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Introduction. The classical problem of pseudoboolean 
optimization (see Saaty, 1970) is solved: 

f(X) -j. ~llin, 
XEB" 

where f : Bn -j. Ill, Bn = {a, l}n is boolean hypercube. 
As far as the optimized function is concerned it is as­

sumed that it is given implicitly (as an output of some techni­
cal system) or algorithmically, i.e., the function has no evident 
analytical form. 

In introduction we shall list the necessary definitions and 
formulate some statements on the punctiform sets of the hoo-
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lean variahles space and the unimodal pseudoboolean func­
tions characteristics proved by Antamoshkin, Saraev and 
Semionkin (1990). 

DEFINITION 0.1. We shall call points Xl, X 2 E Bn 
k-neighboring if they differ only in the values of l..: coordi­
nates (l..: = 1, n). 1-neighboring'points will be called simply 
neighbouring. 

DEFINITION 0.2. The set Ok(X) (1.: = 1,'11) of points that 
are k-neighboring to the point X E Bn will be called the k-th 
level of point X(Oo(X) = X). The point X E Bn is introduced 
as l..:-neighbouring to the set A c Bn if An Ok(X) =1= 0/\ VI = 
0, l..: - 1 : An OI(X) = 0. The set Ok(A) C Bn of all points 
of Bn which are 1.:-neighboring to the set A wiE be called the 
k-th level of set A, Oo(A) = A. 

REMARK 0.1. It is obvious that. for any l..: = l,n : 
card Ok(X) = Cl~' Here (and in the sequel) C~ is the number 
of combinations from n on k. 

The function I : Bn ---7 ~l will be called a pseudoboo­
lean function. 

DEFINITION 0.3. A point X* E Bn for which I(X*) < 
I(X) vx E 0 1 (X*) will be called a local minimum of the 
pseudoboolean function f. " 

DEFINITION 0.4. A pseudoboolean function which has 
only one local minimum on Bn will be called unimodal. 

DEFINITION 0.5. A unimodal pseudoboolean function I 
will be called strictly monotone on Bn if 

I(Xk- 1 ) < f(X k) VX k - 1 E Ok-l (X*) /\ VXk E Ok(X*), 

k = 1,n. 

DEFINITION 0.6. The set of points H"(XO,XI ) = 
{Xl, X 2 , ••• , Xi, ... , Xl} C Bn will be calleel the curve be-
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tween the points Xl and Xl if for all i = 1,7, the point Xi is 
neighbouring for the point Xi-I. 

DEFINITION 0.7. The set A C Bn is called connected set 
if for any XO, Xl E A exists a curve vV(XO, Xl) c A. 

DEFINITION 0.8. The connected set of points nc c B n , 

card nc ~ 2 such that f(X) = C (C = const) for any X E nc 
is called constancy set of the function f on Bn. 

DEFINITION 0.9. A unimodal function f will be called 
monotone on Bn if f(X k-1) ~ f(X k) VXk-1 E Ok-1 (X*) /\ 
VXk E OdX.*), k = 1, n. 

DEFINITION 0.10. We shall call the first points of the set 

nc the points of the set {X~} = O[(X*) nne where nc is a 
constancy set of a unimodal pseudoboolean function f if 

DEFINITION 0.11. We shall call the last points of set nc 
the points of the set {.XJ} = OL(X*) n nc where nc is a 
constancy set of a unimodal pseudoboolean function f if 

OdX*) n nc =1= 0 /\ VA~ = L + 1, n : Ok(X*) n nc = 0. 

Lemma 0.1. If nc is a constancy set of a unimodal 
monotone on Bn function f then for ally X; E Ot(X*) 
(I < t < L, .i = 1, ... ,C;) : XJ E nco 

COROLLARY 0.1. For any nc c Bn of a unimodal func­
tion f 

L-1 
nc = {X~} U ( U Ot(X*)) U {XJ} 

t=[+l 
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Algorithm 1 for unimodal strictly monotone pseudo­
boolean functions optimization and Algorithm 2 for the op­
timization of the unimodal monotone having constancy sets 
pseudoboolean functions were suggested by Ant amoshkin , 
Saraev and Semionkin (1990). 

Algorithm 1 for locating of the local minimum point 
from any initial point requires calculating, of the function val­
ues in the initial point and all neighbouring to it points . 

. Algorithm 2 ensures going out of the constancy set (if 
the initial point was found in it) along the optimal trajectory 
to a point of strict monotonemiss of the function then Algo­
rithm 1 is used. 

As the estimate of the algorithms effectiveness we mean 
the number of the function computates which are required for 
locating an extremum of the function from any initial point. 
Then it is dear that for Algorithm 1 such estimate is (n+ 1). 
The following sta.tements were proved for Algorithm 2 by 
Antamoshkin, Saraev and Semionkin (1990). 

Theorem 0.1. Locating of tile minimum point X* of a 
unimodal function f monotone on Bn for wilicil tile condition 

f(X n) =J f(Xj-l) VXj-1 E On-l(X*), Xn E On(X*), 

is true, from tile initial point X O E Ok(X*) c nc sucil tilat 
01(XO) c nc by Algorithm 2 requires Tl computations off 

i=O 

M = min {L - k, k - I} 

(I and J are the level issues of the first and the last points of 
the set nc), 

S={I-1, ~fM _ k-I, 
n - L, If M - L - k. 
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COROLLARY 0.2. 

where 

where 

a 

max T1 = L C~ + S + 3, 
i=O 

{ 
(L - 1)/2, if (L - 1) is even, 

a = the integer part of the number 
(L -1)/2, if (L -1) is odd. 

i3 . 

T 1 = max ma.x T1 = """ Cni + 2, 
LI k ~ . 

, i=O 

{ 
(n - 2)/2, if (n - 2) is even, 

,8 = the int.eger part of the number 
(n - 2)/2, if (n - 2) is odd. 
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1. The polymodal locally 1110notone function and 
it's characteristics 

DEFINITION 1.1. A pseudoboolean function liaving on 
Bn more than one local minimum will be called p6lymodal 
one. 

DEFINITION 1.2. The point y* E Bn for which 

f(Y*) > fey) VY E 0 1 (Y*) 

we shall call a local maximum of the pseucloboolean function f. 
\Ve denote Yj = {yt'Y2*""'}~*} c Bn the set of all 

local maxima of function .f. 

DEFINITION 1.3. The curve lV-~(XO, Xl) C Bn( Hl~(XO, 
Xl) C B Il ) will be called the curve of decrease (increase) of 
function f on Bn if !(Xi+1 ) < f(Xi) Vi = 1,7 (f(X i+1 ) > 
f()(i) Vi = D). 
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DEFINITION 1.4. The set G[ of all points X E En for 
which the curve of decrease W~(X,Xn, k ~ 0, exists will be 
called the zone of attraction of the local minimum Xt. 

DEFINITION 1.5. If 

On(Xn n G[ i- 01\ Ok(Xn n G[ = 0 Vk = 7'[ + 1,11 

then the number 7'[ will called the radius of attraction zone 
G/. 

We denote G[ = G/\Yj. 

DEFINITION 1.6. The polymodal pseudoboolean func­
tion f having Q local minima on En will be called the locally 
strictly monotone on Bn one if Gi n G j = 0 Vi i- j and for any 
point X E En \ ( {X; , X; , ... , X Q} U Yj) is a certain j = 1, Q 
such that X E Gj n Ok(Xj) and 

f(Xk-':l) < f(X) < f(X k+1 ) VXi E Oi(Xj), i = ~~ - 1, k + 1. 

Lemma 1.1. OI(G[) n Gt = 0 for 1 #- t. 

Proof. Let X E G[, Y E Gt , X E OI(Y) n Ok(Xl). It 
is evident that Y E Ok-l (Xl) U Ok+l (Xl) therefore fey) < 
f(X) or f(X) > fCY). 

If f(1') > feX) then we may construct the curve of de­
crease W':'+I(y,Xn = IV':(y,X)UIV~(X,Xl) as IV~(X,Xn 
exists always due to the fact that X E G[. Hence Y E G[ 
by Definition 1.4. But G[ n Gt = 0 by Definition 1.6. So 
fey) < f(X). But in this case it is possible to construct the 

fd T;Vm+1("loT x-*) _ urI ('F "t.'-) IlIm("t .. - "t.-*) curve 0 ecrease. _ \ ~'\., 't - no _ ~'\.,.l U 'r _ .l, .. '\. t. as 
W~(Y, Xl) exists always due to the fact that Y E Gt . Hence 
X E Gt , i.e., G[ n Gt i- 0. We have contradiction in the given 
case too, this fact proves the lemma. 

DEFINITION 1.7. The points of set Gl, 1 = 1,Q will be 
called the interior points of the zone .of attraction G[ of the 
local minimtun Xi. 
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DEFINITION 1.8. The set HI of points X E Gl, I = 1, Q, 
such that Ol(X) n Gt =f 0, t =f 1, we shall call the boundary 
of attraction zone Gl and the points of set HI we shall eall the 
boundary points. 

REMARK l.l. According to Definition 1.6 and Defini­
tion 1.8 from Lemma 1.1 it follows that only the points oflocal 
maxima may be the boundary points for the locally monotone 
function. 

Lemma 1.2. If X E OkCXn n Gl then VY E Ok(Xn : 
Y E Gl. 

Proof. Let Y E 02CX) n Ok(Xi), Y tj. Gl. Then three 
cases are possible: 

l)Y=X;, s=/d; 
2) Y = Ys* - the point of local maximum; 
3) Y E Gt , t =I- I. 
In first case for point Xl E Ol(X) n OI(Y) n Ok-l (Xi) 

the relation f(Xl) > fey) and f(Xl) < f(X) are correct. 
Hence the curve of decrease W~(X, Y) = {X, Xl, Y} exists, 
i.e., X E G1 n Gs , I =I- s, but it contradicts Definition 1.6. 

For the second case we shall consider the point Xl E 

Ol(X) n Ol(Y) n Ok+l(Xi). As f(Y) > f(Xl) then Xl is 
not the point of local maximum, and as f(Xl) > f(X) then 
Xl is not the point of local minimum too. As f(X) > f(X I ) 

and Y E Ok(Xi), Xl E Ok+l (Xi) then Xl tj. Gl. Finally if 
Xl E Gt , t =I- 1, then Xl E Gt n 0 1 (Gz), that contradicts to 
Lemma 1.1. Thus for Xl any possibility is excepted. It means 
that Y may not be the point of local maximum. 

In third case we shall reconsider the point Xl E Ol(Y) n 
0 1 (X) n Ok-l (Xi). First of all f()(l) < leX) as X E 

E Ok(Xn c Gl. If F(Xl) > fCY) then the curve of de-
W s+1C,·-1 V*) Wl(·,.-l }r)UTTTS (·l'"X-*) " t . crease _ _'l., -'''-t = _ -'''- , IV _ " teXIs S, 1.e., 

Xl E Gt . As Xl E OI(X), X E Gl, then GlnOI(Gd =f 0 but 
it contradicts to Lemma 1.1. It means that f(X l ) < f(Y). It 
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is evident that Xl may not be the maximum point. Xl tj. Gt 

and Xl tj. Gl as in this case Ol(Gl) n 01(Gt) f 0, and 
Xl tj. G.9 , S f 1/\ s f t, as then Ol(GI) n Gs f 0 and 
Gs nOl (G t )#0. 

And finally Xl may not be the minimum point. as then 
X and Y will appertain to the attraction zone of it that. con­
tradicts Lemma 1.1 besides. Thus we have contradiction in 
this case too. 

Uniting 1-3 according to Definition 1.6 we shall obtain 
Y E G[. 

Let now, Y E 02m(X). We shall construct the curve 
W2m(x, Y) C Ok(Xi) U Ok-l (Xi). If Y tj. GI then X 2m - 2 tj. 
G[ too and so on. As X E G[ then X2 E G[ and so on. 
lt is dear that there are the points X i - l E TV2m (X, Y) and 
X i+l E W2m(x, Y) such that X i - l E GI and X i+l tj. GI 
moreover X i +l E 02(X i - l ) n Ok(Xi). As it was shown before 
it was not possible. The lemma is proved. 

COROLLARY 1.1. If X E Ok(Xi)nHI then VY E Ok(Xi): 
Y E HI. 

Proof. If Y E G[ then Lemma 1.2 X tj. Hz. In addition as 
X E HI then :3X l E GI n Ok-l (Xi). And so Ok-l (Xi) E G[. 
If Y E Gs , sf I, then :lXl E Ok-l (Xi) n Ol(Y) and hence 
0 1 ( G s ) n G I # 0, that contradicts Lemma 1.1. Y may not be 
the local minimum point by similar reasons. The corollary is 
proved. 

Lemma 1.3. If Ok (Xi) C GI tllen Ok-l (Xi) c GI. 

Proof. Let X E Ok-l (Xi) and X rJ. G[. Then the point X 
may not be a local maximum as f(Y) > f(X) VY E OdXt). 
X = X; (s f I) is not possible too as in t.his case VY E 
01(X) n Ok(Xn : Y E Gs n Gt is correct that cont.radict.s 
Definition 1.6. As X ,E Ol(Y) and Y E Ok(Xi) n GI t.hen for 
case X E G s, s # I, we have X E 0 1 (G s ) n G I that contradicts 
Lemma 1.1. The lemma is proved. 
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Lemma 1.4. If tbe radius of attraction zone of local 
minimum X; for tbe polymodal locally strictly monotone 
function f is equal r j tben 

rj 

Gj = U Oi(Xn 
i=O 

and also Hj = Orj (XJ). 
Proof. If in accord with Definition 1.5 Orj (Xj) n Gj =I- 0 

then there is the point X E Orj (XJ) n Gj . By Lemma 1.2 and 
Corollary 1.1 Orj (XJ) c Gj . 

Let :JX E: Orj (XJ) n Gj. Consider the point Y E 
Orj+l(Xn. Y ¢ GI, I =I- j, as it contradicts Lemma 1.1. Y is 
not the minimum point by similar reasons. It means that Y is 
the maximum point. But then Y E H j as 0 1 (Y)nG j 3 X that 
contradicts the definitionofrj. ThusVX E Orj(Xj): X E Hj, 
i.e., X is a maximum point. As the ma."{imum points may not 
be I-neighbouring points (Definition 1.2) then all the points 
from Orj-l(Xn belong to Gj . By Lemma 1.3 all the points 
from Orj-2(Xn belong to Gj too. Evidently that it is true 
for all the levels of the point X;~laving the number less than 
r j. The lemma is proved. 

COROLLARY 1.2. Under conditions of Lemma 1.4 it is 
correct: if Y E Bn is a local maximum point then VX E 
01(Y) : X E G1 for certain 1= 1, Q. 

COROLLARY 1.3. Under conditions of Lemma 1.4 it is 
correct: if Xi E Ok(Xi) then G1 n G2 =I- 0 if and only if 
rl + r2 = k. 

If we put " ~ " instead of the strict inequality in Defini­
tion 1.6 then wi'll have the definition of the polymodallocally 
monotone pseudoboolean function. It is not difficult to see 
that similarly as in the unimodal case, such defini tion assumes 
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the possibility of the constancy sets presence (Definition 0.8) 
inside the attraction zones of local minima. 

REMARK 1.2. It is not difficult to show that if nc is 
the constancy set of a polymodal locally monotone pseudo­
boolean function, G[ is the attraction zone of the local mini­
mum Xi, 1 = 1, Q, and nc c G[ then nc has form indicated 
in Corollary O.l. 

The proof of this fact may be obtained easily by repeating 
of the Lemma 0.1 arguments supposing the change of Bn on 
G[ and X* on Xj. 

In this connection we may assert that all the character­
istics of constancy sets for the unimodal case remain true for 
polymodal function too. This statement is easy to explain con­
sidering the fact that a polymodal locally monotone pseudo­
boolean function is unimodal monotone one in the attraction 
zone of it's any local minimum. 

2. The optimization algorithm for the locally 
strictly monotone functions. Now we consider the poly­
modal locally strictly monotone on Bn pseudoboolean fU~lction 
f having Q > 1 local minima. 

As it was noted above, the function f was the unimodal 
strictly monotone one inside the attraction zone of any local 
minimum. It means that from arbitrary intrinsic point of any 
zone of attraction the local minimum may be located by Al­
gorithm 1 after (n + 1)-th computations of the function. Note 
that here it is essential to distinguish the intrinsic and bound­
ary points. 

For maximal utilization of whole information obtained 
on previous step it is best to locate the local minimum from 
any point which is 1-neighbouring one to a boundary point as 
first of all this point is intrinsic one for the attraction zone of 
some local minimum by all means and sec.ondly in this case 
for locating of the local minimum it will be done with two 
function computations less. 
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Lemma 1.4 permits to organize the local Ininima exami­
nation so that the reiterations and random walk are excluded. 
Moreover with the help of Lemma 1.4 it is possible to work 
out the stop criterion, i.e., a rule for determination of instant 
when all the local minima are located. Let us discuss it more 
explicitly. 

After locating of the first local minimum it is necessary to 
locate an initial point for the search of a next local minimum. 
Let Xi is the located local minimum and·G1 is the attraction 
zone of it. It is necessary to know the radius rl of the attrac­
tion zone G1 for to locate such initial point XO. The locating 
rl is possible by examination of with step by step moving off 
Xi. We may consider rl determined after diminishing of the 
function value in the next point in its turn. Evidently that 
the discribed procedure for locating rl is not necessary if the 
first initial point is the local maximum point,. Further if as the 
new initial point XO to choose the point in which the func­
tion value has diminished (when determining rl) then it will 
be I-neighboring point to the boundary H2 of the att.raction 
zone G2 of the new local minimum X; which may be located 
by Algorithm 1. 

If X O E Ok(Xn then r2 = J..: + 1, i.e., there are not 
computations of the function for locat.ing of 1'2. 

If the local minima Xi, X;, ... ,X~I and their attraction 
zone are known then the neW initial point for locating X~+l 
from the condition 

m 

XO E O~ ( u Gj ) 

j=l 

is chosen. After locating of all minima, i.e., when the condition 

Bn\(UGj) =0 
j=l 

is fulfilled, the search is stopped. 
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Taking into account the statements mentioned above, we 
proposed the following algorithm for optimization of the poly­
modal locally strictly monotone pseudoboolean functions. 

Algorithm 3. 

1. Choose the point XO E Bn arbitrarily. Suppose t = 1. 
2. Determine xj E 01(XO), j = 1,n. 
3. Computate the values J(XO) and J( .. Y)), j = 1, n, if 

they are still unknown. 
4. If there is xj E 01(XO) such that J(xj) > J(XO) then 

pass to 6. 
5. Suppose XO = xj for arbitrary xj E 01(XO) and pass 

to 2. 
6. Determine X; by the rule: 

if f(Xj) > f(XO), 
if J(xj) > J(XO), j = 1, n. 

7. Determine for the attraction zone the radius rt. 
t -

8. If .U G j = Bn then pass to II. 
)=1 

9. From the condition: 

t 

. XO E 0 1 ( U Gj ) 

j=1 

choose a new initial point XO. 
10. Suppose t = t + 1 and pass to 2: 
11. Determine a global minimum X** from the condition: 

• 

J(X**) = ~in f(Xj). 
)=l,t 

It is not difficult to see that Algorithm 3 is a generaliza­
tion of Algorithm 1 for the case of polymodallocally strictly 
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monotone function. This is necessary to understand in the 
sense that an unimodal strictly monotone function may be 
optimized by Algorithm 3 too. In this case the expenditures 
for establishment of the function unimodaJity (strictly speak­
ing for establishment of the fact that the attraction zone ra­
dius equals 11,) are added to the expenditures for locating of the 
minimum. In the "worst" case it will be done 2n computations 
of the function (for XO = X*). 

3. The optimization algorithm for the polymodal 
locally monotone functions having constancy sets. He­
re we shall take into account the connected constancy sets 
only as the unconnected ones do not influence the function 
optimization. 

As it has been discussed before the polymodal locally 
monotone pseudoboolean function f was the unimodal one on 
compact subsets of the local minima attraction zone, i.e., for 
optimization of it might be used Algorithm 2. Taking into 
account that outside the constancy sets f is the strictly locally 
monotone function, i.e., it may be optimized by Algorithm 3, 
it is sufficient to define on optimization strategy on the points 
of 0 1 (nc), where nc is a constancy set, depending on the nc 
situation with respect to the local minima attraction zones 
boundaries. 

Let nc c Gl. If in addition 

then we do with the unimodal monotone onto Gz function f 
and from the point XO E Gz it may be optimized by Algo­
rithm 2. 

If ever:JX E 01(nC) n 0n(Xn or that the same :JX E 
0 1 (nc) n HI then the point X is the local maximum point 
and so VX1 E 01(X) : f(X1) < f(X). If in according to 
the step 5 of Algorithm 3 the arbitrary point Xl E 0 1 (X) n 
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G[ will be chosen then we shall have: 3k = 1,71, such that 
f(XJ) =i C, j = 1, k, and Vj = k + 1,71 : f(XJ) > f(X I ) 

where XJ E 0 1 (Xl), j =1, n. From here it is dear that 

Xl E 01(X) n Or'-l(Xn and Xt is determineclllniquely. If 
ever we choose Xi E 0 1 (X) n G s , s =f. I, then either we have 
the considered above situation, but for another constancy set 
nC1 C Gs (by the way it is possible that C1 = C and X; will 
be determined uniquely) or the constancy set is absent at all 
and we have the case of strictly monotone function which may 
be optimized by Algorithm 3. 

Note that the trouble& connected with the choice of an 
initial point (according to Algorithm 3) and the going out 
of constancy set (according to Algorithm 2) will influence 
the optimization during the first stage only, i.e., up to the 
moment when the first local minimum is chosen (the step 9 
of Algorithm 3) as 1-neighbouring one to a boundary point 
and next in turn the local minimum is determined uniquely 
always from it (see above). 

Everything said above permit to propose the following 
algorithm for the optimization of the polymodallocally mono­
tone pseudoboolean function having constancy sets. 

Algorithm 4. 

1. Choose the point XO E Bn arbitrarily. Suppose t = 1. 
2. Determine Xi E 01(XO), j = 1,71. 
3. Computa.te the values f(XO) and f(X i), j = 1, n, if 

they are still unknown. 
4. If f(Xi) < f(XO) Vj = 1, n then suppose XO = xj for 

arbitrary j = 1, n, and pass to 2. 
5. Using the corresponding means of Algorithm 2 for 

given XO locate the local minimum point X;. 
6. Determine the radius rt of the attraction zone of local 

• • 1:.-* m1l11mUm .. i t . 
t _ 

7. If Bn = .U Gi then pass to 10. 
J=l 
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8. Choose the new initial point XO from the condition: 

t 

XO E 0 1 ( U G j ) . 

j=1 

9. Suppose t = t + 1 and pass to 2. 
10. Determine a global minimum X** from the condition: 

J(X**) = ~in J(X}).· 
}=l,t 

The Algorithm 4 is a generalization of both Algo­
rithm 2 and Algorithm 3 for the case of the polymodal 
locally monotone pseudoboolean function luiving constancy 
sets. 

In the case when the optimized function is an unimodal 
monotone function the working of Algorithm 4 coinsiders 
with the working of Algorithm 2 but after the minimum 
determination Algorithm 4 does some additional computa­
tions of function (from 0 to (n - 1)) before establishing of 
unimodali ty. 

When optimizing the polymodal locally strictly mono­
tone function the working of Algorithm 4 coincides with the 
working of Algorithm 3 completely. 

4. The global optimization algorithms effective­
ness. State the value of rate of convergence of Algorithm 3. 

Theorem 4.1. For locating of the global minimum X** 
of the polymodal strictly monotone on Bn pseudoboolean 
function f SUell that rj > 1 Vj = 1, Q from the initial point 
XO E.Ok(Xi) by Algorithlll 3 it is necessary to do Rl com­
putations of f. 

R 1 =Q(n+l)+S, S = { rl - k - 2, if k < rl, 
n - 3, if k = rl' 
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Here Q is the function f local minima general number, 1'j, 

j = 1, Q, are the attraction zones radii, X; is the local mini­
mum which will be located the first. 

Proof. The number of the function f computations for 
locating X; depends on the choice of XO. Let XO E Ok(Xt). 
If k < 1'1 then when locating X; according to Algorithm 3 
(n + 1) computations of f will be done. 

For determining 1'1 there will done 1'1 - (k + 1) more 
computations of the function f after that the point X E 
Or2- 1(Xi) will be found. If k = 1'1 then this fact will be 
established after (n + 1) computations (XO is the local maxi­
mum point). After the arbitrary point X E 01(XO) choice is 
do:q.e it is necessary to do (n - 1) more the function f com­
putations for locating X; (the values of .f in the points X 
and XO E 0 1 (X) have been known already). Evidently that 
1'1 is known, and there is no necessity to determine it. Thus 
for locating X; it is necessary to do (n + 1 + 1'1 - (k + 1)) 
computations of the function if k < 1'1 and ((n + 1) + (n - 1)) 
computations of one if k = 1'1' 

For locating Xi from the point X E Or2- 1(Xn when 
k < 1'1 it is necessary to do n computations of the function f 
as in one point from 01(X)nOr1 (Xt) the value.f is calcul~ted 
when determining 1'1. When k = 1'1 tlle point Xi may be 
located after (n -1) computations of the function if the point 
Y E OleXa) n Ort+1 (X;) is chosen as the initial point. The 
fact js that card { 0 1 (X) n 0 1 (Y)} = 2, i.e., the function values 
have been known already for two points. 

In that way for locating of X; and Xi (n + 1 + 7'1 - k -
1 + n) computations will have been done when 1.: < 1'1 and 
(n + 1 + 2(n - 1)) computations when k = 1'1. 

Let us assume that X;, Xi, . .. X~, m ;;?; 2, have been 
known already. Then in accordance with Algorithm 3 X~+l 

° (m.) is determined from the point X E 0 1 ,U Gj , i.e., 
J=l 



A. Antamoshkin and E.Semionkin 347 

XO E Orm +l-1 (X~t+1)' For locating X~t+1 from t.l~e point XO 
it is sufficient to evaluate the function in all points of 0 1 (XO), 

i.e., to do (n + 1) computations of the function f. For the rea­
son that rj > 1 Vj = 1, Q, the function values are unknown 
in all points of 01(XO). These discourses remain valid for all 
m = 2, Q. Le., when X; and X2 are known for locating the 
over (Q - 2) local minima it is necessary to do (Q - 2)(n + 1) 
computations of the function f. 

Therefore for locating of all local minima including and 
global one it is necessary to do ((Q-2)(n+1)+( n+1)+rl -k-
1 +n) = (Q( n + 1) +rl - k - 2) computations of the function f in 
the case when k < rl and ((Q-2)(n+1)+(n+1)+2(n-1)) = 
(Q( n + 1) + n - 3) computations for the case when rl = k. 

The theorem is proved. 

REMARK 4.1. If the function f has the local mi.nima 
with unit radius of attraction zones then the estimate of the 
theorem is reduced at the expense of the fact that when locat­
ing a next local minimum the function computations, done in 
the intersection points of the corresponding ~ttraction zones 
when locating the previous local minima, are taken into con­
sideration. 

COROLLARY 4.1. max R1 = 2n. 
Q 

Proof. The maximal values of Rl is reached in the case 
when rj = 1 Vj = 1, Q, i.e., when Q = 2n - 1 . In this case all 
points of the set Bn are either the local minima points or the 
1-neughbouring points to them. 

Theorem 4.2. The locating of tile minimum point X* 
for the unimodal strictly monotone pseudo boolean function 
f from an initial point XO E Ok(X*), k < n, requires R2 
function evaluations, where 

R2 = 2n - k. 
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Proof. For locating of a minimum point Algorithm 3 
makes R~ = n + 1 computations of f (the step 3). After that 
minimum attraction zone radius is determined (the step 7). 
As in the points of Ok+l (X*) the value of f is known the 
next point is taken from Ok+2(X*) then from Ok+3(X*) and 
so on. The last point is chosen from On(X*). There will be 
R~ = n - (k + 1) = n -- k - 1 such point all in all. Summing 
up R~ and R~ we have R2 • 

COROLLARY 4.2. 

max R2 = 2n 
O~k~n 

mm R2 = n + 1. 
O~k~n 

Review the Algorithm 4 effectiveness. 
When optimizing the polymodal locally strictly mono­

tone function the Algorithm 4 work consider completely with 
Algorithm 3 work and so in this case the effectiveness esti­
mates will coincide completely with the Algorithm 3 esti­
mates given in the present paragraph. 

The following theorem gives an effectiveness estimate for 
Algorithm 4 in general case. 

Theorem 4.3 .. Let j is a polymodal locally mOllotone 
pseudoboolean function baving constancy sets. G1 is tile local 
minimum Xi attraction zone, rl is tbe radius of it, nc c G1 
is tbe constancy set of tbe function j, I and J are tbe level 
numbers for tbe first and tbe last points of tbe set nc in G1 

with respect to Xi (see tlle definitiolls 0.10 and 0.11)' 
Tben tbe function j optimization from all' initial point 

XO E Ok(Xi), I < k < J, requires tbe function val~les com­
putation not more tban in R3 points of tbe space En: 

M+l 
R3 = Q(n + 1) + L C~ - C~+l + n + rl - 2M - k, 

i=O 
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where Q is the function f local minima number, 

M = min {k - I, J -k}. 

The Theorem 4.3 proof leans on Theorem 0.1, the Algo­
~ithm 4 discription and the fact that it is not necessary to 
get over more than one constancy set. 

COROLLARY 4.3. 

a+l 

max R3 = Q(n + 1) + '" c! - C;':~_l + n + rl + 3a, 
I<k<J . L...J 

where 

i=O 

{ 
J-:;I for even (J - I), 

a = the nearest integer of the number 
J-:;I for odd (J - I). 

COROLLARY 4.4. 

where 

5+1 

R; = max max R3 = L C~ + 4n - S, 
1~I~J~n-1 I<k<J 

i=O 

{ 
n-:;2 for evenn, . 

S = the nearest integer of the number 
n-:;2 for odd n. 

The Corollaries 4.3 and 4.4 proofs lean on Corollary 0.2 and 
Theorem 4.3. 

It is seen well from Corollary 4.4 that even in the worst 
case Algorithm 4 makes examination of a little more than 
half of all points of the space B n , i.e., it has effectiveness which 
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is almost twice higher than the total examination effectiveness. 
The advantage of Algorithm 4 over the total examination in­
creases when dimension increases. 

A few more words about the Algoritlull 4 work. When 
there are constancy sets having large cardinalities, the prob­
ability of event, that the point XO lies inside the constancy 
set, increases, it is the reason of the large expenditures on 
optimization. In this connection it is possible to make an in­
teresting conclusion. The Algorithm 3 convergence rate will 
make an increase when the local minima and maxima points 
number increase and hence the possible constancy sets cardi­
nality ,,,,ill decrease. However when Q = 2n - 1 the constancy 
sets are absent at all 1 mt the expenditures on optimization are 
the highest. Hence there is certain Q for which Algorithm 4 
has maximal effectiveness (on the average). Unfortunately it 
is not possible to state this number becatlse of the impossi­
bility to take into account all intercommunieations among the 
local minima number, the constancy sets number, situation of 
constancy sets inside of the local minima attraction zones and 
others. ' 
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