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Abstract. Most of the Takagi–Sugeno Fuzzy (TSF) systems found in the literature have only used
linear functions of input variables as rule consequent and can be called as TSF Models with Fixed
Coefficient (TSFMFC). This paper presents TSF model with variable coefficient (TSFMVC) which
can more closely approximate a class of nonlinear systems, nonlinear dynamic systems, and non-
linear control systems. It is also shown that TSFMFC is a special case of TSFMVC. Moreover
Variable Gain TSF Controller (VGTSFC) is defined and it performs better, as shown by the simu-
lation results, when compared with Fixed Gain TSF Controller (FGTSFC).
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1. Introduction and Problem Statement

Takagi–Sugeno fuzzy systems have widely been employed in the fields of control and
modeling. In the context of control, the question is whether a fuzzy controller can be
constructed to approximate any desired control solution with enough accuracy, whereas,
in the context of modeling the issue is whether a fuzzy model can be established which is
capable of approximating any physical system as accurately as one desires. Model-Based
control design assumes the existence of a mathematical model of the plant. The controller
is designed to modify the behavior of the plant and achieve some desired performance.
To this end, a systematic way to construct a model, mapping the inputs to the outputs is
needed.

Most of the Takagi–Sugeno fuzzy systems found in the literature (Joh et al., 1998; Li
et al., 2003; Takagi and Sugeno, 1985; Tanaka and Sugeno, 1992; Wang et al., 1996;
Wang et al., 2003; Wang et al., 1995; Ying, 1998) have only used linear functions of
input variables as rule consequent (i.e., linear rule consequent) and can be called as Ta-
kagi–Sugeno Fuzzy Models with Fixed Coefficient (TSFMFC). It simply means that the
coefficients of state variables in the consequents of each rule are fixed constants. This
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paper presents an extended Takagi–Sugeno fuzzy model named as Takagi–Sugeno fuzzy
model with variable coefficient (TSFMVC) and it is proved that it can approximate a
class of nonlinear systems, nonlinear dynamic systems, and nonlinear control systems. It
is also shown that TSFMFC is a special case of TSFMVC.

Takagi–Sugeno fuzzy controllers designed using parallel distributed technique found
in the literature (Wang et al., 1995) uses linear functions of input variables as rule con-
sequents and may be called as Fixed Gain Takagi–Sugeno Fuzzy Controller (FGTSFC).
This paper also presents an extended T-S fuzzy controller called as Variable Gain Ta-
kagi–Sugeno Fuzzy Controller (VGTSFC) using Parallel distributed Compensation. A
nonlinear benchmark problem corresponding to the physical system that has been built
by Dr. Bernstein and his co-workers (Bernstein, 1998; Bupp et al., 1995) at the University
of Michigan namely the Translational Oscillation by a Rotational Actuator (TORA) (Al-
leyne, 1998; Jankovic et al., 1996; Li et al., 2000; Kanellakopoulos and Zhao, 1995; Mar-
galiot and Langholz, 2004; Rand et al., 1992) is simulated and the results show that
VGTSFC performs better than FGTSFC.

This paper is organized as follows. Section 2 deals with the review of T-S fuzzy
models with fixed coefficients and the corresponding fixed gain T-S fuzzy controller.
Section 3 presents the proposed Takagi–Sugeno Fuzzy Models with Variable Coefficient
(TSFMVC). Section 4 deals with the analysis of approximation of a class of nonlinear
systems using TSFMVC. Section 5 deals with the proposed VGTSFC, its approximation
and comparison with FGTSFC. In Section 6 TORA system is simulated using FGTSFC,
VGTSFC, and linear controller (linearized around the origin) and the results are com-
pared.

2. Review of T-S Fuzzy Models with Fixed Coefficients (TSFMFC) and the
Corresponding Fixed Gain T-S Fuzzy Controller (FGTSFC)

A general representation of T-S model (Wang et al., 2003) with fixed coefficient
(TSFMFC) is presented in this section.

Suppose that the nonlinear function f(x): Rn → R is defined over a compact region
D ⊂ Rn with the following assumptions:

A1: f(0) = 0
A2: f ∈ C2

1 . Therefore, f , ∂f
∂x and ∂2f

∂x2 are continuous and therefore bounded over D.
A3: f(x) can approximated in the form of fj1j2...jn(x) = aj1j2...jn x in each local

region Dj1j2...jn = {x | x ∈ D, jiε � xi � (ji + 1)ε ∀i}, where ji are integers
and ε is a small chosen positive number.

Then f(x) can be expressed by linear Takagi–Sugeno fuzzy systems. The main feature
of linear Takagi–Sugeno fuzzy systems is to express the local properties of each fuzzy
implication (rule) by a linear function. The overall fuzzy system is achieved by fuzzy
“blending” of these linear functions.

Then the linear Takagi–Sugeno fuzzy rules are as follows:

Rj1j2...jn : IF x1 is about j1ε . . . and xn is about jnε THEN f̂ = aj1j2...jnx,
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where x = [x1, x2, . . . , xn]T are the function variables and f̂ = aj1j2...jnx is the con-
sequence of the j1j2 . . . jn

th IF-THEN rule. [It should be noted that, “xi is about jiε” is
same as telling that “xi takes the membership function Mji(xi).”]

The possibility of firing for the j1j2 . . . jn
th rule is given by the product of all mem-

bership functions associated with the j1j2 . . . jn
th rule.

hj1j2...jn(x) =
n∏

i=1

Mji(xi), (1)

where the membership function for xi is given as

Mji(xi) =
{

1 − |xi−jiε|
ε , | xi − jiε |< ε,

0, else where.
(2)

It is noted that hj1j2...jn(x) have already been normalized, i.e., hj1j2...jn(x) � 0 and∑
j1j2...jn

hj1j2...jn(x) = 1.
Then by using center of gravity method for defuzzification, we can represent the T-S

model as

f(x) =
∑

j1j2...jn

hj1j2...jn(x)aj1j2...jnx. (3)

Theorem 1 (Wang et al., 2003). For a smooth nonlinear function f(x): Rn → R satis-
fying Assumptions A1, A2 and A3, defined on a compact region, it can be approximated,
to any degree of accuracy, by a linear T-S fuzzy system.

2.1. TSFMFC for Nonlinear Dynamic Systems

The Takagi–Sugeno fuzzy model with fixed coefficient (TSFMFC) is used to describe
dynamic systems. It is of the following form:

Ri: IF x1(t) is M1i . . . and xn(t) is Mni THEN ẋ(t) = Aix(t),

where xT (t) = [x1(t), x2(t), . . . , xn(t)] are the system states. i = 1, 2, . . . , r and r is the
number of IF-THEN rules. Mij are fuzzy sets and ẋ(t) = Aix(t) are the consequence of
the i-th IF-THEN rule.

By using center of gravity method for defuzzification, the T-S model can be repre-
sented as

ẋ = f̂(x) =
r∑

i=1

hi(x)Aix, (4)

where hi(x) is the possibility for the i-th rule to fire.
Consider the nonlinear system:

ẋ = f(x), (5)
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where f(x) is a vector field defined over compact region D ⊂ Rn with the following
assumptions:

B1: f(0) = 0, i.e., the origin is an equilibrium point.

B2: f ∈ C2
n. Therefore, f , ∂f

∂x ,∂2f
∂x2 are continuous and bounded over D.

COROLLARY 1 (Wang et al., 2003). For any smooth nonlinear system (5) satisfying the
assumptions B1 and B2, it can be approximated, to any degree of accuracy, by a T-S
model (4).

Similarly, smooth nonlinear control system ẋ = f(x) + g(x)u can also be approxi-
mated using a T-S fuzzy model ẋ =

∑r
i=1 hi(x)(Aix+Biu). By treating u as extraneous

system state, we can also approximate the smooth nonlinear control system ẋ = f(x, u)
by T-S fuzzy model ẋ =

∑r
i=1 ĥi(x, u)(Aix + Biu). In this case, the fuzzy rule is of the

following form:

Rule i : IF x1(t) is Mi1, . . . , and, xn(t) is Min,

u1(t) is Ni1, . . . , and um(t) is Nim

THEN ẋ = Aix(t) + Biu(t)

where xT (t) = [x1(t), x2(t), . . . , xn(t)] are the system states and uT (t) = [u1(t), u2(t),
. . . , um(t)] are system inputs. i = 1, 2, . . . , r and r is the number of IF-THEN rules. Mij ,
Nij are fuzzy sets and ẋ(t) = Aix(t) + Biu(t) is the consequence of the i-th IF-THEN
rule. ĥi(x, u) =

∏n
j=1 Mij(xi(t))

∏m
k=1 Nik(uk(t)) is the possibility for the i-th rule to

fire.

2.2. FGTSFC Using PDC Technique

The structure of FGTSFC using parallel distributed compensation (PDC) (Wang et al.,
1996; Wang et al., 1995) consists of the fuzzy rules of the given below:

Rule i: IF x1(t) is Mi1, . . . , xn(t) is Min, THEN u(t) = Kix(t), (6)

where i = 1, 2, . . . , s. The output of the PDC controller is

u =
r∑

j=1

hj(x)Kjx. (7)

Theorem 2 (Wang et al., 2003). Any smooth nonlinear state feedback controller u =
K(x) where x is defined over a compact region can be approximated, to any degree of
accuracy, by a PDC controller (7).
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3. T-S Fuzzy Models with Variable Coefficient (TSFMVC)

A general representation of TSFMVC is as described below. Suppose that the nonlinear
function f(x): Rn ⇒ R is defined over a compact region D ⊂ Rn with the following
assumptions:

P1: f(0) = 0.

P2: f ∈ C2
1 . Therefore, f , ∂f

∂x and ∂2f
∂x2 are continuous and therefore bounded over D.

P3: f(x) can be approximated as fj1j2...jn(x) = aj1j2...jn(x)x in the region Dj1j2...jn

= {x/ x ∈ D, jiε � xi � (ji + 1)ε ∀i}, where a(x), aj1j2...jn(x) are continuous,
x = [x1, x2, . . . , xn]T , ji are integers, and ε is a small positive number.

Then f(x) can be approximated by Takagi–Sugeno Fuzzy Model with Variable Coef-
ficient (TSFMVC). The rules of TSFMVC is of the form:

Rule j1j2 . . . jn : IF x1 is about j1ε . . . and xn is about jnε

THEN f̂(x) = aj1j2...jn(x)x

The possibility of firing for the j1j2 . . . jn
th rule is given by the product of all

membership functions associated with the j1j2 . . . jn
th rule and is hj1j2...jn(x(t)) =∏n

i=1 Mji(xi(t)) where the membership function for xi is given by (8). It is as-
sumed that hj1j2...jn(x) have already been normalized, i.e., hj1j2...jn(x) � 0 and∑

j1j2...jn
hj1j2...jn(x) = 1.

Mji(xi) =
{

1 − |xi−jiε|
ε , | xi − jiε |< ε,

0, else where.
(8)

Then by using center of gravity method for defuzzification, the TSFMVC can be repre-
sented as:

y = f̂(x) =
∑

j1j2...jn

hj1j2...jn(x)aj1j2...jn(x)x. (9)

4. Analysis of Approximation

4.1. Approximation of a Function by T-S Fuzzy Model with Variable Coefficient
(TSFMVC)

In this section, it is proved the fact that any smooth nonlinear function satisfying the
assumptions P1, P2, and P3 can be approximated, to any degree of accuracy, using the
TSFMVC. In the following discussions, only one of such regions Dj1j2...jn is concen-
trated by assuming that x ∈ Dj1j2...jn . In the following, for simplicity, φ is substituted
instead of j1j2 . . . jn.
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Consider e(x), the approximation error between f(x) and f̂(x)

‖e(x)‖ =
∥∥∥f(x) −

∑
φ

hφ(x)aφ(x)x
∥∥∥

=
∥∥∥f(x) −

∑
φ

hφ(x)aφ(xφ)xφ +
∑

φ

hφ(x)(aφ(xφ)xφ − aφ(x)x)
∥∥∥

�
∥∥∥f(x) −

∑
φ

hφ(x)f(xφ)
∥∥∥ +

∥∥∥ ∑
φ

hφ(x)(aφ(xφ)xφ − aφ(x)x)
∥∥∥

�
∑

φ

hφ(x)‖f(x) − f(xφ)‖ +
∑

φ

hφ(x)
∥∥(aφ(xφ)xφ − aφ(x)x)

∥∥
� max

φ

∥∥f(x) − f(xφ)
∥∥ + max

φ

∥∥(aφ(xφ)xφ − aφ(x)x)
∥∥.

Since x ∈ Dj1j2...jn , the distance between x and any vertex point of Dj1j2...jn is less
than

√
nε, i.e., | x−xj1j2...jn |� √

nε, and since f(x) and a(x) are continuous over x, it
is possible to make e(x) arbitrarily small by just reducing ε.

Therefore, the following theorem is obtained by summarizing the results above.

Theorem 3. For a smooth nonlinear function f(x): Rn → R satisfying assumptions P1,
P2, and P3 can be approximated, to any degree of accuracy, by a T-S Fuzzy Model with
Variable Coefficient (TSFMVC).

4.2. Approximation of Nonlinear Dynamic Systems by TSFMVC

TSFMVC in the following form can be used to describe dynamic systems.

Rule j1j2 . . . jn: IF x1 is about j1ε . . . and xn is about jnε

THEN ẋ = Aj1j2...jn(x)x,

where x = [x1, x2, . . . , xn]T are the function variables and ẋ = Aj1j2...jn(x)x is the
consequence of the j1j2 . . . jn

th IF-THEN rule.
By using weighted average defuzzification, the TSFMVC can be represented as (10),

where hi(x) is the possibility for the ith rule to fire.

ẋ = f̂(x) =
∑

j1j2...jn

hj1j2...jn(x)Aj1j2...jn(x)x. (10)

Consider the nonlinear system:

ẋ = f(x), (11)

where f(x) is a vector field defined over compact region D ⊂ �n with the following
assumptions:

S1: f(0) = 0, i.e., the origin is an equilibrium point.
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S2: f ∈ C2
n. Therefore, f , ∂f

∂x and ∂2f
∂x2 are continuous and therefore bounded over D.

Suppose f(x) can be written as [f1(x) . . . fn(x)]T . What is meant by approximation
is finding a T-S fuzzy model f̂(x) = [f̂1(x) . . . f̂n(x)]T such that ‖f(x)−f̂(x)‖ is small.
Since ‖f(x)−f̂(x)‖ is small iff each of its components (which are nonlinear functions) is
small, then by applying Theorem 3 proved in the previous section, the following corollary
is obtained.

Theorem 4. For any smooth nonlinear system (11) satisfying the assumptions S1 to S2,
it can be approximated, to any degree of accuracy, by a TSFMVC (10).

Similarly, smooth nonlinear control system

ẋ = f(x) + g(x)u (12)

can also be approximated using a T-S fuzzy model with variable coefficient (TSFMVC)
and is given by

ẋ =
r∑

j1j2j3...jn

hj1j2j3...jn(x)
(
Aj1j2j3...jn(x) x + Bj1j2j3...jn(x)u

)
, (13)

where the rules are of the form:

Rj1j2...jn : IF x1 is about j1ε . . . and xn is about jnε

THEN ẋ = Aj1j2...jn(x)x + Bj1j2...jn(x)u,

where x = [x1, x2, . . . , xn]T are the system states and u = [u1, u2, . . . , un]T are the sys-
tem inputs. ẋ = Aj1j2...jn(x) x + Bj1j2...jn(x)u is the consequences of the j1j2 . . . jn

th

IF-THEN rule. The possibility for the j1j2 . . . jth
n rule to fire is given by hj1j2j3...jn(x) =∏n

p=1 Mjp(xp).

4.3. Comparison of Approximations Done in TSFMFC and TSFMVC

Consider, for example, the function

f(x1, x2) =
sin x1

1 + cosx1
+

x2

1 + sinx1
,

where 0 � x1, x2 � π/4.
The function approximated using the Takagi–Sugeno fuzzy model with fixed coeffi-

cient (TSFMFC) [also called as Takagi–Sugeno fuzzy model with linear coefficient (Ta-
kagi and Sugeno, 1985)] using two rules approximated at x1 = 0 and x1 = π/4 is as



434 R. Rajesh, M.R. Kaimal

follows:

if x1 = 0, then f(x1, x2) = A|x1=0

[
x1

x2

]
,

if x1 = π/4, then f(x1, x2) = A|x1=π/4

[
x1

x2

]
,

where A|x1=0 and A|x1=π/4 are coefficients of the function approximated at x1 = 0 and
x1 = π/4 respectively and is given by

A|x1=0 =
[1
2

1
]

since sin(x1) ≈ x1 when x1 → 0,

A|x1=π/4 =
[ 4
π(1 +

√
2)

√
2

1 +
√

2

]

since sin(x1) ≈
4x1

π
√

2
when x1 is about π/4. (14)

At the same time the function approximated using the proposed Takagi–Sugeno fuzzy
model with variable coefficient (TSFMVC) using two rules approximated at x1 = 0 and
x1 = π/4 is as follows:

if x1 = 0, then f(x1, x2) = A(x)|x1=0

[
x1

x2

]
,

if x1 = π/4, then f(x1, x2) = A(x)|x1=π/4

[
x1

x2

]
,

where A(x)|x1=0 and A(x)|x1=π/4 are coefficients of the function approximated at x1 =
0 and x1 = π/4 respectively and is given by

A(x)|x1=0 =
[ 1
1 + cos x1

1
1 + sin x1

]
since sin(x1) ≈ x1 when x1 → 0,

A(x)|x1=π/4 =
[ 4/(π

√
2)

1 + cosx1

1
1 + sinx1

]

since sin(x1) ≈
4x1

π
√

2
when x1 is about π/4. (15)

It can be seen that (14) is again an approximation of (15) at x1, i.e.,

A(x)|x1=0 at (x1 = 0) = A(x| x1 = 0)|x1=0 = A|x1=0,

A(x)|x1=π/4 at (x1 = π/4) = A(x| x1 = π/4)|x1=π/4 = A|x1=π/4.

In general, consider j1j2 . . . jth
n rule of TSFMVC given by (3) and j1j2 . . . jth

n

rule of TSFMVC given by (9). Then the approximation of f(x) using fuzzy models
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TSFMVC (9) and TSFMFC (3) is as follows:

f(x)
1st

approx.−→
∑

j1j2...jn

hj1j2...jn(x)aj1j2...jn(x)x

2nd
approx.−→




∑
j1j2...jn

hj1j2...jn(x) aj1j2...jn(xj1j2...jn) x

or∑
j1j2...jn

hj1j2...jn(x) aj1j2...jn x.

It can be seen that the first approximation gives our proposed Takagi–Sugeno Fuzzy
Model with Variable Coefficient (TSFMVC) and the second approximation leads to Ta-
kagi–Sugeno Fuzzy Model with Fixed Coefficient (TSFMFC, also called Takagi Sugeno
Fuzzy Model with linear consequence).

Now consider the approximation of dynamic system of the form ẋ = A(x) + B(x)u
using fuzzy models.

ẋ = A(x) + B(x)u
1st

approx.−→ ẋ =
∑

j1j2...jn

hj1j2...jn(x) (Aj1j2...jn(x) x + Bj1j2...jn(x) u)

2nd
approx.−→ ẋ=




∑
j1j2...jn

hj1j2...jn(x)
(
Aj1j2...jn(xj1j2...jn)x+Bj1j2...jn(xj1j2...jn)u

)
or∑

j1j2...jn
hj1j2...jn(x)(Aj1j2...jn x + Bj1j2...jn u).

In this case also it can be seen that the first approximation leads to our proposed
TSFMVC. It is to be noted that TSFMFC is obtained only after the second approximation.

Thus TSFMFC are special cases of TSFMVC. Since the approximation error between
the original system and the approximated system increases by the increase in the number
of approximation, TSFMVC can better approximate systems than TSFMFC.

5. Variable Gain Takagi–Sugeno Fuzzy Controller (VGTSFC)

Parallel distributed compensation (Wang et al., 1995) can be used to design controller
for Takagi–Sugeno fuzzy model with variable coefficient (TSFMVC) (13) and the vari-
able gain PDC controller thus obtained is named as Variable Gain Takagi–Sugeno Fuzzy
Controller (VGTSFC).

The rules of the VGTSFC are of the form:

Rule j1j2 . . . jn: IF x1 is about j1ε . . . and xn is about jnε

THEN u = Kj1j2...jn(x)x.

The output of the controller is

u =
∑

j1j2...jn

hj1j2...jn(x)Kj1j2...jn(x)x. (16)
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5.1. Comparison of Algorithms for FGTSFC and VGTSFC

VGTSFC is designed based on TSFMVC (1st approximated model), while FGTSFC is
based on FGTSFC(2nd approximated model). Since VGTSFC is designed based on the
1st approximated model (TSFMVC) it can better control any system than FGTSFC. The
comparison of algorithms for FGTSFC and VGTSFC are given in Table 1. It can be seen
from the table that in FGTSFC the gain values (Kis) are fixed constants for each region i

and all the Kis are determined before the simulation. While in VGTSFC, the gain values
are not fixed and it changes inside each region based on the current state of the system
(or plant) and hence Kis are determined only during simulation.

6. Translational Oscillation by a Rotational Actuator (TORA) – an Application

TORA (translational oscillation by a rotational actuator) (Alleyne, 1998; Jankovic et
al., 1996; Li et al., 2000; Kanellakopoulos and Zhao, 1995; Margaliot and Langholz,
2004; Rand et al., 1992) is a nonlinear benchmark problem corresponding to the physical
system that has been built by Dr. Bernstein and his co-workers (Bernstein, 1998; Bupp et
al., 1995) at the University of Michigan. It is illustrated in Fig. 1. The problem considers
a translational oscillator with an attached eccentric rotational proof mass actuator, where
the nonlinear coupling between the rotational motion of the actuator and the translational
motion of the oscillator provides the control mechanism. The behavior TORA is similar
to that of a dual-spin spacecraft exhibiting the resonance phenomenon.

Table 1

Algorithm for FGTSFC and VGTSFC

Algorithm for FGTSFC Algorithm for VGTSFC

...
...

Ki = lqr(Ai, Bi, Q, R), ∀i begin

begin t = 1

t = 1 xt = current state

xt = current state repeat

repeat
...

... Ki = lqr(Ai(xt), Bi(xt), Q, R), ∀i

u = −
∑r

i=1
hi(xt)Ki xt u = −

∑r

i=1
hi(xt)Ki xt

xt+1 = plant(xt, u) xt+1 = plant(xt, u)

...
...

t = t + incr t = t + incr

until t = maxtime until t = maxtime

end end
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Fig. 1. Nonlinear benchmark problem – Translational Oscillation by a Rotational Actuator (TORA).

Let x1 be the normalized displacement of the platform from the equilibrium position,
x2 = ẋ1, x3 = θ be the angle of the rotor, and x4 = ẋ3. Then, the system dynamics can
be expressed by the following equation:

ẋ = f(x) + g(x)u, (17)

where u is the torque applied to the eccentric mass and

f(x) =




x2

−x1+εx2
4 sin(x3)

1−ε2 cos2(x3)

x4

ε cos(x3)(x1−εx2
4 sin(x3)

1−ε2 cos2(x3)




, g(x) =




0
−ε cos(x3)

1−ε2 cos2(x3)

0
1

1−ε2 cos2(x3)




,

where ε = 0.5m, −π/2 � x3 � π/2 and −1 � x4 � 1. The equilibrium point of this
system could be any point [0, 0, x3, 0] among which only the point [0, 0, 0, 0] is the desired
equilibrium point. The linearization around the point [0,0,0,0] has two eigenvalues ±i,
which means that the TORA system is a critical nonlinear system.

In the following subsections, linear modeling and its controller, TSFMFC and
FGTSFC, TSFMVC and VGTSFC and their simulations are presented.

6.1. Linear Modeling and its Linear Controller

The system is linearized around x3 = 0 and x4 = 0 is given by

R1:




ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
−1

1−ε2 0 0 0
0 0 0 1
ε

1−ε2 0 0 0







x1

x2

x3

x4


 +




0
−ε

1−ε2

0
1

1−ε2


u.

Linear controller given by

u = K x. (18)
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Linear quadratic regulator method is used to find out the value K. The simulation and
results are given in Subsection 6.4.

6.2. T-S Modeling with Fixed Coefficient and its Fixed Gain Controller

The system is approximated by the following 4-rule Takagi Sugeno fuzzy model with
fixed coefficient (TSFMFC).

R1: If x3 is about 0 and x4 is about 0, then


ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
−1

1−ε2 0 (0.01)2ε
1−ε2 0

0 0 0 1
ε

1−ε2 0 −(0.01)2ε2

1−ε2 0







x1

x2

x3

x4


 +




0
−ε

1−ε2

0
1

1−ε2


u,

R2: if x3 is about 0 and x4 is about ± 1, then


ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
−1

1−ε2 0 ε
1−ε2 0

0 0 0 1
ε

1−ε2 0 −ε2

1−ε2 0







x1

x2

x3

x4


 +




0
−ε

1−ε2

0
1

1−ε2


u,

R3: if x3 is about ± π/2 and x4 is about 0, then



ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
−1

1−ε2β2 0 2 (0.01)2ε
π(1−ε2β2) 0

0 0 0 1
εβ

1−ε2β2 0 −2 (0.01)2ε2β
π(1−ε2β2) 0







x1

x2

x3

x4


 +




0
−εβ

1−ε2β2

0
1

1−ε2β2


 u,

R4: if x3 is about ± π/2 and x4 is about ± 1, then


ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
−1

1−ε2β2 0 2 ε
π(1−ε2β2) 0

0 0 0 1
εβ

1−ε2β2 0 −2 ε2β
π(1−ε2β2) 0







x1

x2

x3

x4


 +




0
−εβ

1−ε2β2

0
1

1−ε2β2


 u,

where β = cos(88◦).
Note: Note that each rule consequent is of the form ẋ = Aix + Biu.

By utilizing the concept of Parallel Distributed Compensation (PDC), the following
four rules are designed for the FGTSFC.

R1: if x3 is about 0 and x4 is about 0, then u1 = K1x,

R2: if x3 is about 0 and x4 is about ± 1 then u2 = K2x,

R3: If x3 is about ± π/2 and x4 is about 0, then u3 = K3x,

R4: if x3 is about ± π/2 and x4 is about ± 1, then u4 = K4x.

Linear quadratic regulator method is used to find out the values of K ′
is. The simulation

and results are given in Subsection 6.4.
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6.3. T-S Modeling with Variable Coefficient and its Variable Gain Controller

In this subsection, VGTSFC with 2 rule model is presented. In two rule model, two of the
state variables in the coefficient matrix are kept varying, i.e., x3 and x4.

R1: if x3 is about 0, then



ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
−1

1−ε2 cos2(x3)
0 x2

4ε
1−ε2 cos2(x3)

0
0 0 0 1

ε cos(x3)
1−ε2 cos2(x3)

0 −x2
4ε2 cos(x3)

1−ε2 cos2(x3)
0







x1

x2

x3

x4


 +




0
−ε cos(x3)

1−ε2 cos2(x3)

0
1

1−ε2 cos2(x3)


u,

R2: if x3 is about ± π/2, then



ẋ1

ẋ2

ẋ3

ẋ4


=




0 1 0 0
−1

1−ε2 cos2(x3)
0 2x2

4ε
π(1−ε2 cos2(x3))

0
0 0 0 1

ε cos(x3)
1−ε2 cos2(x3)

0 −2x2
4ε2 cos(x3)

π(1−ε2 cos2(x3))
0







x1

x2

x3

x4


+




0
−ε cos(x3)

1−ε2 cos2(x3)

0
1

1−ε2 cos2(x3)


 u.

By utilizing the concept of Parallel Distributed Compensation (PDC), the following
two rules are designed for the variable gain T-S fuzzy controller.

R1: if x3 is about 0, then u1 = K1(x)x,

R2: if x3 is about ± π/2, then u2 = K2(x)x.

Linear quadratic regulator method is used to find out the values of Ki(x)′s. The sim-
ulation and results are given in Subsection 6.4.

6.4. Simulation and Results

This subsection presents the simulation results and discussions of linear controller (Sub-
section 6.1), FGTSFC (Subsection 6.2), and VGTSFC (Subsection 6.3). Linear quadratic
regulator method is used to find out the values Ki of above controllers.

Let Q =




10 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 and R = 1.

For the above values of Q and R, the linear quadratic method gives the the following
value for the gain K of the linear controller described in Subsection 6.1

K = [−1.7510 2.2766 2.7463 3.4691]. (19)

The gain values of FGTSFC (described in Subsection 6.2) are obtained as

K1 = [−2.6490 0.5780 1.0001 2.1563], (20)
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K2 = [−1.7510 2.2766 2.7463 3.4691], (21)

K3 = [−3.1448 0.0129 1.0001 1.4526], (22)

K4 = [−2.6071 1.7641 2.2487 2.1725]. (23)

The gain values of VGTSFC (described in Subsection 6.3) is dynamic, not unique and
it changes with the state of the system and have to be calculated at runtime.

The simulation of TORA system is carried out on Celeron 2GHz machine using MAT-
LAB 6. To simulate the TORA dynamics, a fourth-order Runge-Kutta method (ode45
(Shampine and Reichelt, 1997)) is used with an integration time step size of 0.01 sec.
Observation of the system states were made every time step (integration step). The con-
trollers are assumed to be continuous, therefore, the sampling time of the controller was
set equal to the integration time step size.

TORA system is simulated with linear controller, FGTSFC and, VGTSFC for several
initial conditions. Figs. 2, 3, 4, and 5 respectively show the plot of displacement (x1),
Velocity (x2) vs Displacement (x1), angle (x3) vs angular velocity (x4), and control force
for the initial state [0, 0, 85◦, 0] with each of the above mentioned controllers. Table 2
shows the performance of the Linear controller, FGTSFC and, VGTSFC for the initial
state [0, 0, 85◦, 0] where the Total Absolute Error (TAE) and Performance index (J) is
calculated by (24) and (25).

TAE =
∑

t=0:0.01:maxtime

(
|x1(t)| + |x2(t)| + |x3(t)| + |x4(t)|

)
, (24)

Fig. 2. Displacement (x1 in meters) of TORA system for the initial state [0, 0, 85◦, 0].
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J =
∑

t=0:0.01:maxtime

(xT Qx + uT Ru). (25)

It is clear from the Fig. 2 that VGTSFC has lesser displacement compared to Linear
controller and FGTSFC. From Fig. 3, it is clear that the area taken by VGTSFC is much
lesser when compared to Linear controller and FGTSFC. From Fig. 4, it is clear that
the variable x3 and x4 also performs well in the case of VGTSFC. It can also be seen
from the Fig. 5 that the control force of the VGTSFC is much less when compared to
other controllers. It is evident from the Table 2 that Variable Gain Takagi–Sugeno Fuzzy
Controllers (VGTSFC) is having lesser error and hence perform much better than the
linear controller and Fixed Gain Takagi–Sugeno Fuzzy Controller (FGTSFC).

Simulation results reveals that the Variable Gain Takagi–Sugeno Fuzzy Controller
(VGTSFC) can efficiently be used in place of linear controllers and fixed gain Takagi–
Sugeno fuzzy controllers with good approximation and control performance.

Fig. 3. Velocity (x2 in m/s) vs Displacement (x1 in m) for the initial state [0, 0, 85◦, 0].

Table 2

Performance of linear controller, FGTSFC and VGTSFC

Methods Total Absolute Error (TAE) Performance Index (J)

Linear 702.9854 609.4228

FGTSFC 692.3458 521.8640

VGTSFC 648.5775 432.0092
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Fig. 4. Angle (x3) vs Angular velocity (x4) of TORA system for the initial state [0, 0, 85◦, 0].

Fig. 5. Control force (u in Newton) applied to the TORA system for the initial state [0, 0, 85◦, 0]. A portion of
the plot is zoomed and is shown inside the figure.
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7. Conclusions

A new model namely, Takagi–Sugeno Fuzzy Model with Variable Coefficient (TSFMVC)
is presented and it is proved that it can approximate any nonlinear function to any degree
of accuracy. A new controller namely, Variable Gain Takagi–Sugeno Fuzzy Controller
(VGTSFC) is presented and compared with linear and fixed gain Takagi–Sugeno con-
trollers. The simulation results of TORA system show that the proposed controller is
effective and efficient.

The main advantages of the modeling (TSFMVC) and control (VGTSFC) are sum-
marized below.

1. TSFMVC can better approximate a nonlinear dynamic system than TSFMFC and
there by reducing the approximation error in modeling.

2. Variable gain Takagi–Sugeno fuzzy controller (VGTSFC), developed on the basis
of the Takagi–Sugeno fuzzy modeling with variable coefficient (TSFMVC), shows
good control performance when compared to linear controller and fixed gain Taka-
gi–Sugeno fuzzy controllers (FGTSFC).
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Kintamo naudingumo Takagi–Sugeno fuzzy logikos kontroleriai

Reghunadhan RAJESH, M.Ramachandra KAIMAL

Daugelis literatūroje minim ↪u Takagi–Sugeno Fuzzy (TSF) sistem ↪u naudoja tik tiesines ↪iėjimo kin-
tam ↪uj ↪u funkcijas. Jos gali būti vadinamos TSF modeliais su fiksuotais koeficientais (TSFMFC).
Šiame straipsnyje pateiktas TSF modelis su kintamu koeficientu (TSFMVC), kuris gali artimiau
aproksimuoti netiesini ↪u sistem ↪u, netiesini ↪u dinamini ↪u sistem ↪u ir netiesini ↪u valdymo sistem ↪u klases.
Taip pat parodyta, kad TSFMFC yra dalinis TSFMVC atvejis. Be to, yra aprašytas kintamo
naudingumo kontroleris (VGTSFC), jis veikia geriau nei fiksuoto naudingumo TSF kontroleris
(FGTSFC).


