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Abstract. In this paper, the information theory interpreted as the neural network systems of the
brain is considered for information conveying and storing. Using the probability theory and spe-
cific properties of the neural systems, some foundations are presented. The neural network model
proposed and computational experiments allow us to draw a conclusion that such an approach can
be applied in storing, coding, and transmission of information.
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1. Introduction

In the neural network (NN) as a main brain structure, the information system provides
the means for quantifying a moving amount of information from one neuron or their
ensemble to an other neuron or, respectively, other ensemble of neurons. There are fun-
damental questions about information processing in the brain. The amount of information
can be carried by different codes characterizing the description of neuron activities. An-
other important characteristic is the speed of the transferring information which defines
the information rates from neuronal responses.

The information theory is based on the probabilistic approach because of randomness
of many factors of sources, channels through which the information is conveyed by com-
plex information nets to distribute knowledge among demanders. Beside the probabilistic
approach, the statistical uncertainty plays a very important role. In connection with this,
the entropy notation has been introduced by Hartley in 1928. The theoretical background
of information theory was originated by Claude Shannon in 1948. More complete treat-
ments of the information theory and coding can be found in many books such as Abram-
son (1990), Hamming (1990), and Ricke et al. (1993), where the information transmitting
by neuronal firing is considered. The conceptions and modeling of information evaluation
by neural networks have been proposed in the recent paper of Garliauskas (2004).

In Sections 2 and 3, the main conceptions of information theory based on the probabil-
ity theory are considered. The conveying of information in a single neuron and retrieval
of information from an associative memory are described in Sections 4, 5. The neural
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network model, modeling strategy of the transmitted information, and computational ex-
periment are discussed in Section 6.

2. Probabilities and Information

The statement of possibilities is connected with the information measure. More possibil-
ities mean more information. The main measure in the information theory is the amount
of information. Hartley (1928) was the first to try to determine the measure of infor-
mation on an example of symbols from a given alphabet. He introduced an uncertainty
measure as a logarithm of the number of possibilities in the statistical experiment. The
probability notion was introduced by Shannon (1948) in defining the amount of infor-
mation. He was one of those who, on the basis of the integrated mathematical theory,
created the information theory introducing a simple information determination measure
based on the logarithm of probability of possibilities with a minus sign. Thus, if we have
k possibilities, then, according to Hartley IN = log2 k (log2 means the logarithm of a
binary base) and according to Shannon (1948), Ish = − log2 P (k), and if P (k) ∼= 1/k

is an equiprobable distributio
n, then Hartley’s and Shannon’s measures of information are identical.
Another notion of the information theory is entropy which was first introduced by

Boltzmann in 1868 explaining the behaviour of gas in the thermodynamical equilibrium.
The link of entropy with information was first examined by Maxwell. Boltzman estab-
lished a bond between the amount of information and the considered microstates in the
gas medium with equiprobable distribution, the Boltzmann constant being equal to a unit.
Then entropy as a measure of uncertainty is expressed as

S = −
N∑

i=1

σi log2 σi, (1)

where σi is the probability of the ith microstate, N is the number of microstates.
Since N is large and microstates are equiprobable, S becomes

S = log2 N, (2)

the same as IN or Ish above.
It is important to note that the resolution with the microstate determines the amount of

information provided. This occurs in many situations when is analyzing neural codings.
Here the resolution could be made progressively finer that coressponds to an increase in
information proportional to the logarithm of the number of possibilities.

3. Bayes Approach to the Information Measure

In general, when uncertainty takes place in the case where there is more than one possible
a posteriori state, the average information values to be defined for each state correspond
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to the a posteriori probability measure with regard to appropriate a priori state probabil-
ities. Let us have s events with an a priori probability P (s) and a posteriori probabilities
are nonzero. Then the correct expression involves summing over of all events with the
corresponding probabilities

I(s) =
∑

s

P post(s) log2 P post(s)/P prior(s). (3)

We consider a discrete set independent of events, using the metaphor of a set of sym-
bols in the alphabet S. The event now is the corresponding symbol omitted by an infor-
mation source. The entropy of the information source will be as follows

H(S) = −
∑
s∈S

P (s) log2 P (s). (4)

If we take into account that the information source has a channel for transformating
information of symbols (s) from the alphabet S to receive input codes and (s′) from
the alphabet S′ to emit output codes, the joint probability of the channel is given by the
product

P (s, s′) = P (s)P (s′) (5)

for any pair (s, s′). When the input and output codes of symbols are independent, the
channel transmits zero information, the connection of symbols will be expressed by con-
dition probabilities P (s′/s), and if two symbols are independent, P (s′/s) becomes an
unconditional probability P (s′). Then such a case has two ways of defining conditional
probabilities

P (s, s′) = P (s′/s)P (s) = P (s/s′)P (s′). (6)

Relation (6) yields

P (s′/s) = P (s/s′)P (s′)/P (s), (7)

which is called a Bayes theorem.
According to (6) the posterior probability corresponds to the conditional probability

P (s′/s), and the prior probability corresponds to the unconditional probability P (s′).
Then the information transmitted in the channel that receives the symbol s will be as
follows:

I(s) =
∑
s′

P (s′/s) log2 P (s′/s)/P (s′). (8)

Symmetrically, the transinformation under the conditional probability P (s/s′) and
emited symbol s′ is described by

I(s) =
∑

s

P (s/s′) log2 P (s/s′)/P (s). (9)
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Finally, the amount of mutual information can be expressed in quite symmetrical form
I =

∑
s

∑
s

P (s′/s) log2 P (s′/s)/P (s′)

=
∑
s,s′

P (s, s′) log2 P (s, s′)/[P (s)P (s′)]. (10)

The mutual information can also be characterized by the entropy of the source using
the alphabet S minus the conditional entropy equivocation of S with respect to the new
alphabet S′ used by the channel, and it is written as follows

I = H(S) − H(S, S′). (11)

In the transition of information, an important characteristic is the capacity of the chan-
nel. It can be defined as the maximal mutual information via all possible sets of input
probabilities P (s). The information transmitted via a channel can range from zero in the
case of input and output independence to the lower bound of the two upper ones: the
entropy of the source, and the capacity of the channel.

4. Conveying Information in a Single Neuron and Neural Networks

A single neuron can have some input data given to the synapses, which provide the firing
of the neuron-soma (Fig. 1). All signals are summarized in the soma and if the integrated
signal becomes higher than the neuron threshold, the output signal is generated at the
next discrete time moment or not in other cases. Such a complex neuron can be presented
as an information channel that conveys input data to the output of the neuron.

Let us have some learning rule with the aid of which a neuron either produces an
output signal +1 as a response to all inputs, or 0, if all input signals do not achieve the
neuron threshold value. Depending on the input data, the synapse weights allow us to
distinguish between just two sorts of input data sets. The maximum information that the
learning rule could transmit on the data is one bit. This amount of information is achieved
if two sorts of data sets are equiprobable.

The complex neuron is presented with N inputs of signals S(t) from the set A, the
signals which are delivered by N axons to the same number of synapses with the weight
vector W and neuron-soma with an axon, having the activation signals S(t + 1) at the
t + 1 moment (Fig. 1). The sender is given a complex neuron with N inputs and uses
an adaptive rule to try to find W that can reproduce the input information exactly. We
assume that such a rule finds W if it exists. The receiver evaluates the information on N

Fig. 1. The neuron as a channel of information.
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input signals. The input information will be correctly reproduced only with the certain
probability.

Thus, the process in the single neuron and in the neural network can be viewed as a
data transmission process, in which the sender examines the data and creates a message
W that depends on those data. The receiver the W uses to try to restore what the data of
A was. This means conveying of information about the training data to a future user of
that neural network.

5. Information Retrieval from an Associative Memory

The neural network is able to store information and to retrieve it in the sense of patterns
in the a posteriori period. Such a process is similar to the determination of the capacity
of channels. Let there be a vector rμ with components {rμ

i }, where μ is the number of
a pattern, and i is the index of a neuron. The neural network reproduces a distinct firing
pattern from the pattern, which was introduced into the network like as a channel. Let
us denote it simply as vector r. The quality of retrieval patterns can be measured by the
average mutual information

< I(rμ, r) > =
∑
rμ,r

P (rμ, r)‖ log2 P (rμ, r)/P (rμ)P (r)

∼=
∑

i

∑
rμ,r

P (rμ, r) log2 P (rμ, r)/P (rμ)P (r). (12)

If rμ
i and ri are continuous distribution values, it means that, instead of the number

of spikes, the firing rate of neurons will be computed by the firing train with a smoothing
kernel, then one has to deal with probability densities, which we denote as P (r)dr. Sub-
stituting P (r)dr for P (r) and P (rμ, r)dr for P (rμ.r), the average mutual information
will be as follows:

< I(rμ, r) >i=
∫

drμdrP (rμ, r) log2 P (rμ, r)/P (rμ)P (r). (13)

If rμ exactly determines r, the probability density will be

P (rμ, r)drμdr = P (rμ)δ(r − r(rμ))drμdr = P (rμ)drμ (14)

after losing one differential on the way.
It is necessary to distinguish the conceptual difference between the information of a

fired pattern in the output of network and that stored in the network. There two cases
are defined as: (a) the information selecting the correct memory pattern and (b) the in-
formation of the fired pattern under the influence of something in the outside world, for
example, the sources of noises. Case (a) is well-defined where a formal model is consid-
ered, and it is incorrect where a real system is analyzed.
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6. Neural Network Model and Computational Experiment

6.1. The Walsh Patterns as Stimuli

A neuron or, in general, neurons and their nets can be represented as information channels
with two sets of symbols from two alphabets, as mentioned above. One set is a stimulus
set and the other a response set.

Such consideration is linked with processing of information in the brain when the
amount of information of the response of a neuron, or of an ensemble of neurons char-
acterize an event from the outside world, for example, a stimulus which is shown to a
testing being. As a rule, the experiment of extracellular recordings was carried out in
the primary visual cortex of rhesus monkeys (Kjaer et al., 1989). The responses of each
neuron to several hundred or several thousand presentations were recorded, i.e., from 3
to 34 presentations of each stimulus. The Walsh patterns provide a set of stimuli of spa-
tial structure. The Walsh pattern set is constructed by 144 patterns, 64 are basic ones
and 64 are black and white elements reversed plus 8 bar-like stimuli with reversed el-
ements (Kjaer et al., 1989). The examples of such stimuli formed by NWorks software
(Klimashauskas et al., 1989) the adaptive resonance theory proposed by Carpenter and
Grossberg (1988) are presented in Fig. 2. On the right-hand side of Fig. 2 the top pat-
tern is one of the base stimuli, the middle one is the reversed the basic stimulus, and the
bottom one is the reversed bar-like stimulus.

The authors in (Kjaer et al., 1998) have additionally included the Walsh index which
indicates the number of intensity of the pattern shown. The patterns with a small index

Fig. 2. Examples of the Walsh patterns.
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have a coarse structure, and those with a big index have a fine structure. The Walsh index
can be changed from 0 to 7.

The data of stimuli are based on the spike sequences recorded in a time window
between 20 and 340 ms after a showing of stimulus. The sequences are represented by
320-bit binary strings in which gets 1 if the spike appears at some ms or 0 in other cases.
In 5-ms intervals the spikes are convolved with a Gaussian kernel of standard deviation 3
ms. As a result, the 64-dimensional response vector r with ri components was defined.

6.2. Modeling Strategy of Transmitted Information by NN

We denote that a stimulus s with a priori probability P (s) is shown from a given set.
The conditional probability P (s/r) represents a posteriori probability that is obtained by
updating the responses r. The amount of information of responses is expressed like in
(8):

I(r) =
∑

s

P (s/r) log2 P (s/r)/P (s). (15)

It accepts the maximum information value with I(r) ≈ − log2 P (s(r)) if r unequiv-
ocally determines s(r), that is, P (s/r) = 1 (for one stimulus, and 0 for all others) and
no information because of I(r) =

∑
s

P (s) log2 P (s)/P (s) = 0, and if s and r are inde-

pendent, r tells us nothing about s.
The amount of information conveyed by each response according to the (first part of

(10)) can be averaged over all possible responses r,

< I(r) >r=
∑

r

P (r)
∑

s

P (s/r) log2 P (s/r)/P (s). (16)

Denoting the joint probability as P (s, r) for the pair of events s and r, and using the
Bayes theorem (7), expression (16) reduces to the symmetric form (10) for the mutual
information

< I(r) >r=
∑
s.r

P (s, r) log2 P (s, r)/P (s)P (r), (17)

which means that responses tell us about stimuli as much as stimuli tell us about re-
sponses. This is the general feature, which emphasizes the independence of the two vari-
ables: stimuli and neuronal responses. Beside the mutual information of (15), (16), the
information conveyed about each stimulus is also interesting

I(s) =
∑

r

P (r/s) log2 P (r/s)/P (r). (18)

Since P (r) is the probability distribution of responses averaged by stimuli, it means
that the stimulus information measure of (18) depends not only on the stimulus s, but also
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on all the other stimuli used. This emphasizes a relative nature of all information mea-
sures. More clearly, it emphasizes the relevance of measuring the information, conveyed
by a given neuronal population, stimuli that are either representatives of real-life stimulus
statistics, or of particular interest for the properties of the population being examined.

6.3. Neural Network Structure and the Learning Algorithm

To evaluate the information transmitted in the neural networks of the brain, the artificial
neural network (ANN) learning and retrieval method was used. Despite that there exist
many kinds of ANN architectures, we have chosen a simple multi-layered network and
the learning algorithm based on the backpropagation procedure.

To estmate the amount of information according to (16), it is necessary first to estimate
P (s/r) corresponding to the experimental data. Suppose that Qs(r) is the estimate of
P (s/r). Then a log-likelihood measure can be used as a criterion. The cost function

E = −
∑
s,μ

Tμ
s log2 Qs(rμ) (19)

provides an appropriate fitting criterion. Tμ
s is the target function and it is equal to 1 if

the response pattern μ was evoked by stimulus s, and vice versa.
The structure of ANN is shown in Fig. 3. Going from bottom to upper units, the update

of the response data begins with preprocessing of data.
In this stage, the 64-dimensional response vector components have been transformed

by the Karhunen-Loeve method, expressing the responses by their principal components.

Fig. 3. The structure of ANN.
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For this, the covariance matrix C = cov(rt, rt′) is formed. Here rt and rt′ are the vectors
with components rt and rt′ (t and t′ equal from 1 to n), cov(rt, rt′) is the element of the
covariance matrix and it is expressed by a known formula

cov(rt, rt′) = M{(rt − M{rt})(rt′ − M{rt′})}, (20)

where M{·} is the mathematical expectation of responses.
The eigenvalues are defined according to the matrix C. The principal components are

ordered according to the magnitude of their eigenvalues. The higher principal component
is defined by a higher eigenvalue for the least amount of variance. Thus, now it is possible
to use a smaller number of components when the modeling of responses, i.e., instead n

the number N with rj (j = 1, 2, ..., N) is used , where N < n.
The next unit of ANN is that of input data representing the input layer. The input layer

only gives the chosen principal responses without transforming into the hidden layers
through then influence of synaptic weights. The neurons of layers are interconnected
among the layers. There are no connections within a layer. The neurons of hidden layers
and the output layer are fed by the bias neuron with a constant response r0 = 1. The
hidden unit activation Hi is expressed as follows:

Hi(r) = tanh
( ∑

i

Wijrj + bi

)
, (21)

where Wij are the weights between the pair of neurons i and j, rj is the principal com-
ponent of responses, and bi is the bias term. The hidden units perform the two functions
in the learning procedure: updating of weights in the feed-forward process, and in the
feed-backward one.

The output activation is presented by the exponential normalized function

Qs(r) =
exp[

∑
i

(W ′
siHi + Bs)]

∑
s′

exp[
∑
i

(Ws′iHi + Bs′)]
. (22)

The learning iteration process is like this. The responses are given from the input layer
to the hidden layers and the output layer according to the feed-forward procedure. The
obtained output activation (22) value is compared with the target function (19), and if the
error function value is significant or the convergence value is not achieved, the feedback
procedure is performed under the gradient descent algorithm. The growth of weights

ΔW ′
si = η

∑
μ

(Tμ
s − Ks(rμ))Hi(rμ) (23)

allows a correction of new weights

W ′new
si = W ′old

si + ΔW ′
si,
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where η is a learning rate.
The changes of weights in the hidden layer are presented as follows

ΔWij = η{
∑
μs

[Tμ
s − Ks(rμ)]Wsi}(1 − H2

i (rμ))rμ
j , (24)

where 1 − H2
i (rμ) is a derivative of the activation function (21). Afterwards the new

weight values for the input data are corrected according to

Wnew
si = W old

si + ΔWsi + αW prev
si ,

where an additional member of the moment α and the previous weight value were in-
cluded.

6.4. Results of Modeling

We have chosen the reversed task, that is when the information on each stimulus is ex-
pressed by mutual information (18). Here the probability distribution of responses is av-
eraged by stimuli. It means, that the information measure depends on all stimuli. This
variant of modeling is connected with the coding information. For modeling, we have
taken 64-element Walsh patterns and 8 responses. The scheme of the ANN is shown in
Fig. 4.

We tried different numbers of hidden layers and neurons in each layer and estimated
the mean square errors and the amount of information after some hundred epochs of
training and testing processes. We did especially not investigate the methods of division
of the Walsh patterns set for training and testing parts because of limit experimental data.

First, the Walsh patterns were modified as the binary input data. The black elements
of the stimulus pattern (Fig. 2) are coded as 1, and the white ones as -1. Besides the
input data, there were chosen the output values, where the linear independent codes of
responses were used. Analogically the test data were coded. For our example of the com-
putational experiment, 12 training patterns and 9 testing ones were formed.

Second, we have realized many variants of modeling in search of the optimal structure
of the ANN, parameters of learning, activation functions from linear to Gaussian or ex-
ponential functions in hidden and output layers, learning by the cross-validation method
and without it, with different fault tolerance levels, and so on. The better results were
obtained in the case of sigmoid activation functions for hidden and output layers, and by
the cross-validation technique

The changes of mean square errors dependent on the number of training and testing
trials are shown in Fig. 5a, b.

The training error (1) decays quicker than the testing one (2). The training error
reaches the minimum fault tolerance at 175 epochs and the testing one at abot 300 epochs
(Fig. 5a). The training (1), testing (2), and output value (3) errors under changed learning
parameters from the learning rate η = 0.1 and the moment α = 0.9 to η = 0.08 and
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Fig. 4. The scheme of ANN.

Fig. 5. The error changes versus epochs of training: (a) Training (1), testing (2), and output (3) errors dependent
on epochs, (b) The errors with change of learning parameters.

the same α tend quicker (about 180 epochs) to the minimum value , but in a more com-
plicated way, as it is shown in Fig. 5b, and minimum error reached the minimum rather
early.

In Fig. 5a, the correct training patterns were 10 out of 12, that is about 83%, and the
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correct testing patterns were 8 out of 9, i.e., about 89%. In Fig. 5b, almost the same result
was reached, however the training and testing time was significantly shorter.

We also tried different output activation functions as mentioned above. The linear
function of type xout = kx at x � 0 and xout = 0 at x < 0 was included. The results of
errors are shown in Fig. 6.

The training error reaches the minimum value, but the testing and output activation
values decay up to 90 epochs and after that stabilize. The correct training patterns were
those levels as above, while the correct testing patterns were about 44.5%.

Finally, the number of hidden layers as well as of neurons were evaluated from the
point of view of the maximal amount of information. Some results are shown in Table 1.

Here, when only two hidden layers were taken, the number of neurons in the first layer
was accepted 10. For 3 hidden layers in the first two layers, the number of neurons was
taken 10 in each layer, as well as for 4 and 5 hidden layers. The trend of amount infor-
mation decay (after maximum) has been observed in the increasing number of neurons

Fig. 6. The error changes versus epochs of training errors: (1) is the training, (2) is testing, and (3) is the output
value errors.

Table 1

The amount of information (bits) in the output of ANN

Number of hidden leyers Number of neurons

Hidden layers 1 5 10 15 20

1 2.8 2.74 0.14 0.2 0.11

2 3.4 0.23 0.17 0.12 0.15

3 5.1 0.15 0.21 0.17 0.15

4 7.0 0.22 0.13 0.14 0.11

5 6.1 0.34 0.15 0.16 0.14
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in the hidden layers, but not so significant. On the basis of these limited experiments, the
optimal number of neurons in hidden layers is being 1 for 64 input neurons.

Thus, the information may be coded and decoded by its storing by means of synaptic
weights in a neural network as the main structure of communication in the brain.

7. Conclusions

The analysis of information theory applied to the neural network systems of the brain
allows us to create some theoretical foundations, based on the probability theory for the
convey of information in similar artificial systems. The neural network model proposed
provides a kind of its realization, using the Walsh patterns as stimuli of the testing being.
The computational experiments have showed the possibilities of coding and decoding
information by implementing the artificial neural network.

Naturally, we have to take into consideration that investigations in this progressive
area should be continued and under circumstances used in the practical sphere of com-
munication systems.
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Informacijos perdavimas neuronini ↪u tinkl ↪u sistemomis

Algis GARLIAUSKAS

Informacijos teorija interpretuojama kaip smegen ↪u neuronini ↪u tinkl ↪u sistema ↪isiminant ir per-
duodant informacij ↪a. Teorijos pagrindimas remiasi tikimybi ↪u teorija ir specifinėmis neuronini ↪u
tinkl ↪u savybėmis. Pasiūlytas matematinis modelis ir atlikti skaitiniai eksperimentai, leidžiantys
daryti išvad ↪a apie galim ↪a informacijos ↪isiminim ↪a, kodavim ↪a ir perdavim ↪a.


