
INFORMATICA, 2005, Vol. 16, No. 4, 603–616 603
 2005Institute of Mathematics and Informatics, Vilnius

ORVPF – the Model and its DNC Implementation

Hong ZHOU
Department of Mathematics, Saint Joseph College
West Hartford, CT 06117, USA
e-mail: hzhou@sjc.edu

Shahram RAHIMI, Raheel AHMAD
Department of Computer Science, University of Southern Illinois
Carbondale, IL 62901-4511, USA
e-mail: rahimi@cs.siu.edu

Marcin PAPRZYCKI
Computer Science Institute, Warsaw School of Social Psychology
03-815 Warsaw, Poland
e-mail: marcin.paprzycki@swps.edu.pl

Yufang WANG, Maria COBB
Department of Computer Science and Statistics, University of Southern Mississippi
Hattiesburg, MS 39406, USA
e-mail: ywan2@orca.st.usm.edu, maria.cobb@usm.edu

Received: October 2004

Abstract. Vector Product Format (VPF) based databases store geographical data in a relational
framework, where individual VPF files are arranged hierarchically in a directory tree structure. Ac-
cess and update of the VPF data can become difficult due to fragmentation of data among multiple
tables. This paper presents an object-oriented model for the management of a VPF database, which
provides easy access and automatic update for the VPF data, and is compatible with ESRI ArcView.
This model has been successfully implemented in Java, for Digital Nautical Charts (DNC).

Key words: vector product format, ORVPF, digital nautical charts.

1. Introduction

Vector Product Format (VPF) is a specification developed by the U.S. Defense Mapping
Agency (DMA) for storing geographical data in a relational framework (DOD, 1996).
According to the VPF specification, geographical features are stored in ASCII or binary
files and organized hierarchically using a directory structure. A number of existing ge-
ographical databases, including Digital Nautical Charts (DNC), World Vector Shoreline
(WVS), and others, implement the VPF specification. Each of these VPF-based products
has different sets of geographic features and attributes. DNC (NIMA, 1997) is a popular



604 H. Zhou et al.

VPF implementation that is being used in our current research project (see Acknowl-
edgement). In this project we attempt at developing an autonomous geographical data
management system which utilizes mobile software agents to find conflicts (or updates)
among distributed geographic databases, analyze these conflicts (or updates) and employ
conflation methods to resolve them. The very first requirement for this system to work
is to provide geographic data to the agents in a format that the mobile agents can ef-
fectively utilize in the conflation process. Since the outline of the project requires us to
support the DNC implementation of the VPF format, it was necessary to provide the sys-
tem with mechanism by which software agents could easily read and update information
stored in DNC databases. Since Java is used as the primary programming language in
this project, we chose a Java-based object-oriented approach to model the VPF database
and implement the DNC dataset. As our model is object-oriented while the underlying
implementation is the relational VPF database, we refer to the proposed approach as the
Object-Oriented Relational VPF (ORVPF).

To better understand the implementation details and intricacies described later in the
paper, we start with a brief description of the VPF and the DNC database. We then present
the difficulties related to reading and updating of the DNC database without using an
object-oriented database management system. We follow with a description of the object-
oriented structure of the ORVPF model followed by the overview of the implementation.
The paper concludes with a discussion of future work regarding this project.

1.1. VPF and DNC

As mentioned earlier, VPF is a general specification for storing geographical data that
is widely used in various geographic software products. DNC, an extension of VPF,
is a database designed primarily for marine navigation and produced by the National
Geospatial-Intelligence Agency (NGA). Its aim is to provide a digital reproduction of
paper charts. In DNC, all VPF data is stored as relational tables in individual VPF files.

Fig. 1 depicts the hierarchical structure of the VPF data that are arranged hierarchi-
cally in a directory tree structure in order to organize the relationships between the com-
ponents of the database. VPF’s root directory is thedatabasewhich is composed of a
collection of libraries represented by the library subdirectories. Alibrary defines a ge-
ographic boundary and its scale, and is further divided intocoverages. Eachcoverage
contains data for logically and spatially organized groups of geographic features that are
topologically related. The coverage directory contains files describing its feature classes
and individual feature attributes. All location and topology information is further subdi-
vided among tile subdirectories within each coverage. Each tile represents a spatial subre-
gion within the library boundaries. There are four types of features defined in VPF: point
feature, line feature, area feature, and text feature. The four types of features are com-
posed of five types of geographicprimitives: entity node, connected node, edge, face, and
text.

VPF provides four levels of increasingly complex topology from level 0 to level 3,
with level 3 representing full topology. VPF utilizes a winged-edge topology structure



ORVPF – the Model and its DNC Implementation 605

Fig. 1. The VPF hierarchical, directory based structure.

to represent the comprehensive level 3 topology (DOD, 1996). In winged-edge topology,
the topology information is maintained in tables of face, edge, ring and node. Each edge,
face, ring and node contains information regarding its own topology and its neighboring
primitives if needed. For example, an edge stores its own start and end nodes and its
neighboring edges and faces. Every node stores the face that it is part of, and so on (Cobb
et al., 1998a). Winged-edge topology is one of the most complex components that are
required to be implemented in this work.

1.2. Motivation behind the Object-Oriented Implementation of VPF/DNC

The relational structure of VPF is quite complicated because of its treatment of spa-
tial topology, i.e., the inter-relationships among features and primitives. These inter-
relationships cause even a small update to the VPF database to result in updating mul-
tiple tables. At the level of coverage directory, the VPF structure provides a number of
many-to-many join tables to relate features and geographical primitives. Other join tables
support textual notes pertaining to multiple spatial features and brief textual descriptions
of non-spatial attributes. As a derivative of VPF, DNC is also hierarchical and contains
complex inter-relationships between features and primitives. In our experiments we uti-
lize a DNC library (A0713060 in DNC07), which is 1.47Mb in size and contains 3498
geographic features. This library consists of 732 files and 52 directories to describe the
location, topology, and other attributes of features. Given the high degree of interdepen-
dency among features and geographical primitives, managing even simple changes is
non-trivial. In fact, even reading data to construct a single feature becomes difficult as the
pertinent information is spread among many tables.

While a relational model, as implemented in DNC, is believed to be too restrictive
for many spatial data applications (Egenhofer and Frank, 1989), the object oriented tech-
nology is argued to be well suited for the complex VPF/DNC data modeling (Shawet
al., 1996). In fact, Naval Research Laboratory (NRL) at the Stennis Space Center and
the University of Florida’s GeoPlan Center developed ODNC, which is a prototype OO
viewer/editor for the Digital Nautical Chart (Shawet al., 1996). Further, built upon the



606 H. Zhou et al.

ODNC prototype, an OO database (OVPF) for four different VPF products was designed
(Chunget al., 1995; Shawet al., 1996). ODNC was initially implemented in SmallTalk.
The original design was later translated to Java and became the starting point for the
NRL’s web-based GIS database (Cobbet al., 1998b). Our goal in developing the ORVPF
was to provide a complete data management system for the VPF/DNC, a system that
is flexible for future extensions, platform independent, compatible with ArcView, and
allowing direct access. Finally, we believe that our system will further the path to inter-
operability between geo-databases and software agents that are to operate on them, and
to the goal of open source.

In our design we have decided to concentrate on the following benefits of object-
oriented design:

• ORVPF models every geographical feature, primitive, attribute, and higher level di-
rectory as an object. The inter-relationships among these geographical components
are implicitly built in ORVPF objects, and thus require no explicit processing. This
makes the data access and update much easier and intuitive.

• The object-oriented model of ORVPF allows it to be easily integrated into other ap-
plications and provides great flexibility for future development. Furthermore, as we
will show, ORVPF objects can be easily made compatible with other applications
such as ESRI ArcView.

2. ORVPF Model

The object-oriented principles of identity, encapsulation, inheritance and polymorphism
(Jacobsonet al., 1999; Rumbaughet al., 1999) empower an object-oriented data model
with capability to handle topological and other relationships among spatial feature objects
directly and in a simple fashion (Shawet al., 1996). We follow these basic principles to
analyze the VPF data and to design the ORVPF model.

2.1. General Structure

The general structure of the ORVPF model is composed of two parts: the interface and
implementations. The ORVPF interface defines the object-oriented VPF database man-
agement model. It specifies how we view the VPF hierarchical structure in the object-
oriented form, together with the operations on the VPF data. Implementations facilitate
actual data manipulation based on the specifications defined in the interface. Each existing
implementation of VPF will result in different implementation of the ORVPF interface.
For instance, this paper presents the specific DNC implementation.

Based on the hierarchical structure of the VPF, the ORVPF was designed as a tree
model in which different levels of tree nodes represent different hierarchical levels in the
VPF. The key idea in the ORVPF is to represent each VPF directory, file table, and table
record as a Java object (an ORVPF node). Relationships between main ORVPF nodes and
VPF hierarchical directories/files/table-records are illustrated in Table 1 (each ORVPF



ORVPF – the Model and its DNC Implementation 607

Table 1

The relationships between ORVPF classes and the VPF directories/tables/table-records. en: entity
node; cn: connected node

ORVPF Class VPF Table/Directory

Database database
Library library
Coverage coverage
VirtualTile tile/coverage
FeatureManager feature Class
Feature feature

AreaFeature area feature
LineFeature line feature
PointFeature point feature
TextFeature text feature

PrimitiveManager primitive table
EntityNodeManager en table
ConnectedNodeManager cn table
EdgeManager edge table
FaceManager face table
TextManager text table

Primitive primitive
EntityNode entity node
ConnectedNode connected node
Edge edge
Face face
Text text

Note notes

class name starts with an uppercase letter while names of VPF directories/files/table-
records are all in lower case).

In the VPF, not all libraries are tiled (physically partitioned). Thus, to make the
ORVPF interface independent of the existence of tiles, a class called VirtualTile was
introduced. Class VirtualTile is guaranteed to exist in every Coverage class regardless
of whether the coverage is tiled or not. When the coverage is tiled, a VirtualTile object
corresponds to the real tile in the VPF structure, while a VirtualTile object corresponds
directly to the coverage for a non-tiled coverage. Therefore, by providing the class Virtu-
alTile, the existence of tiles in coverage is transparent to users. Another important class
in the ORVPF is called FeatureManager, which exists inside the Coverage class just as a
feature class exists in the VPF coverage directory. A FeatureManager object specifically
matches to a feature class (a feature table) and contains all the Features it is managing,
provides methods to retrieve any specific Feature, and provides the ORVPF with the ca-
pability to update/modify a Feature object.

Since ESRI is the largest geographic tool vendor and our system is using ArcView
as the Graphical User Interface, we decided to make ORVPF compatible with ArcView.
To do so, ORVPF nodes should be transformed into Shapefiles for ArcView to display



608 H. Zhou et al.

them. Shapefile is an ArcView GIS data set used to represent a set of geographic features
(ESRI, 1998). It stores non-topological geometry and attribute information for the spatial
features in a data set. The geometry for a feature is stored as a shape comprising a set
of vector coordinates (ESRI, 1998). Shapefile defines its own data types such as Point,
PolyLine, Polygon, MultiPoint, PointZ, etc, and can support point, line, and area features.
The definition of a Shapefile feature is very close to the definition of a VPF feature (DOD,
1996; ESRI, 1998). This allows an ORVPF Feature to be matched to its counterpart in
Shapefile. Shapefile does not support text feature as VPF does, however. Therefore, for
simplicity, ORVPF does not define the Shapefile counterpart for an ORVPF TextFeature
object. Table 2 shows: 1) the connection between ORVPF Features and Shapefile features,
2) the Shapefile data types that are used to represent the geometrical data of ORVPF
features.

Shapefile coverage is a set of thematically associated data considered as a unit. It
usually represents a single theme such as soils, streams, roads, or land use (ESRI, 1998).
Correspondingly, we define the Coverage class in the ORVPF to match the coverage in
Shapefile in Table 2. Though the ORVPF base class, VPFNode, defines the method to
convert ORVPF objects into a Shapefile dataset, it is clear from Table 2 that currently this
method cannot be implemented in Primitive classes in the ORVPF. Instead, the conversion
between ORVPF Primitive classes and Shapefile data types are implicitly processed at the
Feature level.

Summarizing, nodes in the ORVPF share some common properties which are repre-
sented in a class named VPFNode, which is inherited by all nodes at all levels. Common
properties shared by all the nodes are:

• having a unique system ID,
• capability to locate parent node if there is one,
• method to find its child nodes if there are any,
• method to obtain its metadata if the metadata exists,
• method to convert the data concerning this node and its child nodes into a Shapefile

format.

2.2. Features and Primitives

At the coverage level, the VPF provides other data tables and join tables to illustrate the
topological relationships among features, notes, and attribute values. In the VPF, a feature

Table 2

The relationship between ORVPF classes and ESRI Shapefile data types

ORVPF Shapefile Data Type

PointFeature point feature point

LineFeature line feature polyLine

AreaFeature area feature polygon

Coverage coverage



ORVPF – the Model and its DNC Implementation 609

is composed of attributes, notes, and a set of primitives that represent the geometrical data
of the feature. However, topological relationships between a feature and its components
are fragmented and stored in multiple relational tables (DOD, 1996; NIMA, 1997). From
the perspective of object-oriented design, when a feature is constructed, its associated
primitives, notes and attribute values should be automatically accessible. Therefore, in
the ORVPF, we do not represent these topological relationships explicitly. Instead, they
are embedded into the Feature class specification. Fig. 2 illustrates, in an UML notation
(Scott, 2001), structure of an ORVPF Feature class and its relationship with Primitive,
Note, and Attribute.

Fig. 2 also shows the many-to-many bidirectional association relationships among
these classes. A Feature may refer to multiple Primitives, Notes and Attributes. Mean-
while, any Primitive, Note, or Attribute may be referenced by multiple Features at the
same time. Also, a Feature may contain other Features (complex feature (DOD, 1996)).
It is important to point out that inside the ORVPF Feature, the Primitives must be ar-
ranged in a specific order. For example, AreaFeature and LineFeature contain a set of
Edges. The first element in the set is the starting Edge. All the Edges are organized in an
order that satisfies the winged-edge topology specification (DOD, 1996; NIMA, 1997).
Such an ordered Primitive collection in the ORVPF Feature removes from the users the
burden of finding the geometrical relationships among the Primitives.

In the VPF, geographic primitives refer to each other using cross-references in rela-
tional tables. For example, an edge primitive table (EDG) usually contains columns of ID,
start node, end node, right face, left face, right edge, left edge and coordinates in order.
This means that an edge contains information about its connected nodes, its left and right
faces and its left and right edges. Meanwhile, a connected node primitive table usually
has columns of ID, first edge and coordinates. This specifies that a connected node ref-
erences an edge. Such primitive cross-references are represented by the primary/foreign
key style of relational database. ORVPF models such low-level relationships among ge-
ographic primitives, and therefore its Primitive objects may cross-reference each other.

Fig. 2. The structure of an ORVPF Feature and its relationship with Primitive, Note and Attribute. Notice that
the class relationship between Feature, Primitive, Note, and Attribute is aggregation and is also bidirectional
association.



610 H. Zhou et al.

For example, one Edge object references two other ConnectedNode objects (start node
and end node), two other Face objects (left face and right face), and/or two other Edge
objects (left edge and right edge). Also, the Edge object is referenced by other objects of
ConnectedNodes, Faces, and/or Edges.

2.3. ORVPF Actions

There are basically five types of actions that may be performed on the ORVPF database:
reading, modification, deletion, creation, and importing. Reading is implicit in ORVPF
and is addressed separately in Section 3. Since the current ORVPF implementation is
designed primarily to support our geospatial data conflation process, we do not feel an
immediate need to support direct Feature creation at this time. Instead we support Feature
importing, which, in fact, is an action of Feature creation.

The three types of actions that involve ORVPF Features (modification, deletion, im-
porting) may result in update of topological relationships between Features, Primitives,
Attributes, and Notes. The following method of FeatureManager deals with the topolog-
ical updates when a feature is updated (in Java notation).

public boolean update(Feature f, int action, TopologyManager topologyManager).

When a Feature is required to be updated, its FeatureManager is called for the action.
ORVPF specifies that a FeatureManager object requires a TopologyManager object to
execute the update action and complete the update. In the ORVPF, TopologyManager is
an interface; how it performs the updates and topology validations is not specified and is
left to implementation. By allowing different implementations of the TopologyManager,
ORVPF provides a flexible framework to include also other geographic feature update
procedures.

3. DNC Implementation

Our first implementation of the ORVPF is for the DNC database. At this time we were
able to implement bridge between the relational structure of the DNC and the OO based
ORVPF. However, the implementation of independent feature importing and Shapefile
conversion is still in progress, hence we will not discuss them here.

3.1. TableImpl and RowsetImpl Classes

The first step in our implementation was to build classes that could properly read and
update any table files of the DNC database. We developed two classes: TableImpl and
RowsetImpl, where the RowsetImpl class models a relational record as a Java object and
provides ways to retrieve and modify column values in a record. The TableImpl class
models any relational table as a Java object and is in fact a collection of RowsetImpl
objects. All RowsetImpls in TableImpl are organized in the order specified by the DNC



ORVPF – the Model and its DNC Implementation 611

table file. Additionally, TableImpl provides methods for retrieving any RowsetImpls from
its RowsetImpl collection. Upon the request for an update (a write action), TableImpl
writes back all its information into the original physical file, according to the original
format. These two classes constitute the base for our object-oriented implementation of
the DNC.

With TableImpl and RowsetImpl classes completed, Feature, Primitive, and various
manager classes are successively being implemented. There are five different implemen-
tations for the five ORVPF Primitives (EntityNodeImpl, ConnectedNodeImpl, FaceImpl,
EdgeImpl, and TextImpl). Correspondingly, there are five implementations for the five
different primitive managers (EntityNodeManagerImpl, FaceManagerImpl, EdgeMan-
agerImpl, TextManagerImpl and ConnectedNodeManagerImpl,). Each manager class is
a wrapper of the TableImpl, and each primitive is a wrapper of the RowsetImpl. The
Primitive objects are constructed when the manager classes read in the table information
and construct the RowsetImpl objects. However, the cross-references of other Primitives
inside a Primitive object are dynamically produced based on the information stored in the
wrapped RowsetImpl object.

The implementations of the four types of features are also designed as wrappers of
RowsetImpl objects. For instance, AreaFeatureImpl is constructed around a RowsetImpl
object which represents a record in an area feature table. Since an area feature has to
refer to multiple primitives (faces and edges) and has various attributes, the construction
of AreaFeatureImpl has to build up references based on the information stored inside
the wrapped RowsetImpl object. Different from the constructions of PointFeatureImpl
and TextFeatureImpl, construction of AreaFeatureImpl and LineFeatureImpl follows the
winged-edge topology algorithm (DOD, 1996; NIMA, 1997).

3.2. Note and Attribute

DNC provides data tables and join tables at the coverage level to describe notes, attribute
values, and their topological relationships with features. In the ORVPF, these tables are
not modeled explicitly. Instead, the relationships between notes, attribute values, and fea-
tures are modeled implicitly in the Feature class, so that each Feature class has references
to associated Notes and Attributes. Therefore, in the DNC implementation, upon the con-
struction of various Feature classes, these relationships have to be developed. To the best
of our knowledge, each DNC geographic feature contains at most one note. Thus, in our
DNC implementation, each Feature class only references at most one Note.

CoverageNotes, NoteManager, CoverageInt_VDT, and CoverageChar_VDT classes
are developed to construct the relationships between Features, Notes, and Attributes. At
the Coverage level, there is one CoverageNotes object, multiple NoteManager objects,
one CoverageInt_VDT object, and one CoverageChar_VDT object. The CoverageNotes
object contains all the notes inside the VPF coverage. Each NoteManager object corre-
sponds to a VPF notes join table. The CoverageInt_VDT class models the integer value
description table, and the CoverageChar_VDT class models the character value descrip-
tion table. These class objects are constructed before Feature objects. When a FeatureM-
anager object is constructed, it first creates the associated NoteManager so that it can link



612 H. Zhou et al.

each Feature with the referenced Note later. Then, upon construction of Feature classes,
the Feature class automatically builds up references to records in CoverageNotes, Cover-
ageInt_VDT, and CoverageChar_VDT so that proper Note and Attributes can be attached
to them. The relationship among FeatureManager, CoverageNotes, NoteManager, Cover-
ageInt_VDT, and CoverageChar_VDT is illustrated in Fig. 3.

3.3. Order of Object Construction

Construction of objects is a process of reading DNC data and then constructing corre-
sponding ORVPF objects. As the ORVPF is a tree structure, the object construction is
thereby a top-down process in which the information pertaining to the Database object is
read and constructed first. Upon the construction of the Database object, Library objects
in the Database object are constructed. However, no Library object is populated with any
real data until its method load() is executed. The purpose of not populating a Library
object with real data at construction time is to save memory, since a DNC library usually
takes tens of megabytes of space.

Because there exist cross-references among Features, Primitives, Notes and At-
tributes, the order by which these objects are constructed matters greatly. In a Coverage
object, VirtualTile objects are constructed first. The reason is that Primitives in Virtu-
alTiles are needed for the construction of Features. Inside each VirtualTile, the order by
which Primitives are constructed does not matter since cross-references among Primitives
are dynamically provided at request. Following the VirtualTile, CoverageChar_VDT,
ConverageInt_VDT, CoverageNotes can be constructed in any order. Finally, FeatureM-
anagers are constructed. NoteManager associated with the FeatureManager is constructed
after the construction of the FeatureManager is initiated, but before the Features of the
FeatureManager are constructed.

Fig. 3. The class relationships between FeatureManager, CoverageNotes, NoteManager, CoverageInt_VDT and
CoverageChar_VDT in UML notation. It shows that NoteManager bridges the association relationship between
FeatureManager and CoverageNotes.



ORVPF – the Model and its DNC Implementation 613

3.4. TopologyManager

TopologyManager classes are used to perform the topology update when a Feature is to
be updated. There are three types of actions upon Features that require TopologyMan-
ager: modification, deletion, and importing. Feature importing is a process that involves
Primitive creation, Feature creation, and topology updates. Currently, implementation of
Feature importing is still in progress. Therefore, in this section, we only discuss Feature
modification and Feature deletion.

3.4.1. Feature Modification
Modifications on a Feature object may involve Note, Attribute, or Primitive modification.
When a Note in a Feature (say FeatureF ) is modified, say NoteA is modified such that
it becomesA′, A′ is compared to all the Notes that exist in the CoverageNotes. If a Note
that is the same asA′, exists then a simple reference switch is performed along with the
updates of the NoteManager associated with the FeatureManager that manages Feature
F , i.e.,F is referencingA′ instead ofA as its Note. Meanwhile, ifA is not referenced by
any other Features besidesF , it would be deleted. However, if there is no existing Note
that matchesA′, then the old Note,A, has to be checked whether it is being referenced by
other features besidesF or not. Also, if no other feature references NoteA, then NoteA is
simply modified so that it is nowA′. Nevertheless, if there are other features referencing
A, then a new Note is generated and FeatureF is re-linked to this new Note. Fig. 4
demonstrates how a Note modification is processed in our DNC implementation. The
same procedure applies to the modification of the integer and character value Attributes.

Fig. 4. The algorithm used to implement the modification of a Note in a Feature.



614 H. Zhou et al.

Modification of Primitives of a Feature is a much more complicated process. There
are two types of Primitive modifications that are under consideration. They are: Primitive
deletion and Primitive coordinate modification. For Primitive deletion, firstly, it is deleted
from the Primitive collection of the Feature(s). Secondly, it is checked to see if there are
other Features that are referencing this Primitive. If there is no other feature that refer-
ences it, this Primitive is deleted from its Primitive manager; otherwise, this Primitive is
only updated so that the Feature is no longer in the referencing Feature collection of this
Primitive. Currently, the DNC implementation provides two options for Primitive coordi-
nate modification, Option one simply forces the coordinate modification of the Primitive;
option two checks whether this Primitive is referenced by other features or not. If there
are no other references, modification is performed; otherwise, such coordinate modifica-
tion cannot be processed unless all referencing Features are requesting the same Primitive
coordinate modification.

3.4.2. Feature Deletion
Feature deletion requires not only the deletion of the actual Feature, but also modifi-
cation of referenced Primitives. When a Feature is deleted, it has to be deleted from
the referenced-Feature collection of Primitives it references. Every Primitive this Fea-
ture references must be checked before deleting the Feature. Also, if this Feature is the
only Feature that references a Primitive, then this Primitive is deleted from its Primitive
manager. Our approach in implementing feature deletion in our DNC model follows the
algorithm presented in (Chunget al., 1995).

4. Discussion

It is a challenging task to build an object-oriented framework over a relational file struc-
ture. ORVPF demonstrates the promising insights that the VPF data management system
can be modeled and implemented with object-oriented technology. Moreover, ORVPF,
as a standalone geospatial data management system, is a valuable tool for the GIS com-
munity. In this model, the tree based structure of the regular VPF data is transformed
to a similar tree structure of classes and objects by using object reference and inheri-
tance features of Java. This transformation provides much easier access to complex VPF
data using object-oriented techniques. Another advantage of the ORVPF implementation
is that it is compatible with the popular ESRI ArcView package. An ArcView user can
import an ORVPF object and work with it as a Shapefile.

There are several areas of development that the next version of the ORVPF will ad-
dress. In allowing the conversion of ORVPF Features to Shapefile data types we will
implement conversion from Shapefiles to ORVPF feature objects which would further
aid development of an interface between ArcView and the ORVPF. Such an interface
could allow ArcView to directly modify and save ORVPF features without any interme-
diate conversions required on the user’s part. Another important issue that ORVPF needs
to address is conversion of ORVPF objects into an XML format. As XML has become



ORVPF – the Model and its DNC Implementation 615

the standard for data transportation and ORVPF is being developed in such a way to be
accessed by mobile agent working in a distributed environment, occasionally it may be
necessary for mobile agents to carry data in the XML format (e.g., for the purpose of
inter-operability).

Though the DNC implementation is currently used in our project, it is yet to be com-
pleted. Primitive creation and Feature importing are the two major areas that are currently
being implemented. Also, in the current DNC implementation, complex feature is not
supported because we did not find any complex features in our DNC database and hence
did not feel an immediate need for it.

5. Acknowledgement

This work is partially supported by the project “Intelligent Database Agents for Geospa-
tial Knowledge Integration and Management” which is funded by National Imagery and
Mapping Agency (DoD), University Research Initiative Award # NMA201-00-1-2004.

References

Arctur, D., E. Anwar, J. Alexander, S. Chakravarthy, M. Chung, M. Cobb and K. Shaw (1995). Comparison and
benchmarks for imports of vector product format (VPF) geographic data from object-oriented and relational
database files. InProc. Fourth Symp. Spatial Databases. Springer-Verlag, New York. pp. 368–384.

Blaha, M.R., and W.J. Premerlani (1993). Object-oriented concepts for database design. In5th Annual Software
Technology Conference, Salt Lake City, Utah, USA.

Chung, M., M. Cobb, K. Shaw, and D. Arctur (1995). An object-oriented approach for handling topology in
VPF products. InProc. GIS/LIS 95, Vol. 1. ASPRS, Bethesda, Maryland. pp. 163–174.

Cobb, M., M. Chung, H. Foley, E. Petry and K. Shaw (1998a). A rule-based approach for the conflation of
attributed vector data.Geoinformatica, 2(1), 7–35.

Cobb, M., H. Foley, R. Wilson, M. Chung and K. Shaw (1998b). An OO database migrates to the web.IEEE
Software, 15(3), 22–30.

Department of Defense (DOD) (1996).Military Standard: Vector Product Format, MIL-STD-2407.
Egenhofer, M., and A. Frank (1989). Object-oriented modeling in GIS: inheritance and propagation. InProc.

Auto-Carto 9, ASPRS. Bethesda, Maryland. pp. 588–598.
ESRI Shape Technical Description (1998).
Jacobson, I., G. Booch and J. Rumbaugh (1999).The Unified Software Development Process. Addison-Wesley.
National Imagery & Mapping Agency (NIMA) (1997).Digital Nautical Chart, MIL-PRF-89023.
Rumbaugh, J., I. Jacobson and G. Booch (1999).The Unified Modeling Language Reference Manual. Addison-

Wesley.
Scott, K. (2001).UML Explained. Addison-Wesley.
Shaw, K., M. Cobb, M. Chung and D. Arctur (1996). Managing the US Navy’s first OO digital mapping project.

IEEE Computer, 29(9), 69–74.



616 H. Zhou et al.

H. Zhou received his BS degree (1988) in biology from Wuhan University and MS de-
gree (1991) in biology from Xiamen University, P.R. China. He also received his MS
degree (2000) in computer science and PhD degree (2004) in scientific computing from
University of Southern Mississippi, USA. He once worked in Anabas, Inc. as a software
engineer from 2001 to 2002 in California. He is currently an assistant professor of com-
puter science in Saint Joseph College, Connecticut, USA. His research interests include
bioinformatics, software engineering, distributed database, digital image processing and
software agent technology.

S. Rahimi received his BS degree (1992) in computer engineering from National Univer-
sity of Iran, MS degree (1998) in computer engineering technology, MS degree (1999)
in computer science, and PhD degree (2002) in scientific computing from University of
Southern Mississippi. He worked as a visiting assistant professor in the University of
Southern Mississippi from August, 2001 until August, 2002. He is currently an assistant
professor of computer science in Southern Illinois University, Illinois, USA. His research
interests include software agents, distributed computing and fuzzy logic.

M. Paprzycki received his MS degree (1986) in mathematics from Adam Mickiewicz
University, Poland, PhD degree (1990) in mathematics from Southern Methodist Uni-
versity, Texas. He is currently an assistant professor of computer science in Oklahoma
State University. His research interests include software agents, parallel and distributed
computing.

Y. Wang received her BS degree (1988) in biology from Wuhan University, P.R. China,
MS degree (2003) in computer science from University of Southern Mississippi. She is
currently a doctoral student of scientific computing in the University of Southern Missis-
sippi. Her research interests focus on computational biology.

R. Raheel received his MS degree (2003) in computer science from the University of
Southern Mississippi. He is currently a doctoral student of computer science in Southern
Illinois Univeristy.

M. Cobb received her PhD degree (1995) in computer science from Tulane University.
She is currently an associate professor at the University of Southern Mississippi. Prior
to that, she was an employee of the Naval Research Laboratory. Her research interests
include spatial data modeling, uncertainty in spatial data, distributed object oriented sys-
tems.

ORVPF – modelis ir jo DNC realizacija
Hong ZHOU, Shahram RAHIMI, Raheel AHMAD, Marcin PAPRZYCKI,
Yufang WANG, Maria COBB

VPF formato (Vector Product Format) duomen↪u bażese geografiniai duomenys saugomi re-
liaciniu pavidalu, o atskiri VPF failai sutvarkyti hierarchiškai↪i katalog↪u medžio strukt̄ur ↪a. Prieig↪a
prie VPF duomen↪u ir j ↪u pakeitimus yra suḋetinga realizuoti, nes duomenys išskirstyti skirtingose
lentel̇ese. Straipsnyje pasiūlytas objektinis modelis, skirtas VPF duomen↪u bazei tvarkyti, kuris lei-
džia lengvai prieiti prie VPF duomen↪u ir juos automatiškai atnaujinti. Modelis yra suderinamas su
ESRI Arcview programine↪iranga. Šis modelis buvo realizuotas Java kalba ir pritaikytas darbui su
DNC (Digital Nautical Charts) duomen↪u baze.


