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Abstract. In this paper we consider two logics: temporal logic of common knowledge and temporal
logic of common belief. These logics involve the discrete time linear temporal logic operators
“next” and “until”. In addition the first logic contains an indexed set of unary modal operators
“agentiknows”, the second one contains an indexed set of unary modal operators “agenti believes”.
Also the first logic contains the modality of common knowledge and the second one contains the
modality of common belief. For these logics we present sequent calculi with an analytic cut rule.
The soundness and completeness for these calculi are proved.
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1. Introduction

Temporal logics of knowledge and belief are becoming increasingly important in both
mainstream computer science and Al. In Al, temporal logics of knowledge and belief are
used as knowledge representation formalism (Catach, 1988), and may be used in the spec-
ification and verification of distributed intelligent systems (Halpern, 1987; Wooldridge,
1992) and as a subpart of logics of rational agency (Wooldridge, 1992).

In this paper we consider generalizations of the temporal logic of knowledge and
the temporal logic of belief considered in (Wooldridgeal., 1998). We call the con-
sidered logics K L,,, C BL,, respectively. These logics involve the discrete time linear
temporal logic operators “next” and “until”. In additiafi K L,, contains an indexed set
of unary modal operators “agent i knows” a6 L,, contains an indexed set of unary
modal operators “agent i believes” that allow to represent the information possessed by
the group of agents. These operators satisfy the analogues of the modal &%i@nd
K D45, respectively. These systems are widely accepted as logics of idealized knowl-
edge and idealized belief. These logics contain the modality of common knowledge and
the modality of common belief as well.

For these logics we present sequent calculi with an analytic cut rule. The soundness
and completeness for these calculi are proved. Our work uses the ideas from (Alberucci,
2002) and (Halperet al., 2004).
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We mention some related works. The temporal logic of knowledge without common
knowledge operator is considered in (Wooldridgeal., 1998; Dixonet al., 1998). In
(Wooldridgeet al., 1998) a tableau based decision procedure is presented for the consid-
ered logic. In (Dixoret al., 1998) a resolution-based proof system is presented which is
shown to be correct. The logic of common knowledge without temporal operators is con-
sidered in (Alberucci, 2002), where complete Tait-style sequent calculus with restricted
cut rule for the logic is presented. The paper is organized as follows. In the next section
we provide formal definitions for the logics we consider. In Section 3 we present sequent
calculi and prove the soundness theorem. In Section 4 we prove the completeness of the
presented sequent calculi.

2. Language and Semantics

To define the languag€ of the logics we start from a set @rimitive propositions
P = {p,q,...}, the propositional connectives —, A, V, the modalities [1],...,[n], the
modality E, the common knowledge (belief) modality C' and thetemporal modalities:

unary operatop and a binary operatdy. If ¢ is a formulaji]¢ says that agentknows
(believes)p, a formulaFE ¢ says that every agent knows (believeésh formulaC'¢ says
that is a common knowledge (belief) of all agents, a formola says that is true at
the next time moment, a formulgl/ ¢ says that) holds untily) does.

In order to define semantics, we first introduce the notion stte. It is assumed
that the world may be in any of a s8tof states. We generally use to denote a state.
The internal structure of states is not an issue in this work. As we intefposer lin-
ear temporal structures, it is natural to introduce the notiontifreline, representing
the history of the system. imeline [ is an infinitely long, linear, discrete sequence of
states, indexed by natural numbers. For convenience, we define a tithilibe a total
functioni: N — S. Let Tlines be the set of all timelines. Note that timelines corre-
spond to theruns of Halpern, Meyden and Vardi (Halpemrt al., 2004). Apoint, p, is
pair (I, u), wherel € Tlines is a timeline and: € N is a temporal index intd. Any
point (1, «) will uniquely identify a staté(u). Let the set of all points (ove§) be Points.
We then let an agent’'s knowledge (belief) accessibility relatipmold overPoints, i.e.,

R; C PointsxPoints, for all i € {1,...,n}. A valuation for £ is a function that takes a
point and a proposition, and says whether that proposition is true or false at that point. A
valuation, 7, is a functionr: Points x P — {T', F'}. We can now define models fdr.

A model, M, for L, is a structuré\l = (TL, Ry, ..., Ry, w), where:

e TL C Tlines is set of timelines;

e R; foralli e {1,...,n}, is an agent accessibility relation ovaints, i.e.,
R; CPointsx Points and

e m: Points x P — {T, F'} is a valuation.

As usual, we define the semantics of the language via satisfaction relatiorFor L,
this relation holds between pairs of the fofi, (I, «)), whereM is a model andl, u)
is a point, andC formulas.E¢ stands fof1l]p A ... A [n]¢.
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o (M,(l,u)) Epiff #(l,u)(p) =T, wherep is a primitive proposition;

o (M, (l,u)) E —oiff (M,(l,u))  ¢;

o (M,(l,u)) = oVuiff (M, (I,u) | ¢or(M,(,u) =

o (M, (L)) E ¢ Aiff (M, (l,u)) = ¢and(M, (I,u)) = o;

o (M,(l,u)) | [i]iff VI e TL,Yv € N, if ((I,u), (I',v)) € R;, then
(M, (I',v)) = ¢;

o (M, (I,u)) | Coiff (M, (I,u)) = E*¢fork =1,..., where
E'¢ = B¢, E¥'¢ = EE*¢;

o (M, (l,u)) E ooiff (M, (l,u+1)) = ¢

o (M, (l,u)) = ¢Uvy iff Jv € N such that > v and(M, (I,v)) = ¢ and

Yw e N, if u <w <wvthen(M, (l,w)) E ¢

We use standard abbreviatiahD v stands for-¢ Vv 1.

An L formulag is satisfiable iff there is somg M, (I,w)) such tha(M, (I,u)) = ¢,
and unsatisfiable otherwise. Ahformula¢ is valid in a modelM iff (M, (I,u)) = ¢
for every point(l,u) € M. If C is a class of models, thehis valid with respect t@ iff ¢
is valid in every model ir?. We write =k ¢ (E5 ¢), if ¢ is valid with respect to the class
of models of logicCK L,, (CBL,).An L modelM = (TL,Ry,...,R,,7)isaCKL,
(CBL,) modeliffforalli € {1,...,n}, R; is an equivalence relation (Euclidean, serial
and transitive relation).

It is well-known that the following axioms are valid il X' L,, models:

K: [(J¢ A [(6 D %) D [i)e; T: [{)¢ > ¢ 4 [i]¢ > [{][i)¢; 5: (il > [i]-[i]é, C:
Co D (E¢p N EC). Itis well-known that the axioms presented above except the axiom
T and the axionD: [i]¢ D —[i]-¢ are valid inC BL,, models.

There is a graphical interpretation of the seman@ichich is useful in the sequel.
Fix a modelM. A point (I’,u) in M is reachable from a point (I, u) if there exists
points (I, ug), - - . , (Ix, ur) such that(l,u) = (lo,up), (I';u") = (lx,ux), and for all
Jj = 0,...,k — 1 there existg such that(l;, u;)R;(lj+1,u;+1). It can be verified the
following

Lemma2.1. (M, (I,u) Ew Coiff (M, (I',u")) Ew ¢ for all points (I, u’) reachable
from (I, u), where W € {K, B}.

3. Tait-Style Sequent Calculi

In this section we introduce a Tait-style sequent calédli and BT for the temporal
logic of common knowledge and for the temporal logic of common belief, respectively.
The calculuskKT is a reformulation of the Hilbert-type calculus presented in (Halgern
al., 2004).

As usualp, g, . . . stand for primitive propositions and small Greek letters for arbitrary
formulas. Further, the capital Greek lettérsA, X, ... stand for finite subsets af for-
mulas which are calledequents. For any sequents, A and formulasy, 8 the sequent
FuAU{a} U{g}isdenoted byl', A, «, (. LetT be the sequerftay, ..., o, }, we
often use the following convenient abbreviations:
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VI = {aq V... Vap}h T = {—a1,...,~a,}; 7T = {[ilag, ..., [{an};
[T = {[{]ai,...,[{]an}; °CT = {-Cay,...,~Cay,}.

With the help of de Morgans laws and the law of double negation we push the negation
through the propositional connectives as far as possible, i.e.jgfa A 8 then—¢ is
—a Vg, if ¢gisa Vv g, then—¢is ~a A =5, if ¢ is —a, then—¢is a.

Let us introduce the Tait-style calculdsT for the logicCK L,,. All the rules are
represented as schemes.

Axiomof KT: T, o, ~«x

Basic inference rules adk C'T™:

F7a7ﬁ
Iavpg

I'a I3
" T,aAp

SCA I A0 y
—CA, =[], [ A, [i}a,E([ ) T —\[i]a( [4]).

(V) (A)

C-rules of KT
I',-Fa I' -ECa
) - ) - 2
I‘,ﬂCa( 1) I, -Ca (=C2),
-a, Ea N Ef
— (I .
_'O[,Cﬁ,z ( ndC)

The rules for temporal modalities:

r I', o«

oS (0) T, —\Qa(_‘o)’

T, o, 01 A O(01Udo2) T, =¢o T, =¢1, 0 (1U¢2)
ToWss D) T, ~(61U ) =),

=@, = A OPr

~ = (gUg) )

Let us introduce the sequent calculig” for the temporal logic of common belief
CBL,. It is obtained from the calculuk'T" dropping the inference rulg-[¢]) and re-
placing the basic inference ru(g]) of K'T' by the following rule of inference:

~CA T 0 1A a4
—CA, [T, [i]A, [f]a, =

We did not introduce any cut rules since we want to distinguish our calculi with var-
ious additional cuts. Hence, we always mention explicitly which cut rules are admitted.
Let us introduce the most general cut schemeggmeral cut rule.

General cut:

I'a I, -«

T (G — cut).
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In this case the designated formutasnd—« are called cut formulas dfZ — cut).
Let IT be a set of formulas which are closed under negation, that is we-tiave 1.
ThenlII-cuts are all cuts

I'a I, -«

T (IT — cut)

such that the cut formula belongs tdT.
Let we have arule
L0, Ty
r T '
It can be verified that if/T"; is valid orvI'; andVvI'; are valid, then/T is valid. So,
by induction on the length of the proof it can be showed the following

Theorem 3.1(soundness)Let W € {K, B}. If WT + (G — cut) - T, then =y VI

4. Completeness

In this section we give a sketch of completeness proof of the Tait-style cdiciland
BT with the cut rule, where the cut formula is from some finite sets of formulas.

Now we define the Fisher—Ladner closufd.(«) of a formulac of £. FL(«) is
defined to be the smallest set such thatbelongs toFL(«); if -8 € FL(«), then
B € FL(a); if BV~ € FL(a), theng,y € FL(a); if B A~v € FL(a), theng,~ €
FL(a); if [i|8 € FL(a), theng € FL(«a); if C8 € FL(a), thenES, EC3 € FL(«);
if 08 € FL(a), thenp € FL(«); if fUy € FL(a), thens,~,0(8Uy) € FL(«);
FL(«) is closed under negation.

As in (Fisher and Ladner, 1979) can be verified

PROPOSITION4.1. For an arbitrary formula the setF'L(«) is finite and contains not
more elements thafja|, where|a] is the length ofx.

Using F'L(«) we define set€'ry, (o) andCry, (o) Of formulas which are used as cut
formulas in our proof of completeness.

Let X be a finite set of formulas. Then we writex for the a finite conjunction
formulas inX.

The setF'Lg(«) is defined to be L(a) U {[4][¢]8, —[é][{]8][i]8 € FL(«), 1 < i <
n} U {[i]-[]8, —[i|-[i] 8|8 € FL(a), 1 < i < n}. The setF Lk («) is defined to
be FL(«a).

Let W € {K,B}. The setCy, ., is defined to be the sefon, vV ...V
s Olean Voo Vo), [i(ean V.- Vo), li=(ean V.. Ve, )| My, ..., My ©
FLw(a), k > 1}. The closureC'rr,, (o) is defined to be the séty., =, U{~¢[¢ €

C}’—'LW(O‘) 2
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LetW e {K, B}, A be a set of formulas. A finite set @gfformulasI" is A-consistent
if WT + (A —cut) i/ =I'. We write| -y T'if WT'+ (Cpry, (o) —cut) F T

Suppose’'L is a finite set of formulas with the property that for alle C'L, either
—¢ € CLor¢is of the form—¢’ and¢’ € C' L. We define amtomof C'L to be a maximal
Crr, (a)-consistent subset af L, whereW € {K, B}.

LetW e {K, B}. Leta be aCry,, (a)-consistent formula. We begin the construc-
tion of the model ofx by first constructing gre-model My, («), which is a structure
< Sw,—, Ry,... R, > consisting of a sefy of states, a binary relatior> on Sy,
and for each agenta binary relationR; on Sy . If W is K then R; is an equivalence
relation. If 1 is B thenR; is serial, transitive and Euclidean relation.

LetW € {K, B}. The setSy consists of all atoms of Ly («). The relation— is
defined so thak — Y iff {¢|0(¢) € X} C Y. ForWW = K the relationR; is defined
so that(X,Y) € R; iff {4|[i]l¢p € X} = {¢|[i]¢ € Y}. It follows that relationR; in
a pre-modelMy («) is an equivalence relation. IW () the relationR; is defined so
that(X,Y) € R; iff {¢|[i]lp € X} CY.

As in (Alberucci, 2002) it can be proved

Lemma4.1. If X C FLw(a) and X is Cpr,, (o)-CONsistent, then there exists an atom
Y of FLy () suchthat X C Y.

As in (Sakalauskai, 2004) it can be proved

Lemma 4.2. | FV vis an atom of Ly (a) PX -

Using the definition of?; and the definition oF' L («) it can be verified

Lemma4.3. Let X, Y, Z beatomsfrom Sp.

a) for each X € Sp thereexistsY € Sp suchthat (X,Y) € R;;
b) if [{]0 € X and (X,Y) € R, then [i]3 € Y;
¢ if(X,Y)e R,and (X,Z) € R;and [i]|3 € Y,then§ € Z.

From Lemma 4.3 it follows that in a pre-mod&lz(«) R; is serial, transitive and
Euclidean relation for eache {1,...,n}.

Below W € {K,B} and s,t are states from a pre-modélfy («). As in
(Sakalauska#t, 2004) we can show

Lemma 4.4. If s, ¢ are statessuch that (s,t) ¢ R;, then | Fw —gs, [i] ;.

Let U be a set of states. We writg; for disjunction of the formulag,, for v € U.
We can verify similarly as in (Sakalausl&j2004).

Lemma 4.5. Let s be a state and let U be the set of states » such that s — u. Then
| }_W _‘SDS, OSDU
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LetW € {K, B}. Asin (Sakalauskad, 2004) it can be proved the following

Lemma 4.6. For all formulas o, 8 and v, if | Fw —a, =y and | Fw —a, O(a V (-8 A
=), then WT' + ({O(a vV (=8 A =7))} U{CrrLy ()} — cut) b —a, =(BUY).

Define a—-sequence of states to be a (finite or infinite) sequencs,, ... such that
S1 — S — ...

Let W € {K,B} ands,t,s1,...,s, be states in a pre-modélly, (). As in
(Sakalauskadt, 2004) we can show

Lemma4.7. a)if 0¢ € FLw(«), thenfor all statest such that s — ¢ we have
o¢ esiffo et
b) if [i]¢ € FLw (), then —[i]¢ € s iff thereis some state ¢ such that sR;t and
S
c) if p1U¢o € FLy (), then ¢1U ¢ € s iff there exists a —-sequence
§$=89— 81 — ... — Sy, Wheren > 0 suchthat ¢, € s,, and ¢, € s, for all
k < n.

We use Lemmas 4.5, 4.6 to prove the “if” part of the item c) of Lemma 4.7.

Lemma4.8.1fC¢ € FLw (), then-C¢ € siff thereisastatet reachable from s such
that —¢ € t.

Proof. We prove the lemma in the ca$€ = B. The proof of the lemma in the case
W = K is similar. We prove “only if” direction by contradiction. Letp € t ands =
SoRiy 81 ... Sp—1Ri, s = t. LetC¢ € s. By the rule(—~C1) it follows that| - =C'¢, E¢.
Thus[1]g, ..., [n]¢ € s. Similarly by the rule(—-C2) we have[l]C¢, ..., [n]C¢ € s. By
induction on k we get the following fact: ©'¢ € sg, theng € s, k£ > 1. Thus we geta
contradiction.

We prove the converse by contradiction. Suppose that no state containisgeach-
able froms by the relationsR;. Let V' be the set of states reachable frenTheng € v
for eachv € V. Thus| Fg -y, ¢ (1). Using Lemmas 4.2, 4.4 we can show that
| FB —ov, [i]ev (2). From (1) and (2) we can show thatt 5 —¢v, [i]ov A [i]¢. This
implies| Fg —v, Epy A E¢. Then by (Ing:) we get| Fp —oy, Cé (3).

It can be verified using the ruldnd¢) that| -5 —E¢, ~CE¢, C¢. Thus, from the
assumption that k5 —ps, =C¢ we get| Fp —¢s, "E¢, ~EC¢. Since s is a maximal
Crr,, (a)-consistent subset &f Lz () it follows | kg —ps, mE¢ or | Fp —p,, " EC.
Thus there existssuch that b5 —ps, —[i]¢ or | Fp —ps, —[i]C¢. By the item b) of the
Lemma 4.7 there exists a statsuch thatsR;t and—¢ € t or ~C'¢ € t. Sincet € V
this contradicts to (1) and (3).

We say that an infinite—-sequence of states, s1,...) , is acceptable if for all
n = 0, if p1U¢s € s,, then there existsr > n such thatp, € s, andg, € s; for all
n < k < m. Using part c) of Lemma 4.7 we can show
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Lemma 4.9. Every finite —-sequence of states can be extended to an infinite acceptable
sequence.

A canonical model for «is atuple(R, Ry, ..., R,,7), whereR is a set of all accept-
able sequences of states from the pre-maddgl(«); R; is a binary relation on points in
R such that(r,n), (', n')) € R; if (r(n),r'(n')) € R;, whereR; is from the pre-model
Mw (a); n(r,n)(p) = Tiff p € r(n). The following theorem gives a sufficient condition
for a formula in the Fisher—Ladner closure to hold at a point in the canonical model. Let
W e {K, B}.

Theorem 4.1. If T is the canonical model for «, ¢ is in the closure F'Ly (), then
(Z,(r,n)) Ew ¢ ifand only if ¢ € r(n).

Proof. Proof is carried on by induction on the complexityg@tising Lemmas 4.7, 4.8,
4.9.

COROLLARY 4.1. IfZ = (R, Ry,...,R,,m) is a canonical model fow, (r,n) is a
point of Z such thatv € r(n), then(Z, (r,n)) Ew o

Leta beCry, («)-consistent formula. Let € Sy be a state such thate s. Such a
state must exist as it follows from Lemma 4.1. By Lemma 4.9 there exists an acceptable
sequence = sg, $1, ... With s = s¢. Corollary 4.1 implies thatZ, (r,0)) =w «. This
establishes the following completeness theorem of the cal€tili+ (Crp,. () — cut),
BT + (Crr, (@) — cut).

Theorem 4.2(completeness)Let « be a valid formula of the language £ with respect
to the models of the logic CK L,, (CBLy,). Then KT + (Cpp (o) — cut) = a (BT +
(CFLB(a) — cut) [ a).
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Sekvenciniai ska€iavimai bendro Zinojimo ir tik ejimo logikoms

Juraie SAKALAUSKAITE

Nagrirejamos bendro zinojimo ir téimo laiko logikos. Sioms logikoms pateikti sekvenciniai
skatiavimai, kuriuose pjvio formule yra apribotalrodytas Sij skatiavimu neprieStaringumas ir
pilnumas. Pilnumdrodymas yra semantinis.



