+0 0.0 
GLOPT 55 1 3000 0 0.199494E-3 0.0 
UNT 55 0 10 0 0.417657E+1 0.0 
ELL 43 0 72 0 0.583132E-1 0.0 
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Test case 110. 3 (Table 5): 
All recommendation of EMP do not differ significantly. We 
observe that in particular the SQP-algorithms are very sensi­
tive with respect to gradient errors, where the gra- dient-free 
algorithm UNT and GLOPT achieved a.pproximately the same 
results. Also the ellipsoid algorithm ELL is recommended 
slightly in this case, since this code is not that much sensi­
ble with respect to the accuracy in the gradient evaluation. 

Table 6. Test results for test case no. 4 

Code CF IF NF NG OBJECTIVE CON 
GLOPT 89 1 3000 0 0.401946E-2 0.0 
UNT 89 0 110 0 0.417744E+1 0.0 
BT 51 1 406 406 0.437104E+2 0.0 
M1FC1 51 5 16 16 0.651401E+2 0.0 
ELL 48 0 136 136 0.780423E+3 0.0 

Table 7. Test results for test case no. 5 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 70 4 131 25 -0.155514E+0 0.0 
E04VDF 70 1 600 600 -0.800000E+0 0.0 
ZXM\tVD 60 0 799 0 -0.999993E+0 0.0 
BT 59 0 58 58 -1.000000E+0 0.0 
M1FC1 59 1 329 329 -0.999971E+0 0.0 
GLOPT 56 1 3000 0 -0.995626E+0 0.0 
UNT 56 0 74 0 -0.92258GE+0 0.0 
ELL 42 0 81 80 -0.999998E+0 0.0 

Test case no. 4 (Table 6): 
The sequential quadratic programming codes NLPQL and 
E04VDF are not recommended by EMP. It turns out in fact. 
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that they break down after a few iterations. Due to extremely 
large round-off errors, only GLOPT is able to approximate a 
solution, as expected by EMP. 

Test case no. 5 (Table 7/8): 
Again it turns out t.hat. sequent.ial quadratic programming 
methods are sensitive with respect. to the gradient evaluation, 
whereas the ellipsoid method is surprisingly efficient. The non­
smooth codes BT and M1FC1 got. some lower cert.ainty factors, 
since numerical differentiation was used. If we use analytical 
differentiation, we will get then the results shown in Table 8. 

Table 8. Test results for test case no. 5 (anal. deriv.) 

Code CF IF NF NG OBJECTIVE CON 
BT 85 0 57 57 -1.000000E+0 0.0 
M1FC1 85 1 316 316 -0.999957E+0 0.0 
NLPQL 70 4 9 1 -0.778083E+0 0.0 
E04VDF 70 4 12 12 -0.800000E+0 0.0 
ZXMWD 60 0 717 0 -0.998893E+0 0.0 
GLOPT 56 1 3000 0 -0.995626E+0 0.0 
UNT 56 0 74 0 -0.922585E+0 0.0 
ELL 42 0 49 48 -0.999999E+0 0.0 

Table 9. Test results for test case no. 6 

Code CF IF NF NG OBJECTIVE CON 
GLOPT 89 1 3000 0 -0.103163E+ 1 0.0 
UNT 89 2 106 0 -0.333832E+0 0.0 
NLPQL 86 0 16 12 -0.103163E+0 0.0 
E04VDF 86 0 12 12 -0.103163E+0 0.0 
ZX1fWD 84 0 462 0 -0.103163E+0 0.0 
BT 60 0 28 28 -0.1031G3E+0 0.0 
M1FC1 60 0 30 30 -0.103163E+0· 0.0 
ELL 55 0 53 52 -0.103162E+0 0.0 
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Test cases no. 6/7 (Table 9/10): 
It is interesting to observe that also the local algorithms are 
able to approximate the global solution, but the problem is 
easy to solve. We obtain a quite different code recommen­
dation of EMP if we would state that the problem functions 
are expensive to evaluate. In this case, Table 10 shO\vs the 
corresponding certainty factors, where the numerical results 
are identical with those of Table 9. Obviously EMP does 
not recommend any other algorithm besides of the sequen­
tial quadratic programming methods, since it is assumed that 
the solution time, i.e. number of function evaluation, would 
be too large. 

Table 10. Test results for test case no. 7 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 91 0 16 12 -0.103163E+0 0.0 
E04VDF 91 0 12 12 -0.103163E+0 0.0 

Test case no. 8 (Table 11): 
Table 11 contains the results for the large problem no. 8 with 
100 variables, where we assume that the user wants to get a 
global solution. Nevertheless only the locally convergent algo­
rithms are recommended by EMP, since special global codes 
are unable to solve problems with more than 10 or 20 vari­
ables, respectively. 

Table 11. Test results for test case no. 8 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 87 0 199 101 0.200413E-7 0.0 
E04VDF 87 4 75 75 0.795567E+3 0.0 
ZXMWD 78 error 
BT 42 1 413 413 0.715645E+2 0.0 
M1FC1 42 1 1704 1704 0.762619E+2 0.0 
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Test case no. 9 (Table 12): 
For smooth, well-scaled problems, where the starting point is 
close to a solution, the usage of sequential quadratic program­
ming codes is highly recommended by EMP, see Ta.ble 12. All 
other algorithms have difficulties to find a solution that could 
be accepted. 

Table 12. Test results for test case no. 9 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 90 0 5 5 -0.5684 78E+ 1 0.31E-12 
E04VDF 90 0 5 5 -0.568478E+ 1 0.31E-12 
ZXMWD 66 130 1064 0 -0.494226E+ 1 0.0 
BT 51 0 197 197 -0. 568478E+ 1 0.80E-ll 
MIFCI 51 2 18 18 -0.119544E+I08 0.13E+60 

Test case no. 10 (Table 13): If the problem is ba.dly scaled, 
also sequential quadratic programming problems might have 
some difficulties to find the optimal solution, but they are 
still more preferable than others, d. Table 13. Global search 
methods got some certainty in this case, since they are usually 
quite independent from scaling of problem functions. 

Table 13. Test results for test case no. 10 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 70 0 6 6 -0.568478E+8 0.15E-7 
E04VDF 70 4 16 7 -0.568478E+8 0.0 
BT 51 error 
MIFCI 51 2 33 33 -0.886226E+ 182 0.46E+I04 
ZXMWD 48 error 
GLOPT 41 1 3000 0 -0.190509E+14 0.0 
UNT 41 0 130 0 -0 .179258E+ 14 0.0 
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Test case no. 11 (Table 14): 
Similar to test case 10, EMP recommends to use sequential 
quadratic programming methods if the problem is degenerate. 
The highly nonlinear constraints prevent a solution by other 
available codes. 

Table 14. Test results for test case no. 11 

Code CF IF NF NG OBJECTIVE CON 
NLPQL 72 0 65 65 O.704925E+4 O.98E-6 
E04VDF 72 0 59 59 0.704925E+4 0.21E-6 
BT 51 1 400 400 0.139328E+5 0.87E+10 
M1FC1 51 5 33 33 0.147504E+5 0.0 

Conclusions. It was shown how heuristic knowledge 
of mathematical programming experts can be implemented in 
form of a suitable software systems so that their knowledge be­
comes available for non-specialists or occasional users of op­
timization algorithms. The approach was demonstrated by 
introducing briefly an interactive optimization system called 
EMP, which contains a rule-based subsystem for proposing a 
suitable code depending on some problem characteristics. For 
a series of case studies, the recommendations of EMP were 
compared with the numerical results achieved. 
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