
INFORMATICA, 1991, Vo1.2, No.2, 278-310

HEURISTIC REASONING IN

MATHEMATICAL PROGRAMMING

Klaus SCHITTKOWSKI

Mathematisches Institut, Universitat Bayreuth,
8580 Bayreuth, Germany

Abstract. In general terms some situations are described
which require the exploitation of heuristics either to solve a math­
ematical optimization problem or to analyse results. A possibility
to implement heuristic knowledge for selecting a suitable algorithm
depending on available problem data and information retrieved
from the user, is investigated in detail. We describe some infer­
ence strategies and knowledge representations that can be used in
this case, an.d the rule-based implementation within the EMP sys­
tem for nonlinear programming. Case studies are presented which
outline on the one hand the heuristic recommendation of an op­
timization code and the achieved numerical results on the other
hand.

Key words: Mathematical programming, nonlinear optimi­
zation, heuristic reasoning, expert systems.

1. Introduction. Whenever a practical optimization
problem is to be solved, heuristic decisions must be made in
many different situations. Among them are the questions, how
to model a given real-life problem, how to select and execute
a mathematical programming algorithm and how to analyse
and interpret the results.

Whenever the decision maker possesses sufficient expe-

K.S chittkowski 279

rience on the decision to be made, i.e. on the mathematical
model, the numerical algorithms and their performance, there
is certainly nQ need to assist him in form of special software
tools. On the other hand, we often observe that mathematical
optimization algorithms' are in the hands of unexperienced or
occasional users who do not posses the knowledge and practi­
cal experience about the model and the algorithms, to be able
to find the best compromise between all decisions that must
be made.

Thus the main intention of this paper is to discuss pos­
sible heuristic decisions and to present a way to implement
them in form of a special software code. Although we will not
investigate the structure of numerical algorithms in detail, we
concentrate all conlusions on the general nonlinear program­
ming problem of the following form:

minf(x)

gj(x) = 0,

x E ~n : gJ{x) ~ 0,

j = 1, ... ,me

j = me + 1, ... ,m

Certainly part of the approach can be applied to other
areas as well, in particular the inference mechanism presented.

In the above mathematical description various special
problem types are hidden which can be solved by numeric~
algorithms that were entirely developed for them, e.g. least
squares problems, global optimization problems, smooth or
nonsmooth problems. In other words, there does not exist
one 'black box' algorithm that is capable to solve the gen­
eral mathematical programming problem without any further
restrictive assumptions.

N everthless we will try to discuss the mathematical pro,..
gramming problem as general as possible by describing heuris­
tic reasoning as implemented in the EMP-system, cf. Schitt-

280 Heuristic reasoning

kowski (1987a). This interactive software system allows in­
put of general nonlinear functions in form of FORTRAN­
statements, the automatic generation of FORTRAN-programs
with respect to a selected algorithm, their execution and inves­
tigation of results which are kept in a data base. Heuristics are
exploited to assist a user when choosing a suitable optimiza'­
tion algorithm and when analysing possible error messages to
recommend remedies.

Due to the general structure of the optimization prob­
lems that can be treated by EMP, the recommendations either
of algorithms or remedies in failure situations must be quite
vague. Much more precise exploitation of human experience
by means of a software implementation can be attained when
concentrating the decisions to be made, on a special-area, e.g.
structural mechanical optimzation. We mention here with­
outgoing into details, that in a very similar way, heuristic
reasoning systems were implemented by the author to assist
non-experienced users of the structural optimization system
LAGRANGE, cf. Schittkowski (1989) and Kneppe, Kram­
mer (1987), to select a suitable algorithm and to interprete
failures. Since the problem structure is more restrictive, spe­
cialized data and knowledge is available in this case, so that
the resulting conclusions are more precise.

The subsequent section of this paper describes the neces­
sity for applying heuristics in mathematical programming. To
implement heuristic reasoning, v~rious inference algorithms
and knowJedge representations are 'known from artificial in­
telligence. In Section 3, two traditional approaches are pre­
sented which are based on forward and backward reasoning
and a suitable corresponding knowledge base. Both are paf't
the language SUSY, see Schittkowski (1988), which can be
considered as an expert system shell at least in the framework
discussed in this paper. A rough outline of SUSY is also given
in Section 3.

K.Schiltkowski 281

In Section 4, the expert system EMP is introduced. In
particular the evaluation of experience factors and the imple­
mentation of the heuristic reasoning subprocesses for propos­
ing a suitable algorithm and remedies in failure situations are
described. Moreover some case studies are evaluated to show
the feasibility of the approach. We compare the heuristic de­
cisions of the system with the numerical results obtained. The
results are summarized in Section 5.

2. Heuristics in mathematical programming. First
we have to realize that in this paper, we do not consider any
possibilities to include heuristic decisions into a numerical al­
gorithm itself e.g. by introducing a hybrid structure to switch
to another variant or algorithm based on interaction with the
user .. The basic idea is to accept available optimization algo­
rithms as they were developed by numerical analysts and to
facilitate or automize only access to these algorithms or the
interpretation of results.
Thus we consider some situations in which heuristic knowledge
must be exploited by a decision maker. One of them will be
analysed in subsequent sections of this paper in more detail.

a) Model selection: Here we assume that one has to select a
mathematical model depending on available data. Typ­
ical example is parameter estimation, where a suitable
model function given either explicitely or in form of a
differential equation, must be determined depending on
the structure of the data and the application. In such a
case, the'acceptance of a model is often more important
than the achieved numerical results. In other words a
qualitative answer is desired and not a quantitive one.
To make the forecast which model is the most accept­
able one, is however often difficult and can be made only
by experts.

b) Algorithm selection: Let us assume that, as in many

:282, Heuristic reasoning

real situations, more than one optimization algorithm
, '. is available, and that a decision must be made to select

"llot only an algorithm, but also a suitable combination of
. input parameters that control the execution. The more
.specialized the class of optimization problems under con­
,sideration is, the more human experience is available and
can be evaluated. Any decision will always depend also
on available results that were ontained in the past anc:i
that are evaluated whenever the new problem is some­
what related to an old one. This situation is analysed in
the subsequent sections in more detail.

cIE::ailure analysis: We cannot expect that an optimization
algorithm is always capable to solve a problem in the
class for which the algorithm was designed. There may
be many instabilities in the problem data, e.g. round­
off errors, ill-conditioning, bad scaling, that prevent a
successful numerical solution. On the other hand, we
have to expect also failures in the problem data itself,
e.g. empty feasible domain, or even programming errors
either in function or, more frequently, in gradient eval­
uation. However a numerical algorithm will break down
with an error message that is a consequence of the error,
e.g. by reporting that a line search could not terminated
successfully. The conclusion which reason caused the

,failure, is often difficult and requires detailed knowledge
on the numerical algorithm and at least some fundamen­
tal mathematical optimization theory to understand the
error message. Moreover any conclusion based only on
the error message and some data, must be very vague
without further investigations.

d) 'Acceptance of a solution: Even if an optimization
method reports that an optimal solution was found, the
solution might be unacceptable. One reason is that the
algorithm is-only capable to check some stopping condi-

K.Schittkowski 283

tions which can be met too early e.g. due to badly scaled
problem functions. Another reason is the possibility to
achieve only a local solution which must be rejeCted in
special situations. Worst of all, even a known global
optimal solution is sometimes unacceptable in the sense
that the underlying model turns out to be incorrect, e.g.
as in parameter estimation. Thus one has to analyse an
achieved answer of an optimization algorithm very care­
fully to decide whether the solution is acceptable or not.
Experience and knowledge is necessary to get a decision
which does depend heavily on heuristics.

In the following, we consider only the selection of a suit­
able optimization code whithin the EMP-system in detail to
give ap example how heuristics can be embedded in an inter­
active system. The application of the proposed methodology
to the other si tuations is straightforward. For understanding
why the infe rence procedures introduced in the subsequent
section, work in these cases, we have to know that all conclu­
sions are very vague in generaL Without deeper information
on the model structure, the data and in particular available
experience we are unable to get more precise answers.

Again it must be mentioned that bY,no means the soft­
ware tools presented, can replace a human expert. The basic
idea is to exploit the available experience of a human expert
and to im plement it so that other users who do not have direct
contact with him, are assisted at least by a software tool. It is
hoped that the user will get then his own· expertise about the
mathematical optimization model he is investigating, so that
he might become able after some experimentation to solve his
problem without any external help.

3. Inference mechanisms. The interactive optimiza­
tion system EMP that incorporates some of the heuristics
mentioned ill the previous section, is written in the SUSY
(support system) language, see Schittkowski (1988). The ba-

284 Heuristic reasoning

sic structure of SUSY is procedural and commands are inter­
preted. By the following lines, a brief summary of the main
features of the procedural part of SUSY is to. be given first.

The programming language SUSY was designed to de­
velop interactive software systems like data management sys­
tems, interactive user interfaces, intelligent software systems
(expert systems), or integrated problem solving systems.
Since a SUSY program can interact directly ".jth the oper­
ating syst.em and therefore with existing programs written in
any other language, possible applications are:

• Interactive processing of problem data and results in a
data base

• Construction of formatted input files for an existing
system

• Problem dependent selection and linking of existing
modules

• Automatic start of an external solution method

• Information retrieval of performed solution attempts

• Interpretation of results

• Report writers

Since SUSY supports the generation of include-files which
are interpreted, even large software systems can be imple­
mented with minimum core storage needed. The main im­
portant facilities of SUSY are:

• Permanent and temporary variables of various data
types (CHAR, NAME,INTEGER, DECIMAL,
STRING, LINE, TEXT, TABLE, FILE)

• Structured data types (RECORD, STRUCTURE)

• Assignment, compound and goto-statements

K.Schittkowski 285

• Logical and arithmetic expressions

• Brief in-. and output commands (':' - in- and output
from terminal, '<' - output to file, '>' - input from file,
'T - display of help-text)

• Support of monitor representation (COLOUR,
SCROLL, ENLARGE, ...)

• Windows with input mascs, scrolling table columns,
hand calculator and help windows, overlapping win­
dows (WINDOW FROM ... TO ... , ENDWINDOW)

• Da.ta base commands (NEW, LAST, FIRST, NEXT,
DELETE, SEARCH, SORT, ...)

• Table calculation (MIN, MAX, AVERAGE, SUM, ...)

• File management (RESET, REWRITE, SEARCH,
SORT, ...)

• Interactive input of SUSY commands
(INTERACTIVE)

• Include files and macros (INCLUDE, MACRO)

• Direct input and execution of arbitrary operating sys­
tem commands ($ <command>, GO, EXECUTE)

• Interactive help and system documentatiori (HELP,
DOCUMENTATION)

• Editor and programming environment (EDIT)

• Text formatter and automatic hyphenation (FORMAT,
HYPHENATE)

An interactive installation programm facilitates the gen­
eration of a new software system to be written in SUSY.
Maintenance and debugging is supported by a programming
environment. The SUSY language was also used to imple­
ment larger practical integrated software systems, e.g. an

286 Heuristic reasoning

interface for the mechanical structural optimization system
LAGRANGE, see Schittkowski (1989), or an interactive mod­
elling and parameter estimation system GAUSS, see Schit­
tkowski (1990). Also in these cases, the systems are self­
learning, heuristic rules were used for selecting a suitable al­
gorithm or model in dependance on the problem to be solved,
and to analyse failures for proposing suitable remedies.

SUSY has the additional option to execute two different
inference strategies to process heuristic knowledge represented
in form of rules. The corresponding knowledge base consist­
ing of different types of rules, of actions, goals and other con­
structs, is defined separateley in a SUSY program, i.e. ei­
ther in the declaration part or in include files. Several rule
systems of the same or different types can be part of one pro­
gram and are executed whenever needed by special commands
(REASONING). One rule system is allowed to call other rule
subsystems, arbitrary SUSY commands or even operating sys­
tem commands.

One of the two inference procedures in SUSY is based of a
knowledge representation in form of suLject-object-attribute­
value-tupels and uses backward-chaining, see Kummert (1989) ..
Goals must be defined which are then tried to be satisfied re­
cursively by available rules. Ifa fact in the antecedent of a rule
is unknown, the user will be asked. In this situation an expla­
nation component can be executed to get information on the
local status and the subgoal that is to be fullfilled. Certainty
factors are used· to express uncertain facts and conclusions
and are evaluated in a way similar to MYCIN, d. Shortliffe
(1976). Further components are automated knowledge aqui­
sition, tracing, meta-rules and variable facts, goals, rules and
meta-rules.

The heuristic reasoning processes implemented in EMP,
however, use forward chaining because of the relatively simple
structure of decision trees. Thus vye describe this SUSY option

K. S chittkowski

a bit more detailed.
The reasoning process allows the storage and procesl'iing

of heuristic knowledge based on rules with certainty fa:bt6'r~
and actions. A typical rule is of the form .• ,; i r

IF < antecedent>
THEN < consequent> lV IT H < cf >

'H f'

Antecedents can be logical expressions or actions, .W,11f~F
the consequent must be an action, i.e .. an arbitrary seq1.-len,~~ : ," .. ,

of SUSY commands. The reasoning process allows additiql[lClrl
bounds for the antecedent certainty factors, logical combina~
tion of antecedents, repeated execution of rules, automatic
alteration of certainty factors in case of executing a rule, mod­
ifying certainty factors 'by hand', and an explanation compo­
nent. The system one is only capable to give local inforniation
or information on decision history, but not on a goal to .be at­
tained.

All actions will gd an internal certainty factor . when
starting the inference procedure. If an antecedent is. satis­
fied, the ('('dainty factor of the action in the consequent part
is updated according to some formulas similar to the MYCIN
implementation, see Shortliffe (1976). An antf'ccdcnt is satis­
fied, if eitllf'r the logical expression is true or if the certainty
factors of all actions are between the predetermiued bounds.

The SUSY conllnauds of the actiou that got the largest
certainty factor within one loop, are then f'xf'('uted. If nec­
essary, the certainty factor of a rule is updated according to
the arithmetic expression defined by the \VITH-part of the
consequent, if any. This allows also repeated executions of
rules.

Since all certainty factors can be provided in form ofsys­
tem variables, they can be modified within actions. In addi­
tion it is possible to use variable expressions in defining n~iles
and actions, which are replaced symbolically. . . '.'

Heuristic reasoning

4. Heuristic reasoning in EMP. EMP is an in­
teractive programming system that supports model building,
numerical solution and data processing of constrained math­
ematical programming problems, cf. Schittkowski (1987a).
Various options are available in EMP to facilitate the formu­
lation of problem functions. The objective function e.g. may
be a linear or quadratic function, a data fitting function, a
sum or maximum of functions, or a general function without
a structure that could be exploited. More precisely the fol­
lowing mathematical models are available for facilitating the
formulation of objective or constraint functions and exploiting
special structures mathematically whenever possible:

• Linear programming

• Linear regression

• Quadratic programming

• Nonlinear L1 and Lao-data fitting

• Nonlinear L 2 - or least squares data fitting

• Multicriteria optimization

• Min-max optimization

• Non-smooth optimization

• Global optimization

• General nonlinear programming

All problems may have bounds for the variables and lin­
ear or nonlinear constraints. In both cases it is possible to
proceed from two-sided bounds for the restrictions. Data fit­
ting problems are either composed of a sequence of arbitrary
nonlinear functions or of one model function, where the ex­
perimental data are provided separately.

K.Schittkowsl .. i 289

For most optimization problems, several different, algo­
rithms are available, which were either de,·elopcd by the au­
thor or taken over from libraries and other authors in original
form, i.e. witbmllt any adaptions to the E~IP system. The
present versioDl of EMP contains mathematical methods of
the following type:

• Sequential quadratic programming methods for nonlin-
ear programmmg

• Bundle methods for non-SIIlooth problems

• Stochastic global optimization methods

• Levenberg-1\larquardt, Gauss-Newton, Newton, and
quasi-Newton methods for nonlinear least squares
problems

• Ellipsoid method for smooth and non-SIIlooth optimiza~
tion

• Dual and primal methods for quadratic programming

• Adapted sequential quadratic programming methods
for constrained L 1-, L 2-, Loo-norm and min-max prob­
lems

EMP includes program generators for codes of the fre­
quently used optimization libraries NAG and IMSL, and the
algorithm, base is extended steadily.

For objective flUlctioIl and constraints, the input of quad­
ratic or linear fimdions reduces to definition of some vectors
and matrices, respectively, where sparsity can be exploited.
Gradients of nonlinear and nonquadratic functions are approx­
imated llullH"rically, but can also be provided by the user in
analytical form. For nonlinear problem functions that can be
represented either by analytical expressions or statements of
a simple modelling language, gradients can be evaluated au­
tomatically, i.e. exactly without differentiation 'by hand', see

290 H curistic rca!wning

Liepelt (1990). The input of sequences of similar objective or
constraint functions and variables is facilitated, if they differ
at most by an index.

Only the problem relevant data need to be provided by a
user in an interactive way. General functions must be defined
by sequences of FORTRAN statements addressing a numerical
value to a user pro- vided function name. All generated prob­
lems are star.ed in form of a data base system, so that they
are easily retrieved, modified, or deleted on request. EMP
proposes a suitable mathematical algorithm and writes a com­
plete FORTRAN source program. The system executes this
prograrn and stores the numerical results in the data base, so
that they are available for further processing. Since individual
names for functions and variables can be provided by a user, it
is possible to get a problem dependable output of t.he achieved
solut.ion.

The user will be asked whether he wants to link the gener­
ated FORTRAN program wit.h some of his own files or whether
he wants to insert additional subroutines, declarat.ion and ex­
ecutable st.atements to formulat.e t.he problem. It. is possible
to generat.e t.he same programs aut.omatically, that must be
generated by 'hand' otherwise.

All actions of E:tvfP are controlled by se,1f-explained com­
mands which are displayed in form of menues. Step by step
the user will be informed how to supply new dat.a. When­
ever problem data are generated or altered, t.he corresponding
information will be saved on a user provided file. Besides
commands to generate, solve or edit a problem, there are oth­
ers to transfer data from one problem to another, to delete a
problem, to sort problems, to get a report on prohlem or solu­
tion data, to halt the system and to get. senne information on '
the system,' t.he mathematical models and the available algo­
rithms. It is even possible to insert arbitrary operating system
commands without lea.ving EMP.

K. S chittkowski 291

The main intention of EMP is to prevent the organisa­
tional 'ballast' otherwise required to solve a nonlinear pro­
gramming problem with a special algorithm. Once the system
is implemented, it is not necessary

• to define special in-, or output files for each problem to
he solved, '

• to select a suitable mathematical algorithm 'by hand',

• to read any documentation of the used mathematical
programming algorithm,

• to write long lists of declaration statements, e.g. for di­
mensioning auxiliary arrays required by the algorithm,
or to call the mathematical programming code with a
long list of parameters that are to be defined initially,

• to provide the problem functions and their gradients in
a special form required by the mathematical program­
ming algorithm,

• to make the results readable for a decision maker.

Thus the domain of application of EMP is summarized
as follows:

(a) Programming neighbourhood for developing a first ex­
ecutable program version solving a specific practical
problem (or class of problems).

(b) Investigation of different model variants fitting best to
a given real world situation.

(c) Testing certain types or modifications of mathematical
programmmg algorithms for solving ~ class of prob­
lems.

(d) Collecting numerical experience on sol11 tion methods
for optimization problems.

292 Heuristic reasoning

(e) Teaching students on model building (e.g. structural
optimization courses in engineering science) or on nu­
merical behavior of optimization algorithms (e.g. op­
timization courses in mathematics).

EMP allows a user to concentrate all his efforts on the
problem he wants to solve and takes over the additional work
to select a suitable algorithm and to organize the data, the
execution of the problem functions and the program structure.
It should be possible to solve optimization problems of the
class under consideration within a minimal fraction of time
needed otherwise.

EMP is implemented in the SUSY language described
briefly in the previous section, cf. Schittkowski (1988). The
system is running at present on VAX/VMS, HP-UNIX wd
MS-DOS computing environments.

In various ways the system is capable to learn and to
store its own experience on the success of solution attempts.
The proposals offered by EMP, will therefore become better
and better with increasing knowledge on the numerical struc­
ture of the user provided models. A rule-based failure analysis
explains some reasons for possible false terminations and pro­
poses remedies to overcome numerical difficulties.

The solution of an optimization problem by EMP is to
be explained more precisly now, in particular the evaluation of
learning factors and the heuristic proposal of numerical algo­
rithms. After input of the problem name, a user has the option
to require the display of all a~lable codes that could solve
his optimization problem. The list contains a certainty factor
for each proposed program which indicates a very rough ap­
proximation of a measure for the numerical performance of an
algorithm. A value of 100 is the maximum attainable degree of
belief, whereas a value of 0 indicates a very poor performance
of the algorithm on previous runs. The numerical values of the

K.Schittkowski 293

certainty factors are defined and updated in three different
ways:

L Initially every code obtains a certain permanent de­
fault value of the system author which is based on his
own subjective experience.

2. Whenever a code could solve a problem succcessfully,
so that the stopping criteria are satisfied subject to
the provided tolerances, the corresponding permanent
certainty factor of the code is increased. H, on the
other hand, a failure is reported, then the permanent
certainty factor is decreased. The factor is not altered
at all if the iteration was interrupted due to the fact
that the maximum number of iterations was attained.

3. When starting the solution of a problem, a local cer­
tainty factor is defined which gets the value of the per­
manent one, and all previous numerical solution at­
tempts for this problem are investigated. H the prob­
lem could not be solved by a specific algorithm, then
the local certainty factor is decreased significantly, and
enlarged otherwise.

The local certainty factors are displayed to support the
selection of a suitable code. It is hoped that the choice of
these factors reflects the influence of special model structures
and that EMP is capable to learn, i.e. to propose better and
better sOlution methods in dependance on the problem to be
solved.

Moreover the user is asked whether he wants to select a
code 'by hand', where he may exploit the experience r~flected
by the certainty factors, or whether he prefers to initiate a
rule-based code selection by the system. In this case, some
additional questions must be answered and the outcome is the
display of a list of codes in the order of their certainty. The

294 Heuristic reasoning

evaluation of the certainty factors is based on the given ex­
perience factors described above, some internal problem data
like number of variables or constraints, numerical differentia­
tion etc., and on the answers of the user. More precisely the
following data and information are imbedded in the decision
process:

• structure of the model (e.g. least squares)

• number of variables

• number of constraints

• type of constraints (e.g. bounds, linear)

• calculation type of (sub-)gradients (e.g. numerically)

• smooth problem functions

• noise in evaluating problem functions

• expected number active constraints

• ill-conditioned problem

• approximation of global solution

• location of starting point

• expensive function evaluations

Rules are evaluated by forward chaining as described in
the previous section. To give an example, a few rules support­
ing or rejecting the sequential quadratic programming routine
NLPQL of Schittkowski (1985/86) are listed in somewhat sim­
plified form:

if active with 50 to 100
then nlpql with 30

if nonoise with 50 to 100
then nlpql with 10

K.Schittkowski

if degene with 70 to 100
then nlpql with 30

if nonglobal with 50 to 100
then nlpql with 20

if smooth with 50 to 100
then nlpql with 10

if expensiv with 50 to 100
then nlpql with 40
if stclose with 50 to 100
then nlpql with 20

if large with 50 to 100
then nlpql with 10

if noise with 30 to 70
then not nlpql with 40
if noise with 70 to 100
then not nlpql with 80

if nonsmooth with 50 to 100
then not nlpql with 20

if manyrest with 50 to 100
then not nlpql with 50

295

There must be some other rules to initiate the ruling
procedure and to set the actions used above, in an appropriate
way by retrieving the information either from the available
data base or from the user.

It is selfevident that a user may reject the algorithm
which got the largest certainty value, and to choose another
one. The described evaluation of heuristic knowledge is avail­
able only for the general nonlinear programming or the nonlin­
ear least squares model, since only in these situations, a larger
number of different codes is available to solve the problem.

Subsequently some additional decisions must be made
by a user, e.g. the choice of a suitable output flag. It is

296 Heuristic reasoning

possible that a previously computed and eventually inaccurate
approximation of the solution is available. Then the user is
asked whether he wants to accept this guesS as a starting point
for the actual run or not. H some additional output from the
underlying mathematical programming algorithm is required,
then the information is displayed on the terminal in original
form, in particular without individual user-provided names for
functions or variables.
"

The generated FORI'RAN code is written. on a text file
with the name 'EMPCODE.FOR'. The code consists of a
main program and, if the problem functions are nonlinear, two
subroutines for evaluating problem functions and correspond­
ing gradients in a form required by the selected optimization
method. EMP compiles the object code, link'S it WIth a cho­
sen nonlinear programming algorithm and eventually some ob­
ject files of the user, and executes the resulting program. All
numerical results, performance data and termination reasons
are stored automatically in the underlying data base and are
available for further processing. Afterwards the main-menue
of EMP is displayed again and the user may select any addi­
tional actions, e.g. to investigate the obtained results. Note
that after leaving the system, the last generated FORTRAN
program is still available and could also be used furtheron in­
dependently'from EMP. It is possible to direct the output of
an optimization program to an existing file on request.

5. Numerical results. We want to test now the heuris­
tic proposaJ. process within the EMP system and to compare
the recommendations of the system with the numerical results
obtained. We consider only the class of general nonlinear pro­
gramming problems, similar conclusions would be obtained for
least squares problems. Since the decision process starts from
available and eventually modified experience factors, we use
always the initial default values. The EMP intedace contains
a corresponding reset option.

K.Schittkowski 297

To evaluate certainty factors, 11 different test cases are con­
structed, see Table 1. The table contains in its first column
an identification number, then the source, some dimension­
ing parameters and the answers to the questions presented by
EMP. Source information beginning with 'TP' indicates that
the test problem was taken from the test problem collections
Hock and Schittkowski (1981) or Schittkowski (1987b). The
following abbreviations are used for identifying the situation:

n - number of variables
m - number of constraints (without bounds, equality

and inequality ones)
1 -- number of equality constraints
S - smooth problem
N - noisy problem functions (N-no noise, W-weak noi­

se, B-big noise)
D -- dege:q.erate problem functions, i.e. highly nonlin-

ear at a solution
G - global solution desired
E - expensive function evaluation
C - starting point close to a solution
W --- well-scaled problem functions and variables

Usually the table entry is 'Y' for yes or 'N' for no. Be­
sides of the dimensioning parameters, there are no attempts to
qualify the other problem features in a quantitative way. Since
we do not want o,! are unable to evaluate them numerically,
the information as obtained from the user, is processed sym­
bolically. Of course, the real system has also the option to give
the answer 'D' standing for 'do not know' or any intermediate
classification.

There are some other items influencing the decision pro­
cess, e.g. number of constraints expected to be active at an
optimal solution. But in this paper, we ,want to give only
an impression how heuristic reasoning can be used in mathe-

298 Heuristic reasoning

matical optimization, and investigate therefore only the data
mentioned above, which are required to understand the sub­
sequent tests.

Table 1. Test problem characteristics

No Source n m I S N D G E C W
1 TP87 6 4 4 N N Y N N N Y
2 TPI 2 0 0 y N N N N N Y
3 " / weak noise 2 0 0 y W N N N N Y
4 " /big noise 2 0 0 y B N N N N Y
5 Mifflin (1982) 2 0 0 N N N N N N Y
6 Branin (1972) 2 0 0 y N N Y N N Y
7 " /expens. 2 0 0 y N N Y Y N Y
8 TP299 100 0 0 y N N Y N N Y
9 TP343 3 2 0 Y N N N N Y Y
10 " /scaled 3 2 0 Y N N N N Y N
11 TPI06 8 6 0 Y N Y N N N N

In some cases, the original problem description was slight­
ly modified or a corresponding situation was only simulated.
Test problem TP87 is one of the famous Colville (1968) prob­
lems. The objective function is piecewise linear and not con­
tinuous, the constraints are highly nonlinear equality restric­
tions. TP87 is considered as a degenerate problem, since
the third equality constraint possesses a very small multiplier
value, cf. Hock and Schittkowski (1981).

The term 'weak noise' indicates, that a value of the form
'EPS*RAN' was added to all problem functions, where RAN
is a randomly generated number between 0 and 1 and EPS
is set to l.E-7. Since all gradients are evaluated numerically
by forward-differences with a steplength of l.E-7, the induced
error should perturb the gradient heavily. For obtaining a 'big
noise', we set EPS to l.E-3. Both situations reflect the pres­
ence of round-off errors in function and, in particular, gradient

K. S chittkowski 299

evaluations, which often occur in real life situations. It should
be mentioned here that all numerical computations were car­
ried out in double precision FORTRAN on a 32 bit machine
(VAX 8600). We test the influence of noise for the Rosen­
brock function TP1, which has a polynomial, banana-shaped
objective function with a zero value at the optimal solution.

Test problem no. 5 of Mifflin (1982) is a typical non­
smooth test problem, since the objective function is composed
of the maximum of smooth nonlinear functions.

No. 6 was often used to compare global optimization
problmes, since it possesses 6 different local minima. It is the
'six-hump camel-back' problem introduced by Branin (1972).
Algorithms for global minimization use a large number offunc­
tion evaluations. To simulate expensive function evaluations,
the problem was used to define test case no. 7. It was de­
clared that the evaluation of problem functions would be ex­
pensive. In both cases, we define the starting point by (1,1),
which differs significantly from the global optimal solution at
(0.08983,-0.7126).

The Rosenbrock function TP 1 can easily be extended to
very many variables, as done for test problem no. 8. The
problem has 100 variables. We assume in this case' that the
user gave the answer 'V' when the system want'ed to know
whether a global solution is to be calculated, only for testing
the reasoning process.

Test problem TP343 was used to simulate some another
situation which arises quite often in practical situations. No.
9 is the original smooth and well-scaled problem. For defining
no. 10, we omitted the scaling factor l.E-7 in the objective
function and scaled the second restriction by l.E+ 7, to get a
badly scaled test problem. Also we can suppose in these cases
that the starting point is close to an optimal solution.

Test problem no. 11 is considered to be a degenerate one,
since the multipliers differ significantly at an optimal solution.

JUU Heuristic reasoning

Also the problem seems to be badly scaled.
To understand the whole idea behind the tests presented,

it is important to note that the whole decision procedure is an
experimental one from the viewpoint of the author. We know
that many rules may be added to describe further experiences
that may influence the selection of an algorithm in the one or
other case. However the underlying structure of an optilniza­
tion problem is very general, since it is hidden behind some
sequence of FORTRAN-statements which cannot be analysed
by the system. Thus the basic idea is to outline the methodol­
ogy and to develop the tools that can then be applied to more
specialized areas in more detail.

As noted before, we investigate only the dass of gen­
eral mathematical programming problems without further as­
sumptions on the model structure. Table 2 shmvs the algo­
rithms that were implemented in the E~dP system to solve this
problem type, and gives a brief information on the mathemat­
ical method. More details can be retrieved from the literature
or the EMP documentation.

Table 2. General mathematical programming algorithms
in EMP

Code CF Source Method

NLPQL 80 Schittkowski (1985/86) sequential quadratic progr.

E04VDF 80 NAG/Gill e.al. (1983) sequential quadratic progr.

ZXMWD 60 IMSL/Fletcher (1972) penalty method

M1FC1 60 Lemarechal e.al. (1981) bundle method

BT 60 Schramm, Zowe (1989) bundle/trust region method

UNT 40 Torn, Zilinskas (1989) stochastic global search

GLOPT 40 Torn, Zilinskas (1989) randOlll search

ELL 20 Schittkowski (1986) ellipsoid method

The column headed by CF shows the default. cf'rtainty
factors which are set initially when starting E~IP wit 11 elll

K.Schittkowski 301

empty data base. They must be taken into account when
analysing the subsequent system recommendations, since the
evaluation of certainty factors is started from the above val­
ues. They reflect theidea that when nothing is known about
a problem, we may suppose that some algorithms are more
preferable than others. In fact EMP contains also some mod­
ifications of the NLPQL-code for solving problems with very
many constraints and for solving problems with automatic dif­
ferentiation. They are omitted here since these modifications
do not influence the basic algorithmic structure.

It must be noted here, that some of the algorithms are un­
able to take nonlinear constraints into account. In this case,
a penalty function is formulated which, however, makes the
problem eventually ill-conditioned. Only GLOPT and UNT
are gradient-free, all other codes need the evaluation of gradi­
ents either numerically, as in our tests, or ~nalytically. Since
ZX~v1\VD uses an internal numerical differentiation routine,
the corresponding entries for NG are zero in the subsequent
tables. The code ZXMWD uses different starting points to
attempt to approx.imate a global solution.

The subsequent tables contain the results of the decision
process on the one hand and the numerical data obtained by
tht' optimizatioll codes. Only the results of those algorithms
are considered, that got a certainty factor greater than 40.
The algorithms were executed with their default parameters
as included in E:tv'IP with the exception, that the maximum
number of iterations was increased in some cases. When com­
paring the results, we have to consider the achieved function
values and to relate them to the number of fuilction and gradi­
ent evaluations. Of course the proposals made by the system,
are very temptative and vague, but reflect the situation that
also a human expert would have difficulties to yield a bet ter
result based only on the available information. The tables use
the folluwing abbreviations for the columns:

302

Code
CF
IF

NF

NG

Heuristic reasoning

- optimization algorithm
- certainty factor evaluated by EMP
- termination code reported by the al-

gorithm
- number of objective function evalua­

tions
- number of gradient evaluations of ob­

jective function
OBJECTIVE- objective function value
CON - violation of constraints

A termination reason '0' indicates that the optimality
conditions of the algorithm were satisfied, and '1' that the
maximum number of iterations or function evaluations, re­
spectively, was attained. All other failure codes are the origi­
nal messages of the optimization algorithms.

Table 3. Test results for test case no. 1

Code CF IF NF NG OBJECTIVE CON
NLPQL 72 0 131 57 0.892759E+4 0.47E-9
E04VDF 72 0 45 45 O.892764E+4 O.66E-IO
BT 47 1 267 267 O.923081E+4 O.47E-4
MIFCl 47 5 384 384 O.253764E+5 O.92E+O

Test case no. 1 (Table 3):
Although we declared, that the problem functions would be
nonsmooth, the special purpose algorithms BT and MIFCl
got significantly lower certainty factors for several reasons.
First we declared that the problem would be degenerate due to
highly nonlinear equality constraints, which cannot be handled
directly by the codes. Then we are using numerical approx­
imations for gradient evaluations which is not very useful in
this case. Also both algorithms are basically designed to solve

K.Schittkowski :303

convex problems which should be at least continuous. The·
recommendation of EMP, however, was subsequently verified
by the numerical results, since it turns out that the 'jump'
in the objective function is close to an optimial solution, but
fortunately not identical with it.

Table 4. Test results for test case no. 2

Code CF IF NF NG OBJECTIVE CON
NLPQL 88 0 41 33 0.566069E-7 0.0
E04VDF 88 0 33 33 0.839D24E-9 0.0
ZXMWD 68 0 931 0 0.349837E-24 . 0.0
BT 64 0 79 79 0.519446E-9 0.0
M1FC1 64 0 113 113 0.499141E-5 0.0
GLOPT 46 1 3000 0 0.199429E-3 0.0
UNT 46 0 90 0 0.417657E+1 0.0

Test case no. 2 (Table 4):
The test problem TP1 is highly nonconvex making it impossi­
ble for BT to approach the solution. Also UNT has difficulties
to get a better approximation. -

Table 5. Test results for test case no. 3

Code CF IF NF NG OBJECTIVE CON
NLPQL 66 4 51 30 0.317379E+0 0.0
E04VDF 66 2 78 78 0.273508E-1 0.0
ZXMWD 59 0 1009 0 0.406197E-6 0.0
BT 56 0 76 76 0.783571E-1 0.0
M1FC1 56 0 106 106 0.151011E+0 0.0
GLOPT 55 1 3000 0 0.199494E-3 0.0
UNT 55 0 10 0 0.417657E+1 0.0
ELL 43 0 72 0 0.583132E-1 0.0

304 Heuristic reasoning

Test case 110. 3 (Table 5):
All recommendation of EMP do not differ significantly. We
observe that in particular the SQP-algorithms are very sensi­
tive with respect to gradient errors, where the gra- dient-free
algorithm UNT and GLOPT achieved a.pproximately the same
results. Also the ellipsoid algorithm ELL is recommended
slightly in this case, since this code is not that much sensi­
ble with respect to the accuracy in the gradient evaluation.

Table 6. Test results for test case no. 4

Code CF IF NF NG OBJECTIVE CON
GLOPT 89 1 3000 0 0.401946E-2 0.0
UNT 89 0 110 0 0.417744E+1 0.0
BT 51 1 406 406 0.437104E+2 0.0
M1FC1 51 5 16 16 0.651401E+2 0.0
ELL 48 0 136 136 0.780423E+3 0.0

Table 7. Test results for test case no. 5

Code CF IF NF NG OBJECTIVE CON
NLPQL 70 4 131 25 -0.155514E+0 0.0
E04VDF 70 1 600 600 -0.800000E+0 0.0
ZXM\tVD 60 0 799 0 -0.999993E+0 0.0
BT 59 0 58 58 -1.000000E+0 0.0
M1FC1 59 1 329 329 -0.999971E+0 0.0
GLOPT 56 1 3000 0 -0.995626E+0 0.0
UNT 56 0 74 0 -0.92258GE+0 0.0
ELL 42 0 81 80 -0.999998E+0 0.0

Test case no. 4 (Table 6):
The sequential quadratic programming codes NLPQL and
E04VDF are not recommended by EMP. It turns out in fact.

K.Schittkowski 305

that they break down after a few iterations. Due to extremely
large round-off errors, only GLOPT is able to approximate a
solution, as expected by EMP.

Test case no. 5 (Table 7/8):
Again it turns out t.hat. sequent.ial quadratic programming
methods are sensitive with respect. to the gradient evaluation,
whereas the ellipsoid method is surprisingly efficient. The non­
smooth codes BT and M1FC1 got. some lower cert.ainty factors,
since numerical differentiation was used. If we use analytical
differentiation, we will get then the results shown in Table 8.

Table 8. Test results for test case no. 5 (anal. deriv.)

Code CF IF NF NG OBJECTIVE CON
BT 85 0 57 57 -1.000000E+0 0.0
M1FC1 85 1 316 316 -0.999957E+0 0.0
NLPQL 70 4 9 1 -0.778083E+0 0.0
E04VDF 70 4 12 12 -0.800000E+0 0.0
ZXMWD 60 0 717 0 -0.998893E+0 0.0
GLOPT 56 1 3000 0 -0.995626E+0 0.0
UNT 56 0 74 0 -0.922585E+0 0.0
ELL 42 0 49 48 -0.999999E+0 0.0

Table 9. Test results for test case no. 6

Code CF IF NF NG OBJECTIVE CON
GLOPT 89 1 3000 0 -0.103163E+ 1 0.0
UNT 89 2 106 0 -0.333832E+0 0.0
NLPQL 86 0 16 12 -0.103163E+0 0.0
E04VDF 86 0 12 12 -0.103163E+0 0.0
ZX1fWD 84 0 462 0 -0.103163E+0 0.0
BT 60 0 28 28 -0.1031G3E+0 0.0
M1FC1 60 0 30 30 -0.103163E+0· 0.0
ELL 55 0 53 52 -0.103162E+0 0.0

306 Heuristic reasoning

Test cases no. 6/7 (Table 9/10):
It is interesting to observe that also the local algorithms are
able to approximate the global solution, but the problem is
easy to solve. We obtain a quite different code recommen­
dation of EMP if we would state that the problem functions
are expensive to evaluate. In this case, Table 10 shO\vs the
corresponding certainty factors, where the numerical results
are identical with those of Table 9. Obviously EMP does
not recommend any other algorithm besides of the sequen­
tial quadratic programming methods, since it is assumed that
the solution time, i.e. number of function evaluation, would
be too large.

Table 10. Test results for test case no. 7

Code CF IF NF NG OBJECTIVE CON
NLPQL 91 0 16 12 -0.103163E+0 0.0
E04VDF 91 0 12 12 -0.103163E+0 0.0

Test case no. 8 (Table 11):
Table 11 contains the results for the large problem no. 8 with
100 variables, where we assume that the user wants to get a
global solution. Nevertheless only the locally convergent algo­
rithms are recommended by EMP, since special global codes
are unable to solve problems with more than 10 or 20 vari­
ables, respectively.

Table 11. Test results for test case no. 8

Code CF IF NF NG OBJECTIVE CON
NLPQL 87 0 199 101 0.200413E-7 0.0
E04VDF 87 4 75 75 0.795567E+3 0.0
ZXMWD 78 error
BT 42 1 413 413 0.715645E+2 0.0
M1FC1 42 1 1704 1704 0.762619E+2 0.0

K. S chittkowski 307

Test case no. 9 (Table 12):
For smooth, well-scaled problems, where the starting point is
close to a solution, the usage of sequential quadratic program­
ming codes is highly recommended by EMP, see Ta.ble 12. All
other algorithms have difficulties to find a solution that could
be accepted.

Table 12. Test results for test case no. 9

Code CF IF NF NG OBJECTIVE CON
NLPQL 90 0 5 5 -0.5684 78E+ 1 0.31E-12
E04VDF 90 0 5 5 -0.568478E+ 1 0.31E-12
ZXMWD 66 130 1064 0 -0.494226E+ 1 0.0
BT 51 0 197 197 -0. 568478E+ 1 0.80E-ll
MIFCI 51 2 18 18 -0.119544E+I08 0.13E+60

Test case no. 10 (Table 13): If the problem is ba.dly scaled,
also sequential quadratic programming problems might have
some difficulties to find the optimal solution, but they are
still more preferable than others, d. Table 13. Global search
methods got some certainty in this case, since they are usually
quite independent from scaling of problem functions.

Table 13. Test results for test case no. 10

Code CF IF NF NG OBJECTIVE CON
NLPQL 70 0 6 6 -0.568478E+8 0.15E-7
E04VDF 70 4 16 7 -0.568478E+8 0.0
BT 51 error
MIFCI 51 2 33 33 -0.886226E+ 182 0.46E+I04
ZXMWD 48 error
GLOPT 41 1 3000 0 -0.190509E+14 0.0
UNT 41 0 130 0 -0 .179258E+ 14 0.0

308 Heuristic reasoning

Test case no. 11 (Table 14):
Similar to test case 10, EMP recommends to use sequential
quadratic programming methods if the problem is degenerate.
The highly nonlinear constraints prevent a solution by other
available codes.

Table 14. Test results for test case no. 11

Code CF IF NF NG OBJECTIVE CON
NLPQL 72 0 65 65 O.704925E+4 O.98E-6
E04VDF 72 0 59 59 0.704925E+4 0.21E-6
BT 51 1 400 400 0.139328E+5 0.87E+10
M1FC1 51 5 33 33 0.147504E+5 0.0

Conclusions. It was shown how heuristic knowledge
of mathematical programming experts can be implemented in
form of a suitable software systems so that their knowledge be­
comes available for non-specialists or occasional users of op­
timization algorithms. The approach was demonstrated by
introducing briefly an interactive optimization system called
EMP, which contains a rule-based subsystem for proposing a
suitable code depending on some problem characteristics. For
a series of case studies, the recommendations of EMP were
compared with the numerical results achieved.

REFERENCES

Branin, F.H. (1972). Widely convergent methods for finding multi­
ple solutions of simultaneous nonlinear equations. IBM Journal
of Research Developments, 504-522.

Colville, A.R. (1968). A Comparative Study on Nonlinear Program­
ming Codes. IBM Scientific Center Report. No. 320-2949, New
York.

K. S chittkowski 309

Fletcher, R. (1972). Fortran Subroutines for Minimization by Quasi­
Newton Methods. Report :R7125, AERE, Harwell, England.

Gill, P.E., W.Murray, M.A.Saunders, M.H.Wright (1983). User's
guide for SOL/NPSOL: a FORTRAN Package for Nonlinear
Programming. Report SOL 83-12, Department of Operations
Research, Stanford University, Stanford, USA.

Hock, W., and K.Schittkowski (1981). Test Examples for Nonlin­
ear Programming. Lecture Notes in Economics and Mathemati­
cal Systems, Vol. 187. Springer.

Kneppe, G., J.Krammer, E.Winkler (1987). Structural Optimiza­
tion of Large Scale Problems Using MBB-LAGRANGE. Report
MBB-S-PUB-305, Messerschmidt-Bolkow-Biohm; Munich,
Germany F .R.

Kummert, A. (1989). Ruckwiirtsverkettende Schlussverfahren fur
Regelsysteme. Diplomarbeit, Mathematisches lnstitut, Univer­
sitat Bayreuth.

Lemarechal, C., J.-J.Strodiot, and A.Bihain (1981). On a bundle
algorithm for nonsmooth optimization. In Mangasarian, Meyer
and Robinson (Eds.), Nonlinear Programming. Academic Press.

Liepelt, M. (1990). Automatisches DifJerenzieren. Diplomarbeit,
Mathematisches lnstitut, Universitat Bayreuth.

Mifflin, R. (1982). A modification and an extension of Lemarechal's
algorithm. Mathematical Programming Study, 17, 77-90.

Schittkowski, K. (1985/86)). NLPQL: A FORTRAN subrout.ine
solving constrained nonli~ear programming problems. Annals of
Operations Research, 5,485-500.

Schittkowski, K. (1986). ELL: A FORTRAN Implementation of an
Ellipsoid Algorithm for Nonlinear Programm,ing: User's Guide.
Report, Mathematisches lnstitut, U niversi'tat Bayreuth,
FRG.

Schittkowski, K. (1987a). EMP: An Expert System for Mathemati­
cal Programming. Bericht, Mathematisches lnstit.ut, Universitat

Bayreuth, Bayreuth, Germany F.R.
Schittkowski, K. (1987b). More Test Examples for Nonlinear Pro-

310 Heuristic reasoning

gramming Codes. Lecture Notes in Economics and Mathematical
Systems, Vo1.282. Springer.

Schittkowski, K. (1989). Knowledge-based problem solving systems
in structural optimization. In Eschenauer and'Thierauf (Eds.),
Discretization Methods and Structural Optimization. Vo1.42.
Springer.

Schittkowski, K. (1990). GAUSS: Interactive Modelling and Param­
eter Estimation. Report, Mathemat~sches Institut, Universitat
Bayreuth.

Schramm, H., and J.Zowe (1989). A version of the bundle idea
for minimizing a nonsmooth function: Conceptual idea, conver­
gence analysis, numerical results. (submitted for publication).

Torn A., and A.Zilinskas (1989). Global Optimization. Lecture No­
tes in Computer Science. Vo1.350. Springer.

Received February 1991

K.Schittkowski received his 'Diplom' (1972), 'Dr.
rer.nat.' (1974) and 'Dr.habil' (1979) in Mathematics all at
the University of Wiirzburg, Department of Mathematics.
From 1982 -to 1984 he got a position of an associate profes­
sor ar the Computer Science Department of the University
of Stuttgart. Since then he is professor for applied computer
science at the University of Bayreuth, Department of Mathe­
matics. His main research areas are numerical optimization,
nonlinear programming application problems and the develop­
ment of userfriendly interfaces particularly for mathematical
optimization.

