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Abstract. The objective of this research is to construct parallel models that simulate the behavior
of artificial neural networks. The type of network that is simulated in this project is the counter-
propagation network and the parallel platform used to simulate that network is the message passing
interface (MPI). In the next sections the counterpropagation algorithm is presented in its serial as
well as its parallel version. For the latter case, simulation results are given for the session paral-
lelization as well as the training set parallelization approach. Regarding possible parallelization of
the network structure, there are two different approaches that are presented; one that is based to the
concept of the intercommunicator and one that uses remote access operations for the update of the
weight tables and the estimation of the mean error for each training stage.
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1. Introduction

As it is well known, one of the major drawbacks of the artificial neural networks is the
time consumption and the high cost associated with their learning phase (Haykin, 1994).
These disadvantages, combined with the natural parallelism that characterizes the opera-
tion of these structures, force the researchers to use the hardware parallelism technology
to implement connectionist models that work in a parallel way (Boniface et al., 1999).
In these models, the neural processing elements are distributed among independent pro-
cessors and therefore, the inherent structure of the neural network is distributed over the
workstation cluster architecture. Regarding the synapses between the neurons, they are
realized by suitable connections between the processes of the parallel system (Fuerle &
Schikuta, 1997).

A parallel neural network can be constructed using a variety of different meth-
ods (Standish, 1999; Schikuta, 1997; Serbedzija, 1996; Schikuta et al., 2000; Misra,
1992; Misra, 1997), such as the parallel virtual machines (PVM) (Quoy, 2000), the mes-
sage passing interface (MPI) (Snir et al., 1998; Cropp et al., 1998; Pacheco, 1997), the
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shared memory model and the implicit parallelization with parallel compiler directives
(Boniface, 1999). Concerning the network types that have been paralellized by one of
these methods, they cover a very broad range from the supervised back propagation net-
work (Torresen et al., 1994; Torresen and Tomita, 1998; Kumar, 1994) to the unsuper-
vised self-organizing maps (Weigang et al., 1999; Tomsich et al., 2000). In this research
the counterpropagation network is parallelized by means of the message passing interface
library (Pacheco, 1997).

2. The Serial Counterpropagation Algorithm

Counterpropagation neural networks (Freeman, 1991) were developed by Robert Hecht–
Nielsen as a means to combine an unsupervised Kohonen layer with a teachable output
layer known as Grossberg layer. The operation of this network type is very similar to that
of the Learning Vector Quantization (LVQ) network in that the middle (Kohonen) layer
acts as an adaptive look-up table.

The structure of this network type is characterized by the existence of three layers:
an input layer that reads input patterns from the training set and forwards them to the
network, a hidden layer that works in a competitive fashion and associates each input
pattern with one of the hidden units, and the output layer which is trained via a teaching
algorithm that tries to minimize the mean square error (MSE) between the actual network
output and the desired output associated with the current input vector. In some cases a
fourth layer is used to normalize the input vectors but this normalization can be easily
performed by the application (i.e., the specific program implementation), before these
vectors are sent to the Kohonen layer.

Regarding the training process of the counterpropagation network, it can be described
as a two-stage procedure: in the first stage the process updates the weights of the synapses
between the input and the Kohonen layer, while in the second stage the weights of the
synapses between the Kohonen and the Grossberg layer are updated. In a more detailed
description, the training process of the counterpropagation network includes the follow-
ing steps:

(A) Training of the weights from the input to the hidden nodes: the training of the
weights from the input to the hidden layer is performed as follows:

Step 0. The synaptic weights of the network between the input and the Kohonen layer
are set to small random values in the interval [0, 1].

Step 1. A vector pair (x, y) of the training set, is selected in random.
Step 2. The input vector x of the selected training pattern is normalized.
Step 3. The normalized input vector is sent to the network.
Step 4. In the hidden competitive layer the distance between the weight vector and

the current input vector is calculated for each hidden neuron j according to the equation

Dj =
√∑K

i=1(xj − wij)2 where K is the number of the hidden neurons and wij is the
weight of the synapse that joins the ith neuron of the input layer with the jth neuron of
the Kohonen layer.
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Step 5. The winner neuron W of the Kohonen layer is identified as the neuron with
the minimum distance value Dj .

Step 6. The synaptic weights between the winner neuron W and all M neurons of the
input layer are adjusted according to the equation Wwi(t + 1) = Wwi(t) + α(t)(xi −
Wwi(t)). In the above equation the α coefficient is known as the Kohonen learning rate.
The training process starts with an initial learning rate value α0 that is gradually decreased
during training according to the equation α(t) = α0[1− (t/T )] where T is the maximum
iteration number of the stage A of the algorithm. A typical initial value for the Kohonen
learning rate is a value of 0.7.

Step 7. The steps 1 to 6 are repeated until all training patterns have been processed
once. For each training pattern p the distance Dp of the winning neuron is stored for
further processing. The storage of this distance is performed before the weight update
operation.

Step 8. At the end of each epoch the training set mean error is calculated according to
the equation Ei = 1

P

∑P
k=1 Dk where P is the number of pairs in the training set, Dk is

the distance of the winning neuron for the pattern k and i is the current training epoch.
The network converges when the error measure falls below a user supplied toler-

ance. The network also stops training where the specified number of iterations has been
reached, but the error value has not converged to a specific value.

(B) Training of the weights from the hidden to the output nodes: the training of the
weights from the hidden to the output layer is performed as follows:

Step 0. The synaptic weights of the network between the Kohonen and the Grossberg
layer are set to small random values in the interval [0, 1].

Step 1. A vector pair (x, y) of the training set, is selected in random.
Step 2. The input vector x of the selected training pattern is normalized.
Step 3. The normalized input vector is sent to the network.
Step 4. In the hidden competitive layer the distance between the weight vector and

the current input vector is calculated for each hidden neuron j according to the equation

Dj =
√∑K

i=1(xj − wij)2 where K is the number of the hidden neurons and wij is the
weight of the synapse that joins the ith neuron of the input layer with the jth neuron of
the Kohonen layer.

Step 5. The winner neuron W of the Kohonen layer is identified as the neuron with
the minimum distance value Dj . The output of this node is set to unity while the outputs
of the other hidden nodes are assigned to zero values.

Step 6. The connection weights between the winning neuron of the hidden layer and
all N neurons of the output layer are adjusted according to the equation Wjw(t + 1) =
Wjw(t)+β(yj −Wjw(t)). In the above equation the β coefficient is known as the Gross-
berg learning rate.

Step 7. The above procedure is performed for each pattern of the training set currently
used. In this case the error measure is computed as the mean Euclidean distance between
the winner node’s output weights and the desired output, that is E = 1

P

∑N
j=1 Dj =

1
P

∑P
j=1

√∑N
k=1(yk − wkj)2.
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As in stage A, the network converges when the error measure falls below a user sup-
plied tolerance value. The network also stops training after exhausting the prescribed
number of iterations.

3. Parallel Approaches for the Counterpropagation Network

The parallelization of the counterpropagation network can be performed in many differ-
ent ways. In this project three different parallelization modes are examined, namely the
session parallelization, the training set parallelization and the network parallelization. In
session parallelization, there are many instances of the neural network object running
concurrently on different processors with different values for the training parameters. In
training set parallelization the training set is divided into many fragments and a set of
neural networks run in parallel and in different machines each one with its own training
set fragment. After the termination of the learning phase, the synaptic weights are sent to
a central process that merges them and estimates their final values. Finally, in the network
parallelization, the structure of the neural network is distributed to the system processes
with the information flow to be implemented by using message passing operations. In a
more detailed description, these parallelization schemes, work as follows.

3.1. Session and Training Set Parallelization

The implementation of the session and the training set parallelization is based on the
Neural Workbench simulator (Margaris et al., 2003) that allows the construction and
training of arbitrary neural network structures. In this application, a neural network is
implemented as a single linked list of layers each one of them contains a single linked list
of the neurons assigned to it. Regarding the fundamental neural processing elements they
contain two additional linked lists of the synapses to which they participate as source or
target neurons. This multilayered linked list architecture is used for the implementation
of the training set too, as a linked list of training vector pairs each one of them contains
two linked lists of the input values and the associated desired output values. Each neural
network can be associated with a linked list of such training sets for training, while, each
object has its own training parameters such as the learning rate, the momentum, and the
slope of the sigmoidal function used for the calculation of the neuron output.

The kernel of the Neural Workbench – which is a Windows application – was ported
to Linux operating system and enhanced with message passing capabilities by using the
appropriate functions of the MPI library. Based on these capabilities, the session and the
training set parallelization, work as follows.

3.1.1. Session Parallelization
In session parallelization the parallel application is composed of N processes each one
of them run in parallel a whole neural network with different training parameters. The
synaptic weights are initialized by all processes in random values, while, the parameters
of the training phase (such as the Kohonen learning rate α, the Grossberg learning rate β
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and the tolerance τ ) are initialized by one of the processes (for example, by the process
with rank R = 0) and broadcasted to the system processes by using the MPI_Bcast
function. This is an improvement over the serial approach where there is only one process
running a loop of N training procedures with different conditions in each loop iteration.
The session parallelization approach is shown in Fig. 1.

3.1.2. Training Set Parallelization
In training set parallelization the training set patterns are distributed over the system pro-
cesses, each one of them runs a whole neural network with its own training set fragment.
In this project the parallel application is composed by two processes and the concurrent
training of the associated neural network is performed by using the even patterns in the
first process and the odd patterns in the second process. After the termination of the train-
ing operation of the two networks, the one process sends its updated weights to the other
one, that receives them, and updates its own weights by assign to them the mean value
between their updated values and the values of the incoming weights. This approach is
shown graphically in Fig. 2.

Since the structure of a neural network created by the Neural Workbench application
is very complicated and the values of the synaptic weights are stored in non-contiguous
memory locations, auxiliary utilities have been implemented for packing the weights in
the sender and unpacking them, in the receiver. In other words, the source process packs
its synaptic weights before sending, while, the target process unpacks the weights sent
by the first process after receiving them, and then proceeds to the merge operation in the
way described above. These packing and unpacking utilities have been implemented by
using the MPI_Pack and the MPI_Unpack functions of the MPI library.

3.2. Network Parallelization

A typical parallelization scheme for the counterpropagation network is to use a sepa-
rate process for modelling the behavior of each neuron of the neural network (Boniface,

Fig. 1. Session parallelization in counterpropagation networks.
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Fig. 2. Training set parallelization in counterpropagation networks.

1999). This fact leads to a number of processes P equal to M + K + N where M is
the number of the input neurons, K is the number of the Kohonen neurons and N is the
number of the Grossberg neurons, respectively.

Since the number of the parameters M , K and N is generally known in advance,
we can assign to each process a specific color. The processes with ranks in the interval
[0, M − 1] are associated with an "input" color; the processes with ranks in the interval
[M, M + K − 1] are associated with a "Kohonen" color, while the processes with ranks
in the interval [M +K, M +K +N −1] are associated with a "Grossberg" color. Having
assigned to each process one of these three color values, we can divide the process group
of the default communicator MPI_COMM_WORLD into three disjoint process groups,
by calling the function MPI_Comm_split with arguments (MPI_COMM_WORLD, color,
rank, &intraComm). The result of this function is the creation of three process groups –
the input group, the Kohonen group and the Grossberg group; each one of them simulates
the corresponding layer of the counterpropagation network. The size of each group is
identical to the number of neurons of the corresponding layer, while the communication
between the processes of each group is performed via the intracommunicator intraComm,
created by the MPI_Comm_split function.

After the creation of the three process groups, we have to setup a mechanism for the
communication between them. In the message passing environment, this communication
is performed via a special communicator type known as intercommunicator that allows
the communication of process groups. In our case, we have to setup one intercommuni-
cator for the message passing between the processes of the input group and the Kohonen
group, and a second intercommunicator for the communication between the processes
of the Kohonen group and the Grossberg group. The creation of these intercommunuca-
tors, identified by the names interComm1 and interComm2 respectively, is based on the
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MPI_Intercomm_create function and the result of the function invocation is shown in
Fig. 3.

At this point the system setup has been completed and the the training of the neural
network can be easily performed. In the first step the training set data are passed to the
processes of the input and the output group according to Fig. 4. Since the number of
input processes is equal to the size of the input vector, each process reads a "column"
of the training set that contains the values of the training patterns with a position inside
the input vectors equal to the rank of each input process. The distribution of the output
vector values to the processes of the output group is performed in a similar way. The
distribution of the pattern data to the system processes is based to the MPI I/O functions
(such as MPI_File_read) and to the establishment of a different file type and file view for
each input and output process.

Fig. 3. The message passing between the three process groups is performed via the intercommunicators inter-
Comm1 and interComm2.

Fig. 4. The distribution of the training set data to the input and the output processes for a training set of 12
training patterns with 8 inputs and 4 outputs.
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The parallel counterpropagation algorithm is a straightforward extension of its serial
counterpart and it is composed of the following steps: (in the following description, the
notation Pn is used to denote the process with a rank value equal to n).

(A) STAGE A: Performs the training of the weights from the input to the Kohonen
processes.

Step 0. A two dimensional K ×M matrix that contains the synaptic weights between
the input and the Kohonen process group is initialized by process P0 to small random
values in the interval [0, 1] and is broadcasted by the same process to the processes of
the default communicator MPI_COMM_WORLD. A similar initialization is done for a
second matrix with dimensions M ×N that contains the synaptic weight values between
the Kohonen and the Grossberg process groups.

Step 1. Process P0 of the input group picks up a random pattern position that belongs
in the interval [0, P − 1] where P is the number of the training vector pairs. Then, this
value is broadcasted to all processes that belong to the input group. This broadcasting
operation is performed by a function invocation of the form MPI_Bcast(&nextPattern, 1,
MPI_DOUBLE, 0, intraComm). At this stage we may also perform a normalization of
the data set.

Step 2. Each function calls MPI_Bcast to read the next pattern position and then re-
trieves from its local memory the input value associated with the next pattern. Since the
distribution of the training set data is based in a "column" fashion (see Fig. 4), this input
value is equal to the inputColumn[nextPattern] where the inputColumn vector contains
the (rank)th input value of each training pattern. The Steps 1 and 2 of the parallel counter
propagation algorithm are shown in the Fig. 5.

Step 3. After the retrieval of the appropriate input value of the current training pat-
tern, each process of the input group sends its value to all processes of the Kohonen group.
This operation simulates the full connection architecture of the actual neural network and
it is performed via the MPI_Alltoall function that is invocated with arguments (&input,

Fig. 5. The retrieval of the training pattern input values from the processes of the input group.
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Fig. 6. The identification of the winning process from the processes of the Kohonen group.

1, MPI_DOUBLE, inputValues, 1, MPI_DOUBLE, interComm1). Since this operation
requires the communication of processes that belong to different groups, the message
passing function is performed via the intercommunicator interComm1, which is used as
the last argument in the function MPI_Alltoall. An alternative (and apparently slower)
way is to force input process P0 to gather these values and to send them via the inter-
communicator interComm1 to the group leader of the Kohonen group, which, in turn,
will pass them to the Kohonen group processes. However, this alternative approach is
necessary, if the training vectors are not normalized. In this case, the normalization of the
input and the output vectors has to be performed by the group leaders of the input and the
Grossberg groups before their broadcasting to the appropriate processes.

Step 4. The next step of the algorithm is performed by the units of the Kohonen
layer. Each unit calculates the Euclidean distance between the received vector of the
input values and the appropriate row of the weight table that simulates the corresponding
weight vector. After the estimation of this distance, one of the Kohonen group processes
is marked as the root process to identify the minimum input weight distance, and the
process that corresponds to it. This operation simulates the winning neuron identification
procedure of the counterpropagation algorithm. This identification is performed by the
MPI_Reduce collective operation, which is called with the value MPI_MINLOC as the
opcode argument. The minimum distance for each training pattern is stored in a buffer,
later to participate to the calculation of the mean winner distance of the current training
epoch.

Step 5. The winning process updates the weights of its weight table row, according
to the equation Wwi(t + 1) = Wwi(t) + α(t)(xi − Wwi(t)), which is used as in the
case of the previous network implementation. In this step, the Kohonen learning rate α is
known to all processes, but it is used only by the winning process of the Kohonen group
to perform the weight update operation described above. This learning rate is gradually
decreased at each iteration, as in the serial algorithm. Since each process uses its own
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local copy of the weight table, the table with the new updated values is broadcasted to all
the processes of the Kohonen group.

The previously described steps are performed iteratively for each training pattern and
training cycle. The algorithm will terminate when the mean winner distance falls below
the predefined tolerance or when the number of iterations reaches the maximum iteration
number.

(B) STAGE B: Performs the training of the weights from the Kohonen to the Gross-
berg nodes.

Step 0. Process P0 of the input group picks a random pattern position and broadcasts
it to the processes of the input group.

Step 1. Each process of the input group calls the MPI_Bcast function to read the next
pattern position. Then it retrieves this position from the inputColumn local vector and
by using the MPI_Alltoall function sends it to the set of processes that belong to the
Kohonen group.

Step 2. Each process of the Kohonen group calculates the distance between the current
input vector and the associated weight vector – this vector is the Rth row of the input –
Kohonen weight matrix where R is the rank of the Kohonen process in the Kohonen
group. Then one of the Kohonen processes is marked as the root process to identify the
minimum distance and the process associated with it. The identification of this distance is
based to the MPI_Reduce collective operation. The process with the minimum distance
value is marked as the winner process. The output of this winner process is set to unity,
while the outputs of the remaining processes is set to zero.

Step 3. Each Kohonen process sends its output to the set of processes of the Gross-
berg group via the MPI_Alltoall intercommunicator function. Then, each output process
calculates its own output according to the equation Oj =

∑K
i=1 XjWij . In this equation

we use the notation Xj to denote the inputs of the Grossberg processes – these inputs
are coming from the Kohonen processes and therefore their values are 1 for the winning
process and 0 for the remaining processes, while Wij are the weights associated with
the jth output process. These weights belong to the jth row of the Kohonen–Grossberg
weight matrix. After the calculation of the output of each Grossberg process we estimate
the Euclidean distance between the real output vector (O0, O1, O2, . . . , ON−1) and the
desired output vector (Y0, Y1, Y2, . . . , YN−1). The stage B is completed when the mean
error value for each training epoch falls below a user – supplied tolerance or when the
number of iterations reaches the predefined maximum iteration number. Regarding the
weigh update operation, this is applied only to the weights of the winning process of the
Kohonen layer in the Kohonen–Grossberg weight matrix. The weight update operation is
based to the equation Wjw(t + 1) = Wjw(t) + β(yj − Wjw(t)) which was used also
in the case of the serial algorithm. The β constant in the above equation is known as the
Grossberg learning rate – a typical value of this parameter is 0.1.

3.3. The Recall Phase of the Parallel Simulator

In the recall phase each input pattern is presented to the network. In the hidden layer the
winning neuron is identified, its output is set to unity (while the outputs of the remain-
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ing neurons are set to zero), and, finally, the network output is calculated according to
the algorithm described above. Then the real network output is estimated and the error
between it and the desired output is identified. This procedure is applied to training pat-
terns that belong to the training set and are presented to the network for testing purposes,
while for unknown patterns, they are sent to the network, to calculate the corresponding
output vector. This procedure can be easily modified to work with the parallel network,
by adopting the methods described above for the process communication. It is supposed
that the unknown patterns will be read from a pattern file with a similar organization as
the training set file – in this case each input process can read its own (rank)th value, in
order to forward it to the processes of the Kohonen group.

3.4. Delay Analysis of the Parallel Counterpropagation Algorithm

In order to describe the communication delay of the proposed parallel algorithm, let us
denote with S the message startup time, with T the transmission time per byte, and with
L the message size in bytes. In this case, with no loss of generality we assume that the
number of input and output processes M and N divide the number of hidden processes,
K. If this does not hold, our analysis can be performed by adding a number of imaginary
nodes. Whenever a node is imaginary, we simply ignore the corresponding communica-
tions.

As described in previous sections, the first stage of the parallel counterpropagation
algorithm requires interprocessor communication between the nodes of the input layer to
store the values to the memory of the leader of the input group, that will pass these values
to the group leader of the Kohonen group. In its turn, the leader process of the Kohonen
group will broadcast these values to the appropriate process. The same communication
pattern also incurs when performing the training of the weights from the Kohonen to the
Grossberg nodes. We symbolize the two phases by R(M, K) and R(K, N). In the follow-
ing, we will perform the cost analysis for the communications performed for R(M, K);
the cost of R(K, N) is computed similarly.

The communication grid for R(M, K) can be represented by a two-dimensional table
Tdp that stores the indices of the processors where the messages will move to. Row and
column indexing of Tdp begins from zero. For example, consider R(6, 3). Table 1 shows
that there are five messages for each Kohonen layer node (the first row of the table in-
dicates that there are five messages for node K0 of the Kohonen layer, the second row
indicates that there are five messages for node K1 etc). Note that Tdp is divided into a
number of sub-matrices of size K × K, in our example 3 × 3.

To gather messages for the Kohonen nodes to the leader process (we assume that it is
executed by processor M0 of the input layer), we perform the following steps.

Step 1. For each sub-matrix, we circularly shift each column by λ times, where λ is
the indexing value of each column, that is, λ = 0 for column 0, λ = 1 for the first column
etc. This step describes internal reading operations in the memory of each node. Table 2
shows the result of internal memory reading operations for R(3, 6).

Step 2. For each sub-matrix, we circularly shift each row leftwards by μ, where μ

is the indexing value of each row. This step represents interprocessor communication
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Table 1

Tdp with its triangular sub-matrices for R(6, 3)

M0 M1 M2 M3 M4 M5

K0 K0 K0 K0 K0 K0

K1 K1 K1 K1 K1 K1

K2 K2 K2 K2 K2 K2

Table 2

Tdp after Step 1 for R(6, 3)

M0 M1 M2 M3 M4 M5

K0 K2 K1 K0 K2 K1

K1 K0 K2 K1 K0 K2

K2 K1 K0 K2 K1 K0

Table 3

Tdp after Step 2 for R(6, 3)

M0 M1 M2 M3 M4 M5

K0 K2 K1 K0 K2 K1

K0 K2 K1 K0 K2 K1

K0 K2 K1 K0 K2 K1

between members of a layer. The result of these communications is that every node of the
input layer stores in its memory data destined for exclusively one node of the Kohonen
layer. As seen in Table 3, nodes M1, M4 will transfer to M0 all necessary data to update
node K2 of the Kohonen layer, while nodes M2, M5 will transfer to M0 all necessary
data to update node K1. Finally, M3 will transfer to M0 the data required for updating
K0. These transfer will incur in Step 3.

Step 3. After Step 2, there are groups of (M/K) columns containing the same index
value. We simply perform communication from all nodes to M0. This will transfer all
the necessary data from the input layer nodes to the leader process being executed by
processor M0.

Theorem 1 analyzes the complexity of these steps.

Theorem 1. The number of communications required to perform the two stages of the
parallel counterpropagation algorithm is at most (M + 2K + N − 4).
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Proof. Consider the message broadcasts for R(M, K) and assume that K divides M .
In Step 2 (we consider the cost of reading operations of Step 1 to be minimal) there are at
most K − 1 circular shifts in each sub-matrix that execute in parallel. In Step 2, there are
M −1 transmissions to P0. Thus R(M, K) needs at most K −1+M −1 = K +M −2
communication steps (if K does not divide M then the steps are reduced due to the
existence of imaginary nodes. Similarly, K, N requires at most N+K−2 communication
steps. Thus the maximum number of communication steps is M + 2K + N − 4.

For the serial version of the algorithm, KM and KN communication steps are needed
to perform R(M, K) and R(K, N) respectively, for a total of KM + KN steps. From
Theorem 1, we assume that the total delay of the parallel counterpropagation algorithm
is (α + Lβ)(M + 2K + N − 4).

4. Experimental Results

The proposed parallel architectures of the counter propagation network were tested by
using three different training examples with increasing network and training set size. For
each case the execution time of the serial as well as the parallel implementation was
measured in order to calculate the speedup and the efficiency of the parallel system. For
the serial case, the neural network was trained for a single run as well as for many runs
(up to three) and the execution time of all these runs was recorded. Since the objective
of the research was not to configure an appropriate network structure and to tune the
parameter values to get a converging system but only to measure the speedup and the
efficiency of the parallel architecture, very small tolerance values were used, such that
the epoch numbers of both stages to be exhausted. Furthermore, for sake of simplicity,
the number of epochs of stages A and B (M and N respectively) was the same.

The training examples and the structure of the neural network used in each case are
presented below:

1) The Iris database (Fisher, 1936): this is a famous and widely used training set in
pattern recognition consisting of 150 labelled four dimensional feature vectors describing
three types of Iris flowers, namely, Iris Setosa, Iris Versicolour, and Iris Virginica. Each
flower type is described by 50 feature vectors in the training set. The input vector is
composed by four real values describing the sepal width, the petal width, the sepal length,
and the petal length respectively, while the output vector is composed of three binary
values that identify the three flower types (more specifically, type I is modelled as [1 0
0], type II is modelled as [0 1 0] and type III is modelled as [0 0 1]).

The training set used in this example was composed of 75 feature vectors (one half for
each flower type) while the remaining vectors were used in the recall phase. The neural
network structure was characterized by 4 neurons in the input layer, 3 neurons in the
hidden layer and 3 neurons in the output layer while the parameter values was different
for different runs.

2) The logistic map (Margaris et al., 2001): the logistic map is a well known one
dimensional chaotic attractor described by the equation yn = xn+1 = λxn(1 − xn)
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with the λ parameter to get values in the interval [1, 4]. In this example the training set
was composed by 1000 pairs in the form (xi, yi), where the inputs xi were uniformly
distributed in the interval [0, 1], while the outputs, yi, were calculated by the equation
yi = λxi(1 − xi). Regarding the structure of the neural network used, it was a three-
layered feed-forward network with one input neuron, three hidden neurons and one output
neuron.

3) Speech frames database (Margaris, 2005): this example is associated with a neural-
based application that recognizes speech frames emerged from a set of recorded audio
files containing pronounces of a set of specific words. The training set is composed of
184 vector pairs each one of them contains 10 LPC coefficients as the input values and
the corresponding 10 Cepstral coefficients as the desired output values. The structure of
the neural network used in this case was characterized by the existence of three layers
with 10 input neurons, 15 hidden neurons and 10 output neurons respectively.

4.1. Simulation Results for the Serial Case

In this simulation there is only one non-MPI process running on a single CPU. The pro-
cess runs the training counterpropagation algorithm N times (N = 1, 2, 3) by using a
loop in the form for (i = 0; i < N ; i++) RunCounterPropagation (. . .);. The results of
this simulation for the three training examples, are presented in Table 4 and contain the
execution times (in seconds) for each training examples for different number of runs and
for different values for the iteration numbers M and N .

4.2. Simulation Results for the Session Parallelization

In the session parallelization simulation the maximum number of neural networks run
concurrently was equal to three, since the experimental cluster used for the simulation was
composed by three computing nodes each one of them had a CPU running on 800 MHz
and a physical memory of 128 MBytes. To verify the system’s implementation, all the
possible combinations were used, namely, one process runs in one host, two processes run
in one and two hosts, and three processes run in one, two, and three hosts. The simulation

Table 4

Experimental results for the serial case for all training examples

LOGISTIC MAP IRIS DATABASE SPEECH FRAMES

M, N 1 run 2 runs 3 runs 1 run 2 runs 3 runs 1 run 2 runs 3 runs

000100 0002 0004 0006 0001 0001 0001 00019 00039 00056

001000 0022 0042 0064 0006 0012 0018 00191 00374 00555

005000 0106 0211 0317 0030 0058 0089 00957 01928 02811

010000 0212 0424 0636 0059 0117 0177 01804 03997 05888

020000 0424 0847 1271 0117 0234 0352 04014 07603 11521

050000 1059 2117 3175 0292 0589 0888 09713 19571 28915
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results for the session parallelization and for the three training examples are shown in
Tables 5, 6, and 7.

To provide performance estimates of the parallel system, we present the simulation re-
sults for the three examples (see Tables 8, 9, 10 respectively) with respect to the speedup
and efficiency. More specifically, we measure the speedup S(3) as the ratio of the total
execution time T (1) of three processes running on a sequential computer to the corre-
sponding execution time T (3) for the same processes running on 3 nodes. The efficiency
is then computed as the ratio of S(3) to the number of nodes (3 in our case). The results
show that in most cases we achieve ideal parallel efficiency of 1.0, that is three nodes run
three times faster than one for the same problem.

4.3. Simulation Results for the Training Set Parallelization

In this simulation a training set of 2N training patterns is divided into two training sets
of N patterns that contain the even and the odd patterns. The parallel application is com-
posed by exactly 2 processes each one of them runs the whole neural network (as in
session parallelization) but with its own odd or even training pattern. After the termi-
nation of the simulation, the process R = 1 sends its synaptic weights to the process
R = 0 that receives them and estimates the final weights as the mean value of its own
weights and the corresponding received weights. The send and the receive operations are
performed by the blocking functions MPI_Send and MPI_Recv. The simulation results in
training set parallelization for all the training examples are shown in Table 11 (the shown
execution times are measured in seconds).

5. RMA Based Counterpropagation Algorithm

The main drawback of the parallel algorithm presented in the previous sections is the
high traffic load associated with the weight table update for both training stages (i.e.,
stage A and stage B). Since each process maintains a local copy of the two weight tables
(the input – Kohonen weight table and the Kohonen–Grossberg weight table), it has to
broadcast these tables to all the processes of the Kohonen and Grossberg group in order to
receive the new updated weight values. An improvement of this approach can be achieved
by using an additional process that belongs to its own target group. This target process
maintains a unique copy of the two weight tables and each process can read and update
the weight values of these tables via remote memory access (RMA) operations. This new
improved architecture of the counter propagation network is shown in Fig. 7.

In this approach the additional target process creates and maintains the weight tables
of the neural network while each process of the Kohonen and the Grossberg group reads
the appropriate weights with the function MPI_Get and updates their values (by apply-
ing the equations described above). This can be done using the function MPI_PUT. An
optional third window can be used to store the minimum input weight distance for each
training pattern and for each epoch. In this case one of the processes of the Kohonen
group can use the MPI_Accumulate function (with the MPI_SUM opCode) to add the
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Table 5

Session parallelization results for the logistic map

1 Host 2 Hosts 3 Hosts

1 Process

Epochs Seconds

00100 0002.155
01000 0021.515
05000 0107.560
10000 0215.103
20000 0430.148
50000 1075.467

2 Processes

Epochs Seconds

00100
0003.940
0004.201

01000
0042.710
0042.901

05000
0215.056
0215.216

10000
0430.655
0430.665

20000
0861.414
0861.703

50000
2165.654
2169.179

Epochs Seconds

00100
0002.156
0002.155

01000
0021.555
0021.546

05000
0107.710
0107.712

10000
0216.028
0216.042

20000
0431.762
0430.773

50000
1077.049
1076.840

3 Processes

Epochs Seconds

00100

0006.293
0006.267
0006.020

01000

0064.150
0064.196
0063.981

05000

0321.783
0321.978
0321.652

10000

0643.318
0643.604
0643.391

20000

1287.674
1287.731
1287.383

50000

3218.685
3220.368
3219.566

Epochs Seconds

00100

0004.129
0002.146
0004.084

01000

0042.724
0021.444
0042.731

05000

0214.111
0107.110
0214.209

10000

0428.381
0214.454
0428.493

20000

0857.291
0428.745
0857.402

50000

2143.201
1072.007
2143.731

Epochs Seconds

00100

0002.144
0002.146
0002.146

01000

0021.427
0021.458
0021.456

05000

0107.090
0107.186
0107.257

10000

0214.338
0214.403
0214.508

20000

0428.476
0428.794
0429.001

50000

1071.292
1071.762
1071.431
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Table 6

Session parallelization results for the IRIS database

1 Host 2 Hosts 3 Hosts

1 Process

Epochs Seconds

00100 000.601
01000 005.885
05000 029.587
10000 059.835
20000 119.680
50000 297.572

2 Processes

Epochs Seconds

00100
000.848
000.805

01000
011.546
011.584

05000
059.462
059.072

10000
118.774
118.839

20000
236.473
236.486

50000
587.694
587.463

Epochs Seconds

00100
000.591
000.599

01000
005.994
005.883

05000
029.941
029.936

10000
059.898
058.844

20000
119.151
119.160

50000
297.909
297.846

3 Processes

Epochs Seconds

00100

001.535
001.576
001.357

01000

017.876
017.903
017.752

05000

092.413
092.422
091.605

10000

183.652
183.295
183.146

20000

367.138
366.886
368.174

50000

891.302
890.662
890.974

Epochs Seconds

00100

000.943
000.588
000.942

01000

011.568
005.879
011.593

05000

059.254
029.931
059.193

10000

119.252
059.529
119.199

20000

234.633
119.661
234.480

50000

594.232
299.198
593.805

Epochs Seconds

00100

000.595
000.597
000.592

01000

005.879
005.989
005.945

05000

029.891
029.587
029.867

10000

058.721
059.116
058.703

20000

119.032
119.050
118.931

50000

297.318
295.606
293.486
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Table 7

Session parallelization results for the speech frames database

1 Host 2 Hosts 3 Hosts

1 Process

Epochs Seconds

00100 00020.095
01000 00197.748
05000 00925.377
10000 01793.960
20000 03828.180
50000 09441.553

2 Processes

Epochs Seconds

00100
00037.152
00037.236

01000
00401.272
00402.954

05000
01793.795
01802.148

10000
03925.213
03942.807

20000
07175.727
07208.764

50000
22147.286
22232.592

Epochs Seconds

00100
00019.575
00019.001

01000
00180.191
00182.440

05000
00947.687
00902.133

10000
01851.708
01874.798

20000
03744.900
03952.044

50000
09110.900
09588.634

3 Processes

Epochs Seconds

00100

00057.490
00057.445
00057.268

01000

00549.270
00549.734
00549.503

05000

03025.275
03025.724
03025.471

10000

05646.237
05648.781
05702.921

20000

12107.604
12112.123
12110.864

50000

30641.980
30653.922
30652.644

Epochs Seconds

00100

00037.757
00019.770
00038.770

01000

00399.225
00191.478
00399.231

05000

01828.238
00911.945
01829.578

10000

04026.084
01929.454
04027.124

20000

07312.064
03860.654
07317.681

50000

18802.907
09971.625
18809.625

Epochs Seconds

00100

00019.962
00020.080
00018.778

01000

00187.767
00182.394
00194.594

05000

00965.519
00979.553
00988.850

10000

01915.560
01823.962
01826.842

20000

03685.665
04020.912
03591.262

50000

10121.582
09495.003
09534.072
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Table 8

Speedup of the parallel system – The logistic map

Epochs Execution Time Execution Time Speedup Efficiency

(1 node) (3 nodes) S(3) =
T (1)
T (3)

E(3) =
S(3)

3

00100 0006.293 0002.144 2.935160 0,97838

05000 0321.783 0107.090 3.004000 1,00130

20000 1287.674 0428.476 3.005240 1,00170

50000 3218.685 1071.292 3.004448 1,00140

Table 9

Speedup of the parallel system – The IRIS database

Epochs Execution Time Execution Time Speedup Efficiency

(1 node) (3 nodes) S(3) =
T (1)
T (3)

E(3) =
S(3)

3

00100 001.535 000.595 2.570 0,850

05000 092.413 029.891 3.091 1,030

20000 367.138 119.032 3.084 1,028

50000 891.302 297.318 2.997 0,998

Table 10

Speedup of the parallel system – The speech frames database

Epochs Execution Time Execution Time Speedup Efficiency

(1 node) (3 nodes) S(3) =
T (1)
T (3)

E(3) =
S(3)

3

00100 00057.490 00019.962 2.879 0,959

05000 03025.275 00965.519 3.130 1,040

20000 12107.604 03685.665 3.285 1,095

50000 30641.980 10121.582 3.027 1,009

current minimum distance to the window contents. In this way, at the end of each epoch
this window will have the sum of these distances that is used for the calculation of the
mean error for stage A; a similar approach can be used for the stage B. The synchroniza-
tion of the system processes can be performed either by the function MPI_Win_Fence
or by the set of four functions MPI_Win_Post, MPI_Win_start, MPI_Win_complete and
MPI_Win_wait, which are used to indicate the beginning and the termination of the ac-
cess and the exposure epochs of the remote process target windows.
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Table 11

Simulation results for the training set parallelization

LOGISTIC MAP IRIS DATABASE SPEECH FRAMES

M, N R=0 R=1 R=0 R=1 R=0 R=1

000100 0000.857 0000.853 0000.291 0000.283 0009.620 0009.791

001000 0008.529 0008.536 0002.924 0002.843 0092.410 0097.858

005000 0042.621 0042.626 0014.543 0014.028 0467.074 0453.241

010000 0085.328 0085.233 0029.224 0028.004 0985.505 0916.098c

020000 0170.502 0170.420 0058.450 0056.836 1881.286 1942.054

050000 0426.230 0430.659 0146.929 0139.954 4485.041 4451.929

Fig. 7. RMA based counter propagation network.

6. Conclusions and Future Work

The objective of this research was the parallelization of the counterpropagation network
by means of the message passing interface (MPI). The development of the application
was based to the MPICH2 implementation of the MPI of Argonne National Laboratory
that supports advanced features of the interface, such as parallel I/O and remote memory
access functions. In this research, two parallelization aspects were tested with respect to
the session and the training set of the neural network. Regarding the network paralleliza-
tion approach two schemes were proposed: (a) the training set patterns were distributed
to the processes of the input group in such a way that each process retrieves the (rank)th
column of the set with P values, where (rank) is the rank of the process in the input group.
This distribution is applied for the input vectors as well as for the output vectors that are
distributed to the processes of the Grossberg group. (b) the two-dimensional weight ta-
bles were distributed to the processes of the Kohonen group with each table row to be
associated with its corresponding Kohonen process.

There are many topics that are open in the design and implementation of parallel
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neural networks. By restricting ourselves to the development of such structures via MPI,
it is of interest to investigate the improvement achieved if non-blocking communications
are used – in this research the data communication was based on the blocking functions
MPI_Send and MPI_Recv (the collective operations are by default blocking operations).
Another very interesting topic is associated with the application of the models described
above for the simulation of arbitrary neural network architectures. As it is well known,
the counterpropagation network is a very simple one, since is has (in the most cases)
only three layers. However, in general, a neural network may have as many as layers
the user wants. In this case we have to find ways to generate process groups with the
correct structure. Furthermore, in our design, each processes simulated only one neuron;
an investigation of the mechanism that affects the performance of the network when we
assign to each process more than one neurons, is a challenging prospect.

For all these different situations, one has to measure the execution time and the
speedup of the system in order to draw conclusions for the simulation of neural net-
works by parallel architectures. Finally, another point of interest is the comparison of the
MPI based parallel neural models with those that are based on other approaches, such as
parallel virtual machines (PVM).
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Priešingo sklidimo lygiagrečiojo tinklo modelis ir realizacija
naudojant MPI

Athanasios MARGARIS, Stavros SOURAVLAS, Efthimios KOTSIALOS,
Manos ROUMELIOTIS

Šio tyrimo tikslas yra sukurti lygiagrečius modelius, kurie imituot ↪u dirbtini ↪u neuronini ↪u tinkl ↪u
elgsen ↪a. Šiame straipsnyje modeliuojamas priešingo sklidimo neuroninis tinklas. Lygiagrečiajai
realizacijai naudojamas pranešim ↪u perdavim ↪u funkcij ↪u standartas MPI. Straipsnyje pateikiami
priešingo sklidimo neuroninio tinklo nuoseklusis ir lygiagretusis algoritmai. Yra pateikti keli ↪u ly-
giagretinimo būd ↪u (seans ↪u ir mokymo aibės) rezultatai. Seans ↪u lygiagrečioji sistema sudaryta iš
keli ↪u lygiagrečiai veikianči ↪u proces ↪u, kiekvienas j ↪u dirba su visu neuroniniu tinklu tik su skirtin-
gais mokymo parametrais. Mokymo aibės lygiagrečiojoje sistemoje mokymo aibės elementai yra
paskirstomi visiems procesams, kiekvienas j ↪u dirba su visu tinklu su savo mokymo aibės fragmentu.
Atsižvelgiant ↪i galim ↪a neuronini ↪u struktūr ↪u lygiagretinimo tip ↪a, yra pateikiami du skirtingi būdai:
vienas paremtas tarpinio komunikatoriaus idėja, kitame – svori ↪u lenteli ↪u pakeitimui ir vidutinės
paklaidos kiekviename mokymo etape vertinimui naudojamos nuotolinės prieigos operacijos.


