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Abstract. The method for calculating the specific conductivity tensor of an anisotropically con-
ductive medium, proposed in this paper, distinguishes itself by the simplicity of physical measure-
ments: it suffices to make an equally thick rectangle-shaped sample with four electrodes fixed on
its sides and to take various measurements of current intensity and differences of potentials. The
necessary mathematical calculations can be promptly performed, even without using a complex
computing technique. The accuracy of the results obtained depends on the dimensions of the sam-
ple and on the ratios of the conductivity tensor components.
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Introduction

Thin layer structures are wide used in the contemporary microelectronic technique de-
vices, therefore investigations of the later by solid body physical methods acquire ever
more important significance (Qiu, 2002). Thin layers of ordered structure (first of all
monocrystalline) are of particular importance, since many physical effects in such layers
distinguish themselves by a good repeatability. Thin films of ordered structure, obtained
by epitaxy methods (by growing a layer on a monocrystalline substrate or inducing crys-
tallite orientation by an electric field acting in the plane of the substrate), most frequently
are anisotropic relative to electric conductivity, therefore their specific electric conductiv-
ity is completely defined by a tensor.

The van der Pauw (VdP) structure, based upon the theoretical work of van der Pauw
(Pauw, 1958), is a test structure widely used for measuring resistivity of arbitrary shaped
samples of constant thickness. Over the years, many researchers have extended the orig-
inal ideas to develop a variety of approaches for evaluating the resistivities of both
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isotropic an anisoptropic materials using the VdP type structures (Futamata, 1992; Ra-
madan, 1994; Gelder, 1995; Rietveld, 2003).

This paper deals with various methods for defining an electrical conductivity tensor of
an anisotropic medium. Application of the van der Pauw theorem and equation makes the
basis of all of them. This equation is well known in the Hall effect theory and is meant
for establishing the conductivity of an isotropic medium. Its coefficients are found by
measuring differences of potentials and intensity of current.

1. The General Electrical Conductivity of the Anisotropic Medium and its
Calculation by the van der Pauw Method

1.1. Boundary Problem of Potential Distribution in the Anisotropic Medium and its
Transformation

Distribution of the electric field potential φ(x, y) in a plain domain G, electrical conduc-
tivity of which is defined by the tensor

σ =
(

σ11 σ12

σ12 σ22

)
, d = det σ = σ11σ22 − (σ12)2 > 0 (1)

is the solution to the boundary value problem⎧⎪⎪⎨⎪⎪⎩
divj = 0, (x, y) ∈ G,

j = σgradϕ,

ϕ|κ = const,

(σgradϕ)n|Γ\κ = 0.

(2)

Here Γ is the contour of domain G, κ is the part of the contour that is coincident with the
contacts κ1, κ2, ..., κi, and n is the contour normal (see Fig. 1a).

After replacing variables in problem (2) by

ξ = xσ22 − yσ12, η = y
√

d, (3)

Fig. 1. Calculation of the amount of current flowing through the elementary segment.
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we have a boundary problem (Zilinskas, 1982) for the function ϕ̂(ξ, η) = ϕ(x, y) in the
respective domain Ĝ of the Laplace equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

div̂j ≡ Δϕ̂(ξ, η) = 0, (ξ, η) ∈ Ĝ,

ĵ = sgradϕ̂,

ϕ̂|κ̂ = const,
∂ϕ̂
∂n̂ |Γ̂\κ̂ = 0.

(4)

Here n̂ξη is the contour normal of domain Ĝ.
In the physical sense, (4) defines the potential distribution in an isotropic plate Ĝ. We

prove the statement that allows us to establish its specific conductivity s.

Theorem. If s =
√

det σ in problem (4), then problems (3) and (4) are equivalent.

Proof. We investigate the amount of current ΔIxy flawing through the elementary
segment ΔL of the domain G, that is defined by the vector ΔL = {Δx,Δy}:

ΔIxy = (σgradϕ)|n|ΔL| = {σ11ϕx + σ12ϕy, σ12ϕx + σ22ϕy} · {−Δy, Δx}
= (σ12ϕx + σ22ϕy)Δx + (−σ11ϕx − σ12ϕy)Δy. (5)

The image of the vector ΔL in the system of coordinates (ξ, η) is

ΔL̂ = {Δξ,Δη} = {σ22Δx − σ12Δy,
√

dΔy},

and the amount of current ΔIξη flowing through the respective segment ΔL̂ is equal to

ΔIξη = s
∂ϕ̂

∂n̂
|ΔL̂| = s(−ϕ̂ξΔη + ϕ̂ηΔξ)

= s
(
− ϕ̂ξ

√
dΔy + ϕ̂η(σ22Δx − σ12Δy)

)
.

Since ϕ̂ξ = ϕx/σ22, ϕ̂η = ϕxσ12/(σ22

√
d), we have

Iξη = s
(
− ϕx

√
d

σ22
Δy +

(
ϕx

σ12

σ22

√
d +

ϕy√
d

)
(σ22Δx − σ12Δy)

)
. (6)

By comparing the coefficients at ϕxΔx, ϕxΔy, ϕyΔx, ϕyΔy in expressions (5) and (6),
we get that s =

√
d =

√
det σ.

1.2. Application of the van der Pauw Method in Finding the General Conductivity of an
Anisotropic Medium

In 1958, van der Pauw (Pauw, 1958) proposed a method for measuring the specific elec-
trical conductivity of a sample of any geometrical form. To realize this method, a constant
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Fig. 2. Measurement of current and potential differences in van der Pauw experiments.

thickness sample h was used with 4 point contacts that are arranged in the sample perime-
ter. In order to calculate specific conductivity, first we induce voltage between the con-
tacts κ1, κ2, and measure the intensity I12 of the flowing current as well as the difference
Δϕ34 of potentials appearing between the remaining contacts (Fig. 2a). Afterwards, the
experiment is repeated, by inducing the equivalent voltage between the contacts κ1, κ4

and measuring the current I14 as well as the difference Δϕ23 of potentials (Fig. 2b).
Van der Pauw has proved that the specific conductivity s of the sample is the solution

to the equation

exp(−πhs|Δϕ34|/I12) + exp(−πhs|Δϕ23|/I14) = 1. (7)

This equation can be solved uniquely and its solution s can be found by the Newton
method, selecting any initial approximation s(0), e.g., s(0) = 0.

Thus, if the sample conductivity is anisotropic, defined by the tensor σ(1), then, on
the basis of equivalence of problems (3) and (4), we obtain that the solution to equation
(7) s =

√
det σ.

2. Formulation and Solution of the Main Problems

Let the form of an anisotropically conductive sample be a rectangle G whose sides are
arbitrarily oriented with respect to the main directions of a tensor. On the two opposite
sides of the rectangle the current contacts κ1 and κ3 located, while the point contacts
κ2 and κ4 are on the other sides (Fig. 3). We prove the statements of the following two
problems:

Q – to find the potential distribution in the contour of domain G and the intensity I13

of current flowing via the contacts κ1 and κ3, the conductivity tensor σ being known;
Q−1 – to establish the conductivity tensor σ of a sample, as the current intensity I13,

potential of the contact κ2 or κ4, and the general conductivity s =
√

det σ are known.
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2.1. Problem Q: Calculation of the Potential at the Point of Contour and of the Current

Suppose that the conductivity tensor σ is known. Let us rearrange boundary problem (2.)
into (3), and making use of the fact that the domain G is a parallelogram (Fig. 3) and
Christoffel–Schwarz integral

ξ + iη = μ

∫ z

0

fα,k(τ) dτ (8)

conformally maps the half-plane z = t + qi, (q � 0) into it. Here

fα,k(τ) = τα−1(1 − τ)−α(1 − kτ)α−1, μ = aσ22

(∫ 1

0

fα,k(τ) dτ
)−1

.

Based on the conformability of mapping (8.) (Kleiza, 1992), we get a parametric
expression of the potential in the side y = 0 (0 � x � a) of the rectangle G{

ϕ = V
∫ t

0
f0.5,k(τ) dτ/A0.5,k,

x = a
∫ t

0
fα,k(τ) dτ/Aα,k,

(9)

where

t ∈ [0, 1], Aα,k =
∫ 1

0

fα,k(τ) dτ (10)

Fig. 3. Mapping of a rectangular form sampe into parallelogram and a half-plane.
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and the parameter k is the solution of the uniquely solvable equation

α =
1
π

arccos
−σ12√
σ11σ22

(11)

(because Aα,k is an increasing function of the argument k). This equation was solved
after calculating the ratio L2/L1 of adjacent side lengths of the parallelogram Ĝξη and
using the equality∫ 1/k

1

|fα,k(τ)|dτ =
∫ 1

0

|fα,1−k(τ)|dτ.

Having calculated the value of k, one can also gets the value of current I13 flowing via
the sample:

I13 = V h
√

det σ
A0.5,1−k

A0.5,k
(12)

2.2. Problem Q−1: Calculation of the Conductivity Tensor σ

On the basis of relations (10)–(12), we can obtain the following expressions of tensor
components:

σ11 = λ
a

b

Aα,1−k

Aα,k
, σ12 = −λ cos(απ), σ22 = λ

b

a

Aα,k

Aα,1−k
, (13)

where λ =
√

det σ/ sin(απ).
Thus, the problem of calculating the tensor σ is reduced to determining the numbers

α, k, and
√

det σ. Assuming that
√

det σ is known, we will prove that, after physical
measurements of the current intensity I13 as well as of the potential of contact κ2 or κ4,
we shall also be able to calculate the parameters α and k.

1. The value of the current I13 flowing via the plate and that of
√

det σ being known,
the number k can be found by equation (12). This equation can be solved uniquely in
respect of the single unknown k ∈ (0, 1), because the integral A0.5,k is function of the
argument k increasing from 0 to ∞.

2. Let the value of k be known. We shall prove that after measuring the potential
ϕ̄ = ϕ(x̄, 0), where x̄ is the abscissa of the contact κ2, one can calculate the value of the
remaining unknown α.

To this end, we consider system (9). Its first equation, as ϕ = ϕ̄, is solved uniquely
with respect to t, because the right-hand side of the equation is a monotone function of
the variable t, while the integrand function f0.5,k(τ) > 0. We shall prove that the second
equation of system (9) also has a unique solution α. It suffices to prove the monotonicity
of the ratio

x =
∫ t

0

fα,k(τ) dτ/Aα,k
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of integrals with respect to the variable α. After calculating

∂2x

∂t∂α
=

fα,k(τ)
(Aα,k)2

(
Aα,k

(
ln(t − kt2) − ln(t − 1)

)
− ∂Aα,k

∂α

)
,

we see that the derivative has only one zero in the interval t ∈ (0, 1), because the differ-
ence ln(t − kt2) − ln(1 − t) varies increasing from −∞ (t = 0) up to +∞ (t = 1), and
the function fα,k(t) = τα−1(1 − t)−α(1 − kt)α−1 > 0, t ∈ (0, 1). In addition,

∂x

∂α

∣∣∣
t=0

=
∂x

∂α

∣∣∣
t=1

= 0,

because

x
∣∣
t=0

≡ 0, x
∣∣
t=1

≡ 1.

Therefore ∂x
∂α < 0, t ∈ (0, 1), α ∈ (0, 1) and system (9) is solved uniquely.

Note that ϕ(x, 0)+ϕ(a−x, b) ≡ V, ∀x ∈ [a, b] therefore the case, where the potential
is measured in the side y = b, is reduced to that considered above.

The empyrical method for the calculation of unknown parameters of differential equa-
tion has been developed in the paper Baronas et al. (2002).

3. Solution of the Problem Using a Single Sample

Basing on the statements proved, we are able to calculate the components of a conduc-
tivity tensor, using two samples: the firs one – if any shape with 4 point contacts (the
general conductivity

√
det σ is calculated by the van der Pauw method (see Section 1)),

and the second one is shaped (determination of a tensor (see Section 2)). Note that when
doing physical experiments, it is more convenient to use one sample, and, by respec-
tively changing the contacts the electric current is flowing through to make the necessary
measurements of the flowing currents and potentials.

Fig. 4 illustrates succession of the measurements taken and mathematical calculations
using a single sample: VdP is the van der Pauw method (see Section 1) to establish the
general conductivity, and Q−1 – to find the tensor σ(0) (see Section 2). It is clear that,
due to the finite (non zero) lengths of contacts, the tensor σ(0) calculated in this way will
differ from the specific sample substance conductivity tensor σ. We evaluate the value of
an error after defining a relative error:

δ =
‖σ−σ(0)‖
‖σ(0)‖ · 100% =

√
(σ11−σ

(0)
11 )2+(σ12−σ

(0)
12 )2+(σ22−σ

(0)
22 )2√

(σ(0)
11 )2 + (σ(0)

12 )2 + (σ(0)
22 )2

· 100%.

Since det σ > 0, the relation

σ =
(

cos θ − sin θ

sin θ cos θ

)(
σ1 0
0 σ2

)(
cos θ sin θ

− sin θ cos θ

)
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Fig. 4. A diagram for calculating the tensor σ, using a single rectangular form sample.

Fig. 5. Distribution of relative errors dependent on the ratio of the main tensor components σ1/σ2, the sample
dimensions being 2 × 1 (a) and 3 × 1 (b).

is always valid. Therefore, with a view to encompass a greater amount of various tensor
σ, Fig. 5 represents the maximal values max0�θ�π δ, with respect to θ, of the relative
errors δ, dependent on the ratio σ1/σ2 of the basic summands, the ratio a/b between
length and height of the sample, and on the length of the central contact c.

The analysis of these errors shows that or a/b = 2, the error δ almost does not depend
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on the c = 0, 0.05, 0.1, 0.15, 0.05, 0.1, 0.15 (Fig. 5a), and it is minimal as σ1 = σ2.
If we extend the form of the sample up to 3 (Fig. 5b), we observe a general decrease of
error that is particularly vivid for short lengths of the central contact c = 0, 0.005, 0.1.
As c = 0.15, the values of errors remain the same in fact in both cases. Thus, applying
the method described here in practice, in most frequent cases 0.2 � σ1/σ2 � 5, a/b �
3, c � 0, the relative error δ does not exceed 8%.

In the next section, we shall show the procedure after which the errors can be consid-
erably diminished.

4. The Way of Improving the Solution σ11, σ12, σ22

Let the approximation σ(0) of a conductivity tensor be calculated by the method indicated
in Section 3. We shall show that, after some mathematical operations, it can be specified.

Let us map (as previously (3.), a rectangle into a parallelogram{
ξ = xσ

(0)
22 − yσ

(0)
12 ,

η = y
√

det σ(0),

and its contour into the real axis t of a complex half-plane

t → ξ + iη = μ

∫ t

0

fα,k dτ, (14)

here

fα,k(τ) = τα−1(1 − τ)−α(1 − kτ)α−1, μ = aσ
(0)
22

( ∫ 1

0

fα,k dτ
)−1

.

Since, under the assumption, σ(0) in known, one can find the numbers α and k from
relations (9), and mapping of the boundary points tij (i.e., t11, t12, t21, t22, see Fig. 4.1)
of contacts-according to (14), based on their known coordinates ξij + iηij on the sides of
the parallelogram. Let us form a function

Fα =
(T1 − τ)(T2 − τ)√

τ(t11 − τ)(t12 − τ)(1 − τ)(1 − kτ)(t21 − τ)(t22 − τ)
.

Then the integral

t → u + iv =
∫ t

0

Fα dτ (15)

will map the real axis t into a decagon W (a rectangle with two cuts, see Fig. 6), in case
the numbers T1andT2 are chosen so that
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Fig. 6. A scheme of mapping the parallelogram into the decagon.

∫ 1/k

1

Fα dτ = 0,

∫ t22

t21

Fα dτ = 0,

i.e., on condition that amounts of current flowing through the contacts κ2, κ3 were equal
to zero. Since the mapping of (15) is conformal, the conductivity of domain W remains
the same (

√
det σ). More over, the potential in it is linearly distributed, so we can calcu-

late the difference of potentials Δϕ1 = c1 − c2 and intensity of current I1:

Δϕ1 = V

∫ t21
1/k

Fα dτ∫ t11
0

Fα dτ
, I1 = V h

√
det σ

∫ t12
t11

|Fα|dτ∫ t11
0

Fα dτ
. (16)

If the current is flowing between other contacts (Fig. 4, the case of current I2, we obtain
by replacing in mapping (15) the parameter α by 1 − α) formulas analogous to (16):

Δϕ2 = V

∫ t21
1/k

F1−α dτ∫ t11
0

F1−α dτ
, I2 = V h

√
det σ

∫ t12
t11

|F1−α|dτ∫ t11
0

F1−α dτ
.

Consequently, if we know an approximate conductivity tensor σ(0), we can calculate
the intensity of currents I

(0)
1 , I

(0)
2 (problem Q) as well as the corresponding differences

of potentials Δϕ
(0)
1 , Δϕ

(0)
2 . Then, using them as experimental data and solving the van
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Fig. 7. A diagram of specifying the tensor components.

der Pauw equation, we establish a new conductivity value
√

det σ(1). The ratio of con-
ductivities

f (0) =

√
det σ(0)

√
det σ(1)

defines the error of the van der Pauw method. Therefore, by assigning the new value√
det σ(1) =

√
det σ(0)f (0) to the tensor determinant, we also determine a specified

conductivity tensor σ(1) (just like on Section 2). Replacing now the tensor σ(0) by σ(1),
we repeat the calculations described above. We continue this process as long as f (i) =√

det σ(i−1)√
det σ(i)

= const with the required accuracy (Fig. 7 present the scheme of calculation).
Note that the number of iterations depends on geometry of the sample and components
of the conductivity tensor. Fig. 8 illustrates the dependence of variation of a relative error
on the number of iterations in the samples of 2 × 1 and 3 × 1 dimension. It is customary
here that the ratio of the main summands of the sample conductivity tensor is σ1/σ2 = 3,
and the curves correspond to the various values of the angle θ (see (3.1)). As we can see
from these figures, after just 2–3 iterations, the error stabilizes and does not exceed 1.6%.

However, the size of error δ is mainly determined by the length of the central contact
c(δ = 0 only in the case where c = 0). This fact is demonstrated in Fig. 9 by the curves
obtained from the cases, considered in Fig. 5, after 3 iterations.

5. Discussion of the Results and Conclusions

The paper deals with various methods for defining an electrical conductivity tensor of an
anisotropic medium. Application of the van der Pauw theorem and equation makes the
basis of all of them. This equation is well known in the Hall effect theory and is meant
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Fig. 8. Dependence of variation of a relative error on the number of iterations.

Fig. 9. The values of error δ after 3 iterations.

for establishing the conductivity of an isotropic medium. Its coefficients are found by
measuring differences of potentials and intensity of current.

The novelty of this work lies, first of all, in the statement that, after the affine transfor-
mation, one obtains an area in which there is isotropic conductivity and the square of this
value is equal to the product of principal components of a tensor (tensor invariant), i.e. ,
a generalized (Price, 1972) result for the case where the principal directions of a tensor
are arbitrarily oriented with respect to the coordinate system used.

It has been proved here that, after taking analogous measurements in an anisotropi-
cally conductive sample, the solution to the van der Pauw equation is coincident with the
conductivity tensor determinant. If it is known, after making some additional measure-
ments using a rectangular-shaped sample, exact expressions of the conductivity tensor
components have been obtained.

With a view to use these expressions, it is necessary to have two samples made from
the same substance. Therefore, the algorithms for approximate calculation of the conduc-
tivity tensor an a priori error estimation have been presented in the work, using only one
rectangular-shaped sample.

Analyzing the errors of the methods developed, it is obvious that they depend upon
the extension of the sample form (the ratio a/b of length of the rectangle sides) and on
anisotropy of the medium (the ratio σ1/σ2 between the main components of the conduc-
tivity tensor), i.e., errors are decreasing with an increase of extension a/b and approaching
of the ratio σ1/σ2 to a unit.
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The paper presents a graph of relative errors of values in the most frequent cases
where a/b = 2.3 and 0, 2 � σ1/σ2 � 5, while the length of central contacts amounts
to 15% of the length of boundary contacts. It is evident from these graphs that, in all the
cases indicated, relative errors of the method proposed do not exceed 1.8%. The errors of
this level are acceptable for the majority of physical measurements.

Calculation is performed with the aid of mathematical package Maple. The time of
calculating the conductivity tensor takes up 2–6 seconds.
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Van Der Pauw metodo taikymas anizotropinei terpei

Jonas KLEIZA, Mifodijus SAPAGOVAS, Vytautas KLEIZA

Pasiūlytas anizotropiškai laidžios terpės savitojo laidumo tenzoriaus matavimo metodas,
pasižymintis fizikini ↪u matavim ↪u paprastumu: pakanka pagaminti vienodo storio stačiakampio for-
mos bandin↪i su pritvirtintais jos kraštinėse keturiais elektrodais ir atlikti ↪ivairius srovės stiprio ir
potencial ↪u skirtumo matavimus. Be to, būtinus skaičiavimus galima atlikti greitai, nesinaudojant
sudėtinga skaičiavimo technika. Gaunam ↪u rezultat ↪u tikslumas priklauso tik nuo bandinio matmen ↪u
ir tenzoriaus komponenči ↪u santyki ↪u.


