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Abstract. New ways to estimate ranges of values of functions from standard and inner interval
arithmetic have been proposed. Using the proposed ways ranges of values of mathematical test
functions for global optimization and of objective functions for practical global optimization prob-
lems have been estimated and compared. Results of the experiments show that it is promising to
use proposed balanced interval arithmetic in interval global optimization.
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1. Introduction

Interval global optimization methods are based on interval arithmetic proposed in (Moore,
1966). The lower and upper bounds for values of function in the sub-region are evaluated
applying the interval operations with intervals instead of the real operations with real
variables in the algorithm of calculation values of function. The bounds are useful to de-
tect the sub-regions of the feasible region which cannot contain a global minimizer. Such
bounds are used in branch and bound algorithms for global optimization. A disadvan-
tage of standard interval arithmetic is the dependency problem which causes widening of
computed intervals and slowing of optimization.

Balanced random interval arithmetic proposed in (Žilinskas and Bogle, 2004) exten-
ding the ideas of (Alt and Lamotte, 2001), is obtained by choosing standard and inner
interval operations at each step of the computation randomly with the predefined prob-
abilities of standard and inner operations. The disadvantages of balanced random inter-
val arithmetic are that estimation of ranges with this arithmetic uses more calculations
than with standard interval arithmetic and that it is based on the assumption that dis-
tributions of centres and radii of the evaluated random intervals are normal and folded
normal (Johnson and Kotz, 1994–1995) (also known as absolute normal, because radii
cannot be negative) respectively. To overcome the disadvantages of balanced random in-
terval arithmetic, new ways to estimate ranges of values of functions based on interval
arithmetic are proposed in this paper.

Using the proposed ways ranges of values of mathematical test functions for global
optimization and of objective functions for practical global optimization problems have
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been estimated and compared. Mathematical test functions for global optimization known
from literature, and objective functions for practical global optimization problems (mul-
tidimensional scaling and separation problem) are used in our experiments. Most of the
used functions are defined in (Madsen and Žilinskas, 2000). The function of separation
problem is defined in (Csendes, 1998).

2. Interval Arithmetic

Interval arithmetic has been proposed in (Moore, 1966). Interval arithmetic operates with
real intervalsx = [x, x] = {x ∈ � |x � x � x}, defined by two real numbersx ∈ �
andx ∈ �, x � x. For any real arithmetic operationx ◦ y the corresponding interval
arithmetic operationx ◦ y is defined whose result is an interval containing every possible
number produced by real operation with real numbers from each interval. The standard
interval arithmetic operations are defined as:

x + y =
[
x + y, x + y

]
,

x − y =
[
x − y, x − y

]
,

x × y =




[
xy, xy

]
, x > 0, y > 0,[

xy, xy
]
, x > 0, y � 0,[

xy, xy
]
, x > 0, y < 0,

[xy, xy] , x � 0, y > 0,[
min(xy, xy), max(xy, xy)

]
, x � 0, y � 0,[

xy, xy
]
, x � 0, y < 0,[

xy, xy
]
, x < 0, y > 0,[

xy, xy
]
, x < 0, y � 0,[

xy, xy
]
, x < 0, y < 0,

x/y =




[
x/y, x/y

]
, x > 0, y > 0,[

x/y, x/y
]
, x > 0, y < 0,[

x/y, x/y
]
, x � 0, y > 0,

[x/y, x/y] , x � 0, y < 0,[
x/y, x/y

]
, x < 0, y > 0,[

x/y, x/y
]
, x < 0, y < 0.

The guaranteed lower and upper bounds for values of function in the region defined
by intervals of variables can be evaluated applying standard interval operations with in-
tervals instead of real operations in the algorithm to calculate the values of function. The
evaluated bounds always enclose all values of function in the defined region:

{
f(X) |X ∈ X, X ∈ �n, X ∈ �n

}
⊆ f(X),

wheref : �n → �, f : [�,�]n → [�,�].
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The bounds may be used in global optimization to detect the sub-regions of the fea-
sible region not containing a global minimizer. Such sub-regions may be discarded from
the further search.

A disadvantage of standard interval arithmetic is the dependency problem (Hansen
and Walster, 2003): when a given variable occurs more than once in interval computation,
it is treated as a different variable in each occurrence. This causes widening of computed
intervals.

For example, if

f(X) =
∑

i

xi

and
fk(X) = xk,

then

f
(
X

)
− fk

(
X

)
=

∑
i

xi − xk

overestimates{
f(X) − fk(X) |X ∈ X

}
=

∑
i �=k

xi.

Therefore algorithms

f = 0;
for i = 1 to N

f = f + x(i);
for k = 1 to N

some_function (f - x(k));

and

for k = 1 to N
f = 0;
for i = 1 to k-1

f = f + x(i);
for i = k+1 to N

f = f + x(i);
some_function (f);

are not the same. The first is preferable by programmers because of speed of computa-
tions. The second is preferable by interval analysts because of tighter intervals. However
dependency cannot be always avoided.

To get an idea how close is overestimation to the exact range of values of function
guaranteed inner estimate (underestimate) is proposed in (Kreinovichet al., 1996). Other
underestimating in interval computations is proposed in (Žilinskas and Žilinskas, 2005b)
assuming some regularity of the dependency between variables. Inner interval arithmetic
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used in (Alt and Lamotte, 2001; Žilinskas and Bogle, 2003; Žilinskas and Bogle, 2004)
gives so called inner approximation for the range.

Inner interval arithmetic assumes that all operands are dependent and exchange the
ends of one operand in every operation

x ◦in y = [x, x] ◦ [y, y],

for example

x +in y =
[
x + y, x + y

]
,

x −in y =
[
x − y, x − y

]
,

x ×in y =
[
xy, xy

]
, x > 0, y > 0,

x /in y =
[
x/y, x/y

]
, x > 0, y > 0.

If the ends of the resulting intervalx ◦in y > x ◦in y, they are exchanged.
Using inner interval arithmetic

∑
i

xi −in xk =
∑
i �=k

xi.

However in the general case the evaluated inner interval is tighter than the full range
of values of function. Moreover usually dependency and function of operands are not
known when arithmetic operation should be performed, therefore it is not possible to
choose proper (standard or inner) interval arithmetic operation.

Balanced random interval arithmetic proposed in (Žilinskas and Bogle, 2004) extend-
ing the ideas of (Alt and Lamotte, 2001), is obtained by choosing standard and inner
interval operations at each step of the computation randomly with the predefined prob-
abilities of standard and inner operations. A number of sample intervals are evaluated
using balanced random interval arithmetic. It is assumed that the distributions of centres
and radii of the evaluated balanced random intervals are normal and folded normal re-
spectively. The range of values of function in the defined region is estimated using the
mean values (µ) and the standard deviations (σ) of centres and radii of the evaluated
balanced random intervals:

[
µcentres ± (3.0σcentres + µradii + 3.0σradii)

]
. (1)

If the estimated range exceed the standard interval bounds for values of function in
the same region, the evaluated interval is intersected with the standard interval while not
reducing the probability that the estimated range contains all the values of function in the
region.

The result of balanced random interval arithmetic is equal to the result of standard in-
terval arithmetic when the predefined probability of standard interval operations is equal
to 1 and the probability of inner interval operations is equal to 0. The result of balanced
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random interval arithmetic is equal to the result of inner interval arithmetic when the
predefined probability of standard interval operations is equal to 0 and the probability
of inner interval operations is equal to 1. Balanced random interval arithmetic provides
wider or narrower ranges depending on the predefined probabilities. The values used for
the predefined probabilities depend on the balance required between tightness of resulting
intervals and the probability that resulting intervals contain all the values of function.

The disadvantage of balanced random interval arithmetic is that computations with
this arithmetic use more calculations than with standard interval arithmetic, because the
number of balanced random intervals should be evaluated. When 30 samples are used,
balanced random interval arithmetic is more than 31 times more expensive than standard
interval arithmetic. Another disadvantage is the assumption that distributions of centres
and radii of the evaluated balanced random intervals are normal and folded normal re-
spectively. The assumption is not true when computations involve small number of arith-
metic operations, what was shown in (Žilinskas and Bogle, 2003) for simple mathemat-
ical global optimization test functions. To overcome these disadvantages the ranges of
values of function should be estimated using smaller number of sample intervals (one or
two) and estimation should not be based on the assumption of normal distributions.

3. New Ways of Range Estimation Based on Interval Arithmetic

In this paper we propose new ways to estimate range of values of function from standard
and sometimes inner interval arithmetic results. If it would be possible to get ranges
similar to ranges produced by balanced random interval arithmetic, new ways would be
preferable because of speed of computations.

Relative centres and radii of ranges of values of objective function for practical mul-
tidimensional scaling problem in 100 random multidimensional intervals estimated using
balanced random interval arithmetic with different predefined probabilities are shown in
the Fig. 1. Shown centres and radii are relative to centres and radii of standard and inner
intervals. The relative value of 0.0 means that the centre or radius is equal to the centre or

Fig. 1. Relative centres and radii of ranges estimated using balanced random interval arithmetic with different
predefined probabilities.
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radius of inner interval. The relative value of 1.0 means that the centre or radius is equal
to the centre or radius of standard interval.

The values of the centres and radii of ranges estimated using balanced random inter-
val arithmetic move from the centres and radii of inner intervals toward the centres and
radii of standard intervals when the predefined probability of standard interval operations
increases. The relative values of the centres depend near linearly on the predefined proba-
bility. The relative values of the radii do not depend on the predefined probability linearly
but they possibly may be modelled by linear dependency. Therefore a new estimate of
range of values of function is defined as the weighted mean of resulting standard and in-
ner intervals. Let us call it balanced interval arithmetic. Predefined coefficientpc defines
balance between standard and inner resulting intervals:

pc × f
(
X

)
+ (1 − pc) × f

in

(
X

)
. (2)

Other way to estimate range of values of function using standard and inner interval
arithmetic is to balance standard and inner intervals in every interval operation:

x ◦b y = pc × (x ◦ y) + (1 − pc) × (x ◦in y). (3)

It is possible to estimate range of values of function tighter than standard interval from
standard interval arithmetic only, if the centres of standard intervals are left unchanged
and the radii are scaled by predefined coefficientpc. Let us call it scaled interval arith-
metic:

[(
f(X) + f(X)

)
/2 ± pc ×

(
f(X) − f(X)

)
/2

]
. (4)

Similarly as with balanced in every operation interval arithmetic, it is possible to scale
the radii of standard intervals in every operation:

x ◦s y =
[(

x ◦ y + x ◦ y
)
/2 ± pc ×

(
x ◦ y − x ◦ y

)
/2

]
. (5)

Balanced interval arithmetic, balanced in every operation interval arithmetic, scaled
interval arithmetic and scaled in every operation interval arithmetic provide wider or nar-
rower ranges depending on the predefined coefficient. The values used for the predefined
coefficient depend on the balance required between tightness of resulting intervals and
the probability that resulting intervals contain all the values of function. When the pre-
defined coefficient is equal to 1, the results of balanced interval arithmetic, balanced in
every operation interval arithmetic, scaled interval arithmetic and scaled in every oper-
ation interval arithmetic are equal to the results of standard interval arithmetic. When
the predefined coefficient is equal to 0, the results of balanced interval arithmetic and
balanced in every operation interval arithmetic are equal to the results of inner interval
arithmetic, and the results of scaled interval arithmetic and scaled in every operation in-
terval arithmetic are intervals with zero width and centres equal to the centres of resulting
standard intervals.
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4. Experimental Investigation of Proposed Estimates of Ranges

Proposed estimates of ranges and balanced random interval arithmetic have been imple-
mented in C++ modifying a C++ interval library filib++ (Lerchet al., 2001). It has been
shown in (Žilinskas, 2005) that this library is most fast and accurate of freely available
libraries implementing interval arithmetic. Moreover it is editable differently from inte-
grated interval arithmetic library (SUN Microsystems, 2001) for the SUN Forte Compiler.

The ranges of values of functions in 1000 random regions have been estimated using
proposed ways with different values of predefined coefficient and using balanced random
interval arithmetic with different values of predefined probability of standard interval
arithmetic operations.

Two criteria have been used in comparison of estimates of ranges: the success rate
and the mean ratio of widths of estimated ranges and bounds evaluated using standard
interval arithmetic. The success rate and the mean ratio for every function and every way
to estimate ranges have been evaluated depending on the value of predefined coefficient
or probability.

The success rate shows what part of ranges of values of given function over random
regions is estimated successfully using given way with given predefined coefficient or
predefined probability. Successful estimation means estimation of ranges which enclose
all values of function in the region. As the exact range of values of function in random
region is not known, it is estimated using random sampling. Values of function at 2000
random points uniformly distributed in the region are evaluated. Successful estimation
is enclosure of these values. The success rate of 1.0 means that all ranges are estimated
successfully and the success rate of 0.0 means that no ranges are estimated successfully.
When estimated ranges for values of function are used in global optimization, the success
rate determines the reliability of the global optimization algorithm. The algorithm is more
reliable when the success rate is higher.

The mean ratio of widths shows how estimated ranges are tighter than bounds evalu-
ated using standard interval arithmetic. As estimated ranges can not be wider than bounds
evaluated using standard interval arithmetic, the mean ratio of 1.0 means that the widths
of estimated ranges are equal to the widths of bounds evaluated using standard interval
arithmetic. When estimated ranges of values of function are used in global optimization,
the mean ratio of widths determines the speed of the global optimization algorithm. The
mean ratio is smaller when estimated ranges are tighter and subregions are discarded ear-
lier. So, the algorithm is faster when the mean ratio is smaller. The influence of tightness
of bounds to speed of the algorithms for interval global optimization is experimentally
investigated in (Žilinskas and Žilinskas, 2005a).

The success rate and mean ratio of widths of estimated ranges of values of multidi-
mensional scaling function depending on the value of predefined probability or coefficient
are shown in the Fig. 2. In this and in later figures, the solid line represents the criteria for
balanced random interval arithmetic (1), dashed line – balanced interval arithmetic (2),
dot dash – balanced in every operation interval arithmetic (3), dotted – scaled interval
arithmetic (4), and dot dot dash – scaled in every operation interval arithmetic (5). The
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Fig. 2. Success rate and mean ratio of widths of estimated ranges of multidimensional scaling function depend-
ing on the value of predefined probability or coefficient.

mean ratio of widths of ranges of values of function estimated using random sampling
and widths of bounds evaluated using standard interval arithmetic is shown as horizontal
line similar to grid line. It is approximately 0.3 for multidimensional scaling function.

The estimation of ranges is more reliable when the success rate grows earlier, there-
fore it is more reliable when the curve representing the success rate is higher. The ranges
are tighter when the mean ratio of widths grows later, therefore the estimated ranges are
more tighter when the curve representing the mean ratio is lower. However both criteria
depend on the predefined probability or coefficient and are related to each other. The rela-
tionship between the success rate and mean ratio of widths of estimated ranges shown in
the Figs. 3 and 4 is more informative. The estimation is more reliable with tighter ranges
when the curve representing it is higher. However curves of dependencies of the success
rate and mean ratio on the predefined probability or coefficient are also very important
because curve of relationship hides the case when criteria increase rapidly together mak-
ing the use of range estimation difficult practically, what is the case for scaled in every
operation interval arithmetic for multidimensional scaling function in the Fig. 2. However
because of the shortage of space we will present only curves of the relationships in this
paper. The mean ratio of widths of ranges of values of function estimated using random
sampling and widths of bounds evaluated using standard interval arithmetic is shown as
vertical line similar to grid line in the Figs. 3 and 4.

The relationship between the success rate and mean ratio of widths of estimated
ranges of the function of practical multidimensional scaling problem is shown in the
Fig. 3a. For this function balanced random interval arithmetic provides more reliability
with tighter ranges than the proposed estimates, but balanced interval arithmetic provides
very similar results. Ranges estimated using balanced random interval arithmetic and
balanced interval arithmetic enclose values of function at random points when are 30%
tighter than bounds evaluated using standard interval arithmetic. Results of scaled inter-
val arithmetic and balanced in every operation interval arithmetic are worse and scaled
in every operation interval arithmetic is not promising for estimation of ranges for this
function.

The relationship between the success rate and mean ratio of widths of estimated
ranges for the function of practical separation problem is shown in the Fig. 3b. For this
function all ways to estimate ranges provide similar results. Estimated ranges enclose
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Fig. 3. Relationship between the success rate and mean ratio of widths of estimated ranges.

values of function at random points when are 60% tighter than bounds evaluated using
standard interval arithmetic. For this function ranges estimated using balanced in every
operation interval arithmetic, scaled interval arithmetic and balanced interval arithmetic
are a little bit better than using balanced random interval arithmetic and scaled in every
operation interval arithmetic.

The relationship between the success rate and mean ratio of widths of estimated
ranges of Paviani mathematical test function is shown in the Fig. 3c. For this function
ranges estimated using balanced in every operation interval arithmetic, scaled interval
arithmetic and balanced interval arithmetic are most promising. Ranges estimated using
these ways enclose values of function at random points when are 40% tighter than bounds
evaluated using standard interval arithmetic. Results of balanced random arithmetic are
a little bit worse. Ranges estimated using this way enclose values of function at random
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Fig. 4. Relationship between the success rate and mean ratio of widths of estimated ranges.

points when are 30% tighter than bounds evaluated using standard interval arithmetic.
Scaled in every operation interval arithmetic is not promising for estimation of ranges of
this function.

The relationship between the success rate and mean ratio of widths of estimated
ranges of Goldstein and Price mathematical test function is shown in the Fig. 3d. Only
ranges estimated using balanced random interval arithmetic are promising for this func-
tion. Ranges estimated using this way enclose values of function at random points when
are 40% tighter than bounds evaluated using standard interval arithmetic.

The relationship between the success rate and mean ratio of widths of estimated
ranges of Six Hump Camel Back mathematical test function is shown in the Fig. 3e.
Ranges estimated with balanced interval arithmetic and balanced in every operation inter-
val arithmetic are promising for this function. Ranges estimated using these ways enclose
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values of function at random points when are 15% tighter than bounds evaluated using
standard interval arithmetic.

The relationships between the success rate and mean ratio of widths of estimated
ranges for Shekel 5, 7 and 10 mathematical test functions are shown in the Figs. 3f, 4a
and 4b. Ranges estimated with balanced interval arithmetic and balanced random interval
arithmetic are promising for these functions. Ranges estimated using these ways enclose
values of functions at random points when are 10% tighter than bounds evaluated using
standard interval arithmetic. Scaled interval arithmetic and scaled in every operation in-
terval arithmetic are not promising. Curves of dependencies of the success rate and mean
ratio on the predefined probability or coefficient show that balanced in every operation
interval arithmetic is not promising too.

The relationships between the success rate and mean ratio of widths of estimated
ranges for Levy 4, 5, 6 and 7 mathematical test functions are shown in the Figs. 4c,
4d, 4e and 4f. Ranges estimated with balanced interval arithmetic, balanced in every
operation interval arithmetic and balanced random interval arithmetic are promising for
these functions. Ranges estimated using these ways enclose values of functions at random
points when are 5–15% tighter than bounds evaluated using standard interval arithmetic.
Scaled in every operation interval arithmetic is not promising. Curves of dependencies
of the success rate and mean ratio on the predefined probability or coefficient show that
scaled interval arithmetic is not promising too.

Results of the experiments show that balanced interval arithmetic is most promising
of the proposed ways for estimation of ranges for functions. Ranges estimated using
this way compete with ranges estimated using balanced random interval arithmetic and
sometimes are even better. Balanced in every operation interval arithmetic is a little bit
less promising, scaled interval arithmetic is even less promising, and scaled in every
operation interval arithmetic is not promising. It is important to note that proposed ways
require much less computations than balanced random interval arithmetic.

5. Conclusions

To overcome disadvantages of interval arithmetic and balanced random interval arith-
metic new ways to estimate ranges of values of functions from standard and inner interval
arithmetic have been proposed. Using the proposed ways ranges of values of mathemat-
ical test functions for global optimization and of functions for practical problems have
been estimated and compared. Results of the experiments show that balanced interval
arithmetic is most promising of the proposed ways for estimation of ranges of values of
functions. Ranges estimated using balanced interval arithmetic compete with ranges esti-
mated using balanced random interval arithmetic and sometimes are even better, while
they require less computations than ranges estimated using balanced random interval
arithmetic and are not based on assumption of normal distributions. It is promising to
use proposed balanced interval arithmetic in interval global optimization.
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Nauji interval ↪u aritmetika pagr ↪isti funkcij ↪u reikšmi ↪u r ėži ↪u ↪ivertinimo
būdai

Julius ŽILINSKAS

Straipsnyje pasīulyti nauji funkcij ↪u reikšmi↪u rėži ↪u ↪ivertinimo iš standartiṅes ir vidiṅes interval↪u
aritmetikos b̄udai. ↪Ivertinti ir palyginti pasīulyti matematini↪u globalios optimizacijos testavimo
funkcij ↪u ir praktini ↪u globalios optimizacijos uždavini↪u tikslo funkcij ↪u reikšmi↪u rėži ↪u ↪iverčiai.
Eksperimento rezultatai rodo, kad pasiūlyta balansuojama interval↪u aritmetika gali b̄uti naudojama
intervaliṅeje globalioje optimizacijoje.


