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Abstract. Models for determining the electromagnetic fields 
are considered. The models consist of system of the Maxwell equa­
tions in the complete form and in the quasi-stationary approxima­
tion. Using the quasi-stationary approximation in media containing 
nonconducting subdomains is non correct from the physical point of 
view and give rise to a number of additional mathematical prob­
lems. The solutions of the Maxwell equations in the complete form 
and in the quasi-stationa,ry approximation are compared. Initial 
boundary value problems are considered for conducting, noncon­
ducting and mixed media. The conditions ensuring the closeness of 
solutions are established. The estimates are obtained in terms of 
input data of the problem. In particular, it has been proved that 
as the ratio of the characteristic rate to the light velocity tends to 
zero the strength of electric field in the conducting part and the 
strength of magnetic field in the entire domain, corresponding to 
the complete problem, converge to the ones corresponding to the 
approximate problem. 

Key words: Maxwell equations, quasi-stationary approxima-
tion. 
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1. Introduction. This paper deals with mathemati­
cal modeling of electromagnetic fields in media with different 
electroconductivities. 

As is known (Tamm, 1966; Kulikovsky and Lyubimov, 
1962), the problem of determining electroma.gnetic fields con­
sists in solving the Maxwell equations: 

---+ ---+ 
---+ 47r - 1 a E ---+ 1 a H 

rot H =-j + --, rot E = ---, (1.1) 
c cat cat 

---+ ---+ 
div E =47rpe, div H = 0 

jointly with the continuity equation and the Ohm relation: 

aPe d· -:' 0 - + IV) = , at 
and appropriate initial and boundary conditions. 

(1.2) 

The system of equations (1.1) and (1.2) is considered in 
the limited region G, t > o. The notations are standard: r = 
(x, y, z) is the radius vector; t is the time; E and Ii are the 
strengths of electric and magnetic fields, respectively; J is the· 
density of electric field; u is the electric conduction; pe is the 
electric charge density; c is the light velocity. We assume that 
a = a(r). The system of equations is written in dimensional 
units. 

In some cases the description of fields may by consider­
ably simplified (Kulikovsky and Lyubimov, 1962) by using a 
quasistationary approximation of the Maxwell equations. It 
may be done under the following conditions: 

l/uoot o « 1~ 

J-l2 = (xo/cto)2 « 1. 

(1.3) 

(1.4) 

Here Xo and to are the ch~racteristic scale and time of the 
field changes, Uoo is the characteristic value of conductivity, 
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J.l is a parameter. The condition (1.3) means high electric 
conduction of the medium, while (1.4) - the smallness of the 
characteristic rate of process, compared to the light velocity. 
If the conditions (1.3) and (1.4) are valid, we may ignore the 

---+ 

displacement current ~ aa~ in comparison with the conductiv-
ity current ;, and the medium may be assumed quasi-neutral, 
Pe = O. In this case the electric field energy proves to be low 

---+2 ---+2 
as compared with the magnetic energy E < < H . 

By analogy with Samarskii (1980, p.230) we introduce di­
mensionless values in (1.1) and (1.2) and use the same letters 
for their designation like in the dimensional case. Then the 
system of Maxwell equations in the quasi-stationary approxi­
mation has the form: 

---+ ---+ 
rot.H =47r0" E , 

---+ 
div H =0, 

---+ oH 
rot E = -Tt' (1.5) 

The condition (1.3) for applicability of the quasi-stationary 
approximation (1.5) is rewritten in terms of dimensionless val­
ues (including 0"00) in the form: 

(1.6) 

The condition (1.4) remains unchanged. 
The inequality (1.6) obviously means that 0" =f. O. How­

ever, for applications a typical situation is when the region 
under investigation contains subregions with sharply nonho­
mogeneous electrophysical properties (for example, conduc­
tors and dielectrics). In this case the condition (1.4) remains 
valid, while the condition (1.6) holds only in the conduct­
ing part. In such problems the fields in the conducting part 
are of main interest. It is clear that from the formal point 
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of view the quasi-stationary approximation cannot be used in 
this case, and the estimates (Kulikovsky and Lyubimov, 1962) 
following from (1.3) and (1.4) are generally not legitimate. 

Often we have to calculate the fields numerically. Then 
it is desirable to have a model which homogeneously describes 
the fields in every subregion to provide through computations. 
Using the complete system of Maxwell equations under the 
condition (1.4) leads to a necessity of solving the problem 
with a very small time step. In fact, we have to follow in this 
case the propagation of electromagnetic wave in a dielectric 
while basic attention is usually paid to processes in a conduct­
ing part. A model with the complete system of the Maxwell 
equations in the dielectric and their quasi-statiom>ry approx­
imation in the conductor will be nonhomogeneous. To solve 
such a problem numerically in the spatial multidimensional 
case is very difficult. Therefore, it seems attractive to use 
the quasi-stationary approximation of the Maxwell equations 
(1.5) for describing the fields in the whole region. 

However, it is not clear apriory how strongly the field 
will be misrepresented in the conductor as compared with a 
complete model and whether the field in the dielectric will 
correspond to the full description. It should be noted that in 
(Kulikovsky and Lyubimov, 1962) the estimates of the solu­
tion obtained in a homogeneous conducting medium have a 
physical nature .. 

In this paper a comparison was carried out between solu­
tions obtained for the complete system of Maxwell equations 
and its quasi-stationary approximation, including the case of a 
medium with sharply nonhomogeneous electrophysical proper­
ties, i.e., the medium consisting of a conducting and a noncon­
ducting parts. The comparison means deriving the estimates 
of difference norms for the solution of complete Maxwell equa­
tions and the quasi-stationary approximation (1.5). 

In the dimensionless form the first equation in the sys-
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tern (1.1) is 
{)-7 

rot 11 - J-l2 a~ = 47r0" E. (1.7) 

The rest equations of (1.1) in the dimensionless form are ob­
VlOUS. 

We shall further compare the solutions of the complete 
system and its approximation (1.5) by introducing some addi­
tions to provide uniqueness of the solution (Galanin, Povesh­
enko and Popov, 1988). 

We consider here the initial-boundary problems of deter­
mining electromagnetic fields in conducting and mixed media. 
The estimates are obtained in terms of the problems input 
data for differences between solutions corresponding to the 
complete and approximate systems. These estimates may be 
utillized in different ways. Formally, they do not depend on 
how small or great the involved parameters are. We are in­
terested in them mainly from the following point of view: do 
the solutions of the complete and approximate systems con­
verge to each other in any sense as I-l tends to zero. By means 
of these estimates the conditions have been found out for en­
suring a homogeneous (in time) vicinity of the solutions in 
the conducting medium, their tendency to zero with grow­
ing time, etc. In particular, it is shown that in the case of a 
nonhomogeneous medium with sharply varying electric con­
duction the solutions of complete and approximate systems 
also converge each other in a certain sense as I-l (a ratio of 
the characteristic process rate to the light velocity) tends to 
zero. The convergence occurs in the magnetic field strength 
in the whole medium and in the electric field strength only 
in the conducting part of the medium. Hence, it was proved 
that the quasi-stationary approximation can be applied in the 
mixed media too. 

Author thanks to Yu.P.Popov for attention to this work 
and useful discussions. 
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2. Formulation of the problem on a comparison. 
~ 

of solution. \Ve consider the limited domain G. ~Let Eland 
~ . 

r HI be the solutions of the complete system of the Maxwell 
equations in the dimensionless form: 

-:;::i 2 aEI ~ 
rot itl - J.L at = 471'0' EI 

~ 

rot EI = _ aH I 
at 

with additional conditions 

Here and below dG is G boundary, the indices T and n desig­
nate the components tangential and normal to dG. We denote 
G = G1 U G2 , where 

G2 = {t E G : 0' = a}. 

We assume that 0' = O'(r); G1 and G2 are the boundaries of 
G I and G2 , respectively; aG12 = aG I n G2 • We also assume 
8G2 to be connected and domain G2 to be singly connected. 
The subdomain G1 is a conductor, and the subdomain G2 is 
a dielectric. Further on the variants will be possible when G1 

or G2 are empty, i.e., G = G2 or G = GI . 

We shall assume that the initial data (2.2) satisfy the 
conditions 

div Ho = 0 
(2.3) 

~ 

div Eo = 0 in G2 

and, as a rule, satisfy the agreement conditions 

rot If 0 = 471'0' E 0 in G (2.4) 
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Note that the first condition (2.3) provide satisfaction of the 
-+ 

relation div H 1 = 0 at all times. Therefore in (2.1) this equa-
tion was omitted. 

Along with (2.1) and (2.2) we consider the problem where 

the strengths E 2 and H 2 are described by the system of 
Maxwell equations in the quasi-stationary approximation: 

-+ -+ 
rot H 2 = 471"0" E 2 

rot E2 = _ 8H2 
at 

(2.5) 

with the additional gauge equation (Galanin, Poveshenko, 
Popov, 1988): 

·div E2 = 0 (2.6) 

and with initial and boundary conditions 

(2.7) 

The initial data for E 2 coincide with Eo generally only in G1 

and only when the condition (2.4) are fulfilled if no additional 
-+ 

constraints are not imposed on Eo. 
If the agreement condition (2.4) are fulfilled it immedi-

ately follow from (2.1) that div E 1 = 0 in G2 • Hence, it 
appears that the solution of (2.1) passes at the limit p -+ 0 
into the solution of (2.5). 

We shall be interested in estimating the norn~s of solution 
differences for the problems (2.1) and (2.5) through the input 
data. These estimates must answer also the question how the 
solutions of the problems converge to each other when. p. -+ O. 

It should be noted that in (Kavashima and Shizuta, 1986) 
a similar question was raised about the convergence of solu­
tions obtained in the problem on the motion of a conduct­
ing fluid, where the electromagnetic part was described by the 
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Maxwell equations in the complete form and in the magneto­
hydrodynamic approximation. However, numerous assump­
tions made in Kava.shima and Shizuta (1986) do not allow us 
to use the results. Besides; the medium in (Kavashima and 
Shizuta, 1986) was conducting. Also we would like to mention 
the publication of Aleksandrov and Dmitrijev (1975), where 
the convergence of solutions was consider for a complete sys­
tem of Maxwell equations with electric conduction tending to 
infinity. 

The problem (2.1) and (2.2) with f.-t ---+ 0 is singularly 
perturbed and has a sm~ll parameter at the leading (time) 
derivative. To do thoroughly the task of comparing the solu­
tions of (2.1) and (2.5) one should construct an expansion of 
the solution to (2.1) and (2.2) with respect to f.-t in the manner 
of Su Yui-Chan (1961). Here we restrict ourselves by obtaining 

~ ~ ~ ~ ~ ~ 

estimates of the differences E = E 1 - E 2 and H = H 1 - H 2 

through the input data. The estimates will give an answer to 
the question about a convergence of the solutions as f.-t ---+ O. 
Along with this we shall consider the cases of homogeneous 
conducting and nonconducting mediums. 

We shall assume that everywhere the solutions exist and . 
. have a desirable smoothness. Differential properties of the 
solutions in the problems similar to (2.1)-(2.7) are discussed 
by Ladyzhenskaya and Solonnikov (1960); Sakhaev (1976). 

Let us write down the problem to estimate the solution 
~ ~ 

difference. The fields E and H are described by the equa-
tions: 

~ 

~ OEl ~ 
rot H - f.-t 28t = 471'0' E 

~ oH 
rotE =-­at 

ETlaa = O. 

rE G, t > 0 

(2.8) 
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The second condition (2.3), the first equation (2.1) and equa­
tion (2.6) also give 

divE = 0 . (2.9) 

---+ 
Sometimes, we shall need the problems in terms of E or 

Eland E 2 only. We shall write them down when necessary. 
For further use we shall give here the balance equations 

for different energies. It is easy to see that in the problem (2.1) 
with complete equations the energy balance in the system may 
be written in the form (the designations are given in ch. 3): 

(2.10) 

For the problem (;2.5) we have the relation 

1 ---+ 2 c---+ 2 1 ---+ 2 
8IT IIH 211a + IIvcr E 2110t = 871" IIH olIG· (2.11) 

The first term in the left hand side of (2.10) and (2.11) are 
the electromagnetic energy in the system, second term -. the 
power of energy release as the Joul heat, in the right hand side 
we have an initial energy. 

For the energy difference we derive 

8~ (IIHllI~ + Jl2I1EllI~ -IIH211~) 
t 

+ J J cr(E, El + E2)dVdt = ~:IIEolI~. (2.12) 
o G 

As was expected, good agreement between energies of the elec­
tromagnetic fields, corresponding to the complete and approx-

imate cases, is determined by the fact that Eland E 2 are 
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close to each other in the conducting part G1 , bounded in 

G1 and the value of Eo is also bounded. The boundedness 

. of IIy'UElllr~tl IIy'UE2Ik~t (I'V 0(1)) follows from (2.10) and 
(2.11). 

Estimates of the solutions will be obtained by the functio­
nal-analytical method of investigating the problem (2.1), (2.5) 
and (2.8). We shall use the technique employed by Galanin 
(1990a) for restoring the function by its rotor and divergen_ce 
as well as the imbedding type inequality connecting the norms, 
the rotor and divergence of the vector function, namely, 

(2.13) 

This inequality is valid for the vector function U with zero 
'tangential or normal components at the boundary, where the 
rotor and the divergence are quadratically sUlllmable. In 
(2.13) c is a positive constant depending on the domain and 
its boundary only. Everywhere below c will designate con­
stants, while the light velocity will be used only through /-l. 
As for (2.13), the reader is referred to Galanin (1990a) and its 
references. 

The calculations omitted here may be found in Galanin 
(1990b ). 

3. The case of the conducting medium. We con­
sider the case G = G1 , U ~ Uo > 0, and introduce the des­
ignation nt = G x [0, tl, ni,t = Gi x, [0, tJ, i = 1,2. All the 
norms encountered below have the sense of integral norms in 
L2(G), L2(nt) (as well as L2(Gi), L2(ni,t), i = 1,2). For sim­
p~icity we shall omit the symbol L2 and will use instead the 
sign of the set in which the norm is calculated. 

1. Let us consider the problem (2.8). We multiply equa-

tions (2.8) by E and If, respectively, and make summation. 
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After the integration with respect to Ot we obtain, with in­
volvement of initial and boundary conditions, the equation 

8~ IIHllb + IIy'aEII~t 
t ---+ 

+ 41rrP2 J J (f)! 1 ,E) did~! = O. (3.1) 

o G 

We transfer the third term in (3.1) to the right hand side, 
calculate the upper bound by the Canchy-Bunyakovsky in­
equality and the c-inequality. As a result we obtain 

(3.2) 

To obtain final estimates in terms of input data we must esti­
mate the right hand side of (3.2) 

---+ 
2. vVe write down the problem for E 1 by assuming that 

the initial data are consistent with (2.4). Then 

?---+ ---+ 
? f)- Elf) E 1 ---+..... f 

p- f) 2 +47r(j~ +rotrotEI = 0 l' E G, i > 0 
t ui 

-;::t ---+ {) Ell ---+ 
1!Illt=o = E o(t), ~ = 0, E l,rlaG = o. 

ui t=o 

(3.3) 

vVe multiply (3.3) by all and integra.te the .result. We obtain 
(with involvement of all input da.ta) 
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Proceeding from this and using the boundedness of below we 
obtain the estimate (see Galanin, 1990b): 

1I 18Ell12 1 ( (87r0"0)) -+ 2 yl(i8t Ot ::::;; 87r0"5 1- exp -jilt Ilrot EoIIG' 

Finally we have the inequality 

8~ 111111~ + ~1Iy'aEII~t 
~ 25::3 0"5 (1 - exp (- 8:~0 t)) Ilrot Eo II~. (3.5) 

Unlike (3.2) we have now in the right hand side a completely 
determined expression. The estimate (3.5) shows that as iJ 

-+ -+ 
tends to zero II H IIG ---+ 0 for all times as well as II E lint ---+ 0 
too. 

3. The inequality (3.5) testifies to the absence of bound-
-+ 

ary layer of H near t = O. It is possible that when the agree-
-+ 

ment conditions (2.4) are satisfied the boundary layer of E 
near t = 0 is absent too. Let us study this situation. 

We differentiate (2.8) with respect to t and make the 
same calculations as in p.1, but only for the time variables. 
As a result, we obtain an analog of (3.2): 

1 11 811 112 111 8E ~12 iJ4 II 1 82 E 1 112 
8IT 7ft G + 2 y'a at I n t ::::;; 327r2 VcY 8t2 n t ' (3.6) 

Then we differentiate (3.3) with respect to t. Instead of (3.4) 
we obtain the identity: 

-+ -+ 

iJ2 'I 82 E 1 112 + II y'a82 E 1 112 87r I 8t2 G 8t2 nt 

1 II 8E 1 112 1 -+ 2 + - rot -8 = --2 II rot rot Eo IIG' 
811" t G 811"iJ 

(3.7) 
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By analogy with p.l we have 

11
1 {PE1112 

V<i ot2 nt 

~ 8 \ (1 - exp (- 87r~0 t)) II rot rot 17 0 11&. (3.8) 
7r It 0"0 J-l 

The result related to (3.6)forms the inequality 

8~lIrotEII& + ~lIvaO: lI:t 
. ~ 25;:230"5 (1 - exp ( - 8:~0 t)) llrot rot Eo 11&. (3.9) 

---+ 
This estimate testified to the fact that IIrot E IIG uniformly 

(in t) tends to zero and II a! lint also tends to zero as J-l -+ O. 
4. From the inequalities (3.5) and (3.9) we obtain the 

following results. 
Proceeding from the above estimates we have 

t 

IlvaEII& = 2 J J (~~, E)O"dVdt 
o G 

---+ 

~ 211vaO: lint IlvaEllnt • 

In this manner, by combining (3.5) and (3.9) we obtain 

Ih,IO'EII~';; 64~:U~_(1-exp ( - 8:~Ot)) 
X IIrotEolIGlirotrotEoliG. (3.10) 
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This expression is a uniform (in t) estimate of the integral 
norm of the solution difference. It testifies to the absence of 
the boundary layer near t = O. 

Note tliat, for example in the case a = ao = const > 0 we 

can immediately obtain from (2.1)-(2.7) that div E = o. In 
~ 

this manner we may estimate II E lib also from the inequalities 

(3.9) and (2.13). However, we can obtain only IIEII~ ~ O(J.l2). 
The estimate (3.10) is stronger. 

We consider now the case when electric conduction de­
pends on r. Let us have the condition 

1 
-Igradal ~ 11 < +00 
a 

(3.11) 

which is satisfied in this case. Then it is not difficult to ob­
~ 

tain an estimate for IIdiv E II~. As a result of the calculations 
~ 

given in (Galanin, 1990b) we obtain that Iidiv E II~ ~ 0 when 
J.l ~. 0, like O(J.l2) tends to zero, i.e., in the same manner like 

Ilrot Ellb in (3.9). Finally, according to (Plotnitsky, 1976) we 
3 

have that Ilgrad EII~ = L: IIgrad Edlb = O(J.l2). Hence, all 
i=l 

the derivatives of the solution also tend to zero when J.l ~ o. 
~ 

5. We consider the estimates IIEIilOt and Ila~) IIOt fol-

lowing from (2.10) and (3.4). They testify to the t-uniform 
boundedness of norms in nt, including the case when t ~ +00. 
Hence, for t ~ +00 we have liE lila ~ O. The proof is similar 
to that given by Ladyzhenskaya and Solonnikov (1960 p.172). 

In the same manner it follows from the estimates (3.5) 
~ 

and (3.9) that II Ella tends to zero as t ~ +00. And hence 

IIE211a ~ 0 too. . 
6. Let the agreement conditions for initial data (2.4) are 

not fulfilled. \Vhat is changed in this case? 
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Obviously, the identity (3.1) and the inequality (3.2) re-
---+ ---+ 

main valid. The summand s";/-L21147r17 E 0 - rot H 0 II?; will be 
added to the right hand side of (3.4). As a result, instead 
of the estimate 0(f14) in (3.5) we obtain only 0(f12) at dis­
agreement of initial data in the analog (3.5). Nevertheless, in 

. ---+ 
this case we also obtain the t-uniform estimates of II H IIG and 

---+ II fo EliOt' If we repeat our calculations further on, we shall 
obtain an inequality of the form (3.6) with the additional term 

sIrr II rot (Eo - 4;0' rot H 0) II: in the right hand side. Then in­

stead of (2.7) we have'the identity with the right hand side . 
1 ---+ 4 7r 17 ---+ ---+ . 2 

-S 211 rot rot Eo + -2 (rot H 0 - 47rO'E 0 )IIG 
7r f1 f1 

+ -S 1 411rot (rot H 0 - 47r17 E o)II~. 
7rf1 

Hence, instead of the estimate (3.S) we obtain only the esti­
mate 0(f1-6). In the right hand side of the analog (3.9) we 
shall have 0(f1-2). The estimate (3.10) cannot be obtained. 
In the right hand side of the inequality we shall have only 
0(1). 

7. Proceeding from (2.10) and (2.11), the boundedness of 

IlfoEIilnt and IlfoE211nt following from (2.10) and (2.11), 
---+ . 

the boundedness of II Eolia, the estimate (3.5) we obtain that 
the energies of electromagnetic field described by complete 
and approximate equations will differ by 0(p2) in the ca.se 
of agreement in initial data and by O(fJ.) in the case of their 
disagreemen t. 

4. The case of a nonconducting medium. It is 
obvious that at G = G2 , i.e., for the dielectric type medium, 
the quasi-stationary approximation (2.5 )-(2. 7) has nothing to 
do with solution of the complete equations. Let us illustrate 
this situation by means of estimates. 
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The solution of the problem (2.5)-(2.7) may easily by 
obtained. From the first equation of (2.6) it follows that 

rot H 2 = 0, from the second equation rot rot E 2 = O. The 
latter in combination with (2.6) and (2.7) gives 

For the solution difference, instead of (2.8) we have 

--+ 2aE . --+ aH 
rot H - I/. - = 0 rot E = - _. rEG, t > 0 

r at' at' 

div E = 0 

Hlt=o = 0, Elt=o = Eo, E TlaG = 0 

From this conditions we obtain the identity 

1 1-:;:1 2 12 --+ 2 12 --+ 12 2111 IIG + 2J.l liE IIG = 2ft II Eo IG' 

(4.1 ) 

(4.2) 

(4.3) 

After differentiation of (4.2) with respect to t we shall get an 
analog of (4.3) for the derivatives, i.e. 

( 4.4) 

We shall further use the imbedding inequality (2.13) valid for 
the vector field with zero tangential components (in this case 

E or a zero normal component (in this case, H; see about 
--+ 

the normal component H (Duvault and Lions, 1980 p.330) on 
the surface. Thus, we have 

IIHII~ ~ c(lIrot HII~ + IIdiv HI~) 
--+ 

= cllrot HII~ = CJ.l4 11 aa~ II: 
11
8H I1 2 --+ -;:::t --+ 1 -;:::t 2 at G = IIrot E II~ = IIrot l!J II~ + IIdiv E II~ ~ ;1Il!J IIG' 
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Hence, from (4.3) and (4.4) we obtain the estimation from 
above and below. 

The inequality (4.5) testifies to the fact that the strength 

E is not stabilized and does not tend to zero when IJ ~ o. It 

means that sometimes the II"EIIG vanishes or is very small, but 
the solution can be taken out of this state because its change 
rate differs from zero. in other words, the solution behaves as 
an oscillatory function without damping. 

Nevertheless, as it follows from (4.3) when IJ ~ 0 we have 

IIHIIG ~ 0 in contrast to E. We have also convergence ofthe 
field energies as it follows from (2.12). 

The estimate obtained completely corresponds to a phys­
ical picture of the phenomenon described by (2.1)-(2.4) at 
G = G2 . In this case there is excitation of electromagnetic 
waves in the domain G. Due to absence of damping, the wave 
energy is maintained, its distribution occurring between the 
electric and magnetic fields. It is obvious that such a field has 
nothing to do with the solution (4.1). 

4. Medium with sharply nonhomogeneous elec­
trophysical properties. Let us consider a general case of 
the medium consisting of two subdomain (the conductor G1 

and the dielectric G2 ) with distinctly different electrophysical 
properties. The problem of comparison if the solutions has 
been formulated in ch. 2. We should only add the condition 
o < t < to < +00, i.e., consider the problems given in ch. 2 
over a limited time interval. 

We shall assume that everywhere in G1 the condition 
(3.11) is fuJfilled and 0 < ao < a < a; < +00. The condition 
(2.4) for the initial data agreement is also satisfied. 
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1. It is obvious that in the case under consideration the 
identity (3.1) remains valid. We divide the integral term into 
two part: in G1 and G2 • The integral over G1 is estimated in 
the same manner like in ch. 3, while the integral over G2 is 

~ ~ ~ , 
transformed by using the relation E 1 = l!J + E 2. As a result, 
we have 

(5.1) 

~* ~ 
Here and below E 0 = E 21 t=O' As it follows from (2.4)-( 2.7), 
~* ~ 
Eo = Eo in G1 , while in G2 it is the solution of the problem 

* 
rotrotEo = 0 in G2 

~* 
div Eo = 0 (5.2) 

* By estimating the difference Eo - Eo through the inequality 
(2.13) we obtain (c is the constant from (2.13»: 

IIEo - E:II~2 :::;;; cllrotEollb2· (5.3) 

It is obvious that the identity (3.4) is valid in this situa­
tion too. From it we get the inequality 
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~ ~ (1 -exp (- 87r~o t)) lirot E oll~. 
87ruo p 

(5.4) 

It differs from the similar one is ch. 3 only by its domain 
where the norm is calculated in the left hand side. In the 
analogous manner the inequality (3.8) is transformed. 

Let us make the inequality (5.1) stronger by omitting its 
two first terms in the .left hand side and integrate the result 
in t from 0 to t. We obtain 

In the last summand we make one integration in time by 
changing the integration order. Then the integral term in the 
right hand side of (5.5) is estimated by the Cauchy-Bunyakov-

--+ 
sky inequality and the c-inequality. We isolate II E II~ and 

2,t 

. bound this value from above. The obtained i:t;lequality may 
be minimized in c, however, we shall restrict ourselves by a 
cruder, not so bulky, estimate. It has the form 

as a result, from (5.1) we have 

1 --+ 2 1 r=-'t 2 p2 --+ 2 
87rIIHlla + 21lvuEllnl,t + 87rIIEIIG2 ~ 
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~ 25~43(T~ (l-exp (- 8:~Ot) )llrotEoll~+ 

+ ~>llrotEollb, + ~:II')!211",}EII"". (5.7) 

Here, in last term the quantity 11!J110 2.t is estimated by means 
of (5.6). 

Thus, we managed to obtain the inequality where each 
term is the known function of J.t. The inequality (5.7) contains 

the norm a 1! 2. However, in the problem (2.4 )-( 2.7) for E 2 

and H 2 the value J.t takes no part. Hence, under the bound­
edness of all norms and for the limited time interval (as 5Vas 
assumed earlier) the right hand side of (5.7) is O(J.t2). It means 

that for J.t ---+ 0 we have IIHlla ---+ 0 and IIEllol.t ---+ 0, i.e., 
~ 

the strength H uniformly in time tends to zero throughout 

the entire domain G, while E tends to zero only in its inte­
gral norm depending on the considered time t and only in the 
domain G1 . 

2. From the formal point of view, the inequality (5.7) 
solves the posed problem. However, in the right hand side of 

it we have the quantity II a 1! 211 0 2 t' which is not expressed 

in terms of input data. This norm 'was estimated in Galanin 
(1990b) by using the inequality and the imbedding theorem 
(Sobolev, 1988; Plotnitsky, 1976; Galanin, 1990a). Here we 
shall restrict ourselves by giving the results. It is shown in 
Galanin (1990b) that there is constant c, depending only on 
geometries of the domains G, G1 and G2 on the parameters 
(To, (T~ and v, such that the inequality 
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is satisfied. If necessary the constant c can fully be determined 
through the parameters 0'0,0'0 and v and the constants in the 
imbedding type inequalities. Along with (5.6) and (5.7) the 
estimate (5.8) gives the solution ofthe posed problem, i.e., we 
obtain the estimate of the solution (2.8) and (2.9) in terms of 
input data. 

3. In the case of a conducting media (ch. 3) the ini­
tial data agreement condition (2.4) enabled us to obtain the 

t-unifonn estimate of E p:roximity. Consider a nonhomoge­
neous medium. 

By analogy with ch. 3 we obtain the identity of the form 
(3.1) for the time derivatives: 

(5.9) 

We shall transfonn this identity in the same manner like(5.1) 
and use the estimate (3.8) corresponding to (5.4). Now we 
estimate the integral term (5.9) as above. After some obvious 
calculations we obtain 

and after substituting this relation into (5.9) and estimating 
all the terms we derive the inequality of the form (5.7) with 
0(1) as the right hand side for the case (5.9). 

By combining this result with (5.7) according to the algo-

rithm of deriving the estimate (3.10) we get IIEII&l = O(p,). 
. ---+ 

Thus we proved that when f..l --+ 0 the strength E --+ 0 in the 

sense of IIEIIG1 • 
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All the missing calculations may be easily performed by 
the algorithm used above. It is clear that to obtain the esti-

2 ---+ 2 
mate for II a a~ 211 we shall need smoother initial data. 

n2,t 

4. The estimate (5.7) shows that in mixed media the 
electromagnetic field energy difference for the complete and 
approximate equations behaves at least like O(p) when J-l ~ O. 

6. Conclusions. The paper deals with' proving the ap­
plicability of the Maxwell equations in the quasi-stationary ap­
proximation to media containing nonconducting subdomains. 
The main result consist in proving that the magnetic field 
strength in the entire domain and the electric field strength in 
the conducting subdomain, described by approximate equa­
tions, converge to the respective strength described by com­
plete equations if the J-l-ratio of the characteristic rate of the 
process to the light velocity-tends to zero. By the convergence 
we mean that the integral norm of the solutions difference, 
calculated in spatial variables, tends to zero for. all considered 
time instants if the conditions of agreement for initial data are 
fulfilled. This result was obtained for the medium containing 
subdomains with sharply nonhomogeneous electric conduction 
in the problem on a limited time interval. The problem for 
a conducting medium was studied without this requirement. 
Different variants of agreed and disagreed initial data were an­
alyzed. The estimates of solution differences were obtained in 
terms of input data, which testified to the presence or absence 
of boundary layers. The solution estimates are given in the 
case of homogeneo"us nonconducting medium, which testified 
that. the solutions were not close to each other. Comparison 
of the solutions obtained for the complete and approximate 
Maxwell equations was made in the initial-boundary value 
problem with zero tangential components of the electric field 
strength at the boundary of the domain. 
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Note that from the formal point of view the convergence 
of the solutio.ns to each other as fJ, --+ a occurs independently of 
the electric conduction in the conducting subdomain. It is ~m­
port ant only that 0"0 (the lower bound of electric conductivity 
in the conductor) must be nonzero. When discussing the ques­
tion about the solutions convergence under variation of one 
parameter we assumed that there are problems like (2.1) and 
(2.2), which differ between themselves in only one parameter. 
The rest parameters must be fixed. However, even comparing 
the conditions (1.3) and (1.6) evidences that normalization of 
the dimensional electric conductivity is performed by using 
the parameter fJ,. Only considering different fJ, may give fixed 

0". The parameter fJ, participates in normalization of E. But 
if we study singular perturbed problems like (2.1) we always 
assume that the involved data values are about unity. 

Here, in ch. 5 we restricted ourselves by determining how 
the solutions difference depended on one parameter fJ,. We 
obtained in ch. 3 the estimates for the solutions difference, 
which explicitly contained the problem parameters. Hence, 
those estimates allow us to judge how close are the solutions 
depending on any parameter involved in the problem. Note, 
for example, that the condition (1.6) for applicability of the 
quasi-stationary approximation is very natural. The parame­
ters fJ, and 0"0 enter into the right hand side of the condition 
(3.5) only in the combination (1.6). Hence, to provide the 
closeness of magnetic field strength at all times it is necessary 
to fulfill the condition (1.6). However, for the closeness of 
electric field strength in the norm (3.5) depending on time (or 
more so uniform in time (3.10)) it is necessary that the ratio 
fJ,4 /O"g and fJ,3 /O"g must be respectively small. 

Finally, it should be noted that a different point of view 
is also possible as to the relationship between (2.1) and (2.5). 
Suppose that for some reason it is not convenient to solve 
the second problem although we are interested exactly in its 
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solution. Then, as the obtained estimates show, solving the 
problem (2.1) we approach to the solution of (2.5). In this 
case the parameter Il plays a formal role and acts as artificial 
viscosity in hydrodynamics or a small parameter in the quasi':' 
inversion method or like something else. 
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