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Abstract. In this paper open-loop three-level Stackelberg
strategies in deterministic, sequential decision-making problems for
linear continuous-time singular systems and quadratic cost function
are studied. Necessary conditions under which the existence of
open-loop Stackelberg strategies are derived. The analytical solu-
tion of three-level open-loop Stackelberg problem is given by means
of the eigenvector method. An example is given to illustrate the
proposed method.
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1. Introduction. A great deal of attention has been
paid to methods of design and analysis of Stackelberg strate-
gies in multi-level sequential decision-making problems, e.g.,
Cruz (1978), Medanic and Radojevic (1978), Basar (1981), Ho
et.al.(1982), Mahmoud and Tran (1984). During the last 20
years, there is much interest in studying the singular systems
(Lunberger (1977), Cobb (1984), Bender and Laub (1987)). To
the best knowledge of the authors, there are no published re-
sults for multilevel sequential decision-making problems cha-



X.Liu and S.Zhang 415

racterized by singular systems. In section 2, multi-level se-
quential decision-making problems characterized by quadratic
cost functions and linear time-invariant continuous singular
systems are considered, and necessary conditions for. the ex-
istence of open-loop Stackelberg strategies are given. In sec-
tion 3, by using the eigenvector method for solving the Ric-
cati equation, the analytical solution of three-level open-loop
Stackelberg problem is given. An example is given to illustrate
the proposed method in section 4.

2. Problem formulation and derivation of neces-
sary conditions. Consider a three-level Stackelberg problem
for a linear singular system

Ei(t) = Az(t) + B'u'(t) + B*u?(t) + B**(¢),
Ez(0) = Ez, (2.1)

with associated cost functional for each decision maker P;

T 3 )
Ji(ul,u? ud) = 1/2/ [2(t)' @ x(t) + ZtLj(t)’Riszj(t)] dt
0 j=1
+1/22(T) E'Q(T)Ex(T), i=1,2,3, (2.2)
where F is a square matrix with rank(F) = r < n, and

det[sE — A] # 0, z(t) is the desctiptor vector of dimension
n, u’(t) is an r; — vector function controlled by player P;,
the usual positive-(semi)definiteness conditions are imposed
on @', Q(T), R¥, i,j = 1,2,3, as in the associated optimal
control problem.

Because of the possibility of impulses in the descriptor
vector trajectory z(t), the existence of the cost integral must
be considered, moreover the type of integral considered also
must be carefully defined. We do this in the following assump-
tion.
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AsSUMPTION 2.1. The integral (2.2) is assumed to be
defined in the same way as in Bender and Laub (1987); that
is, as a distributional integral. This type of integral has the
property that

T T
/” §(t)v [l dt < 0o but /” §(t)v |12 dt = oo,
0 0

where 6(t)v is the impulse function along v defined by

< 6(t), f(t) >= f(0).

Thus an impulse function is integrable but its square is not.
Therefore, before the necessary conditions are derived,
some conditions for the existence of (2.2) are stated.

Lemma 2.1. Existence of the cost integral (Lemma 10
of Bender and Laub (1987))

Assume T < oo in (2.2). Then if (2.1) is controllable at
oo for any player, there exists an impulse-free control u/(t) for
player P; so that (2.2) exists and is finite.

Now let us assume that the decision-making sequence is
{Py, P,, P;}, that is, decision maker P; is the leader and se-
lects his strategy first; P is the first follower and selects his
strategy secondly; and P; is the second follower and selects
his strategy last. Consequently, in making his decision, P
knows the controls u? and u® of the other decision makers; P,
knows u3, and he knows that P, reacts according to declared
functions u? and u®; P; knows that P, reacts according to his
declared control u3, and he must take into account the reaction
of P, to declared controls u? and u3. The simplest problem
is solved by P; (an optimal control problem); a more complex
problem is solved by P, (a two-level Stackelberg problem);
and the most complex problem is solved by P; (a three-level
Stackelberg problem). The complete solution of the problem
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is obtained by the solution of the leader’s control problem,
since the leader must solve problems faced by both P; and
P, to determine their reactions to a given u®, in order to se-
lect that control which is best with respect to J3, taking these
reactions of the followers into account.

Therefore, in order to solve three-level Stackelberg prob-
lem, we must first determine the rational reaction of the first
follower P; to controls u? and u® which are declared by P, and
P, respectively. Since the underlying information pattern is
open-loop, the optimization problem faced by P; is reduced
to an optimal control problem defined by (2.1) and (2.2), for
i = 1, given u? and u3. By using the results of Bender and
Laub (1987), the necessary conditions, under which u! consti-
tutes the rational reaction to given u? and u3, take the form

Ei(t) = Az(t) + B ul(t) + B%u?(t) + B3u3(t)

Ez(0) = Ex, (2.3a)
E'p'(t) = —Q'x(t) — A'p'(¢)

E'pY(T) = E'Q'(T)E=(T) (2.3b)
0= R™Mul(t) + Bpl(¢) (2.3¢)

Now, let us consider the problem faced by P,. In deciding the
rational reaction of the second follower P, to u3, the rational
reaction of P; to u? and u® must be taken into account. Thus
what P, must do is to minimize the cost function (2.2) for
i = 2 subject to (2.3). By using the standard variational
techniques, the necessary conditions that characterize u? being
the rational reaction of P, to u® take the form

Ei(t) = Az(t)+ Bul(t) + B2u?(t) + B3u®(2)
Ez(0) = Exy (2.4a)
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E'pH(1) = —Q'a(t) Alw

E'pY(T)=E'QYT)Ex(T (2.4D)
0= R"u'(¢) + BYp'(¢) (2.4c)
E'p*(t) = -Q%x(t) — A'P*(t) + Q'n' (1)

E'p*(T) = E'Q*(T)Ex(T) — E'QY(T)En*(T) (2.4d)
Enl(t) = Anl(t) — B'm!(¢), En'(0)=0 (2.4e)
0 = R2'(¢) + BV p%(¢) + RMml(¢) (2.4f)
0 = R22u2(t) + B2 p2(¢) (2.49)

Finally, consider the problem solved by Ps;. P; minimizes his
own function (2.2) for i = 3, at the same time he must take
into account (2.4) 4 which characterizes the rational reactions of
P, and P, to u®. The necessary conditions for the control u?
to constitute the open-loop Stackelberg solution of the leader
p3 take the form

Ei(t) = Ae(t) + Blul(t) + B2 (t) + B>u(t)

Ez(()) - Exg (2.5a)
E'p' (1) = —Q x(t) — A'p*(¢)

E’p‘(T = E'QY(T)Ex(T) (2.5b)
0= R™Mu!(t) + BYpl(¢) (2.5¢)

E'p*(t) = —Q%2(t) — A'p*(t) + Q@ nl(t)

E'pY(T) = E'Q*(T)Ex(T) - E'QYT)En"(T) (2.5d)
Enl(t) = An'(t) — B'm!(t), En'(0)=0 (2.5¢)
0 = R?Wul(t) + BYp%(t) + RMm!(¢) (2.5f)
0 = R*%u(¢) + B2 p*(¢) (2.59)
E'p 3() Q3z(t) A'p 31‘ + Q'n?(t) + Q%n’(t)

p*(T) = E'Q*T)Ex(T) - E' Q (T)En*(T)

— E'Q*(T)En® (T) (2.5h)
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En?(t) = An?(t) — B'm?2(¢), En*(0) =0 (2.51)
En®(t) = An®(t) — B®m3(t) — Blw(t),

En®*(0)=0 (2.55)
E'p'(t) = —Q'n’(t) — A'p*(t),

E'pY(T) = E'QY(T)En®(T) (2.5k)
0= R3'wl(t) + BYp*(¢) + Rm2(t) + R w(t)  (2.5])
0 = R¥u*(t) + B2'p3(t) + R?2m?(t) (2.5m)
0= B'p'(t) + RMw(t) : (2.5n)
0 = R®u3(t) + B¥'p*(¢) (2.5p)

3. Characterization of optimal solution. For any
n X n matrix E with rank(E) = r < n, there exist n x n
nonsingular matrices U and V and r X r unit matrix I such

that (e.g., Liu and Zhang (1989))

I 0 ,
] 7 = .
UEV <0 0) (3.1a)

Therefore, for convenience in the later derivation and without
loss of the generality, let us assume that E has the form (3.1a),
and A, B’ and @’ have the corresponding form

{4|B7|Q7} =
An A12> | (Bf) | ( 1 {2> :
_ . ] - 3.1d)
{ (AZl Az2 : Bj ; (@) 22 (
For ease in notation, we define the following matrices

i 0 A» B}
RU=|(45 Q) 0
B 0 R

3.2a
i 0 0 0 i B? (8.%)
Q§2= 0 ng 0 , Bg: 0

0 0 R 0
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) -0 ].:311 Bg
e N
By 0 R®

(3.20)
0o 0 0 . B3
32 =10 Q%z 0 ) BS = 0
0 0 R 0
0 R?” B}
R33 = (R_zz: —32 0‘ ) :
By 0 R® |
(3.2¢)
) 0 0 0
ng =10 Q%z 0
0 0 R
B,=(00000000000 A,, B! B? B})
B, =(00000000A;,B100000) (3.24)
B;=(0A;,B'000000000000) o
B,=(0000A4;, B B200000000)
S1=(4},Q},00Q},000000Q3, 000)
S;=(0004} Q,0000000000) (3.2¢)
- ZE
S3=(0000000000 A4} @, 000)
S4=(0000000 45 Q,00Q7,000)
a(t) =(p3(t)', —n3(t)', m*(t), —p3(t), —n3(t),
w(t), m3@), @2(t), «3(t)) .
( (®). (3.2f)

a’(t) = (p2(t), —ni(t), mi(t), @'(t), (1))
al(t) = (pp(t)'s *(t)', W (t)).
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Using these new notation, the necessary conditions (2.5)
can be rewritten as follows:

#1(t) = Anai(t) + Bua(t), 21(0) = 10 (3.30)
—nl(t) = —Apnl(t) + Byui(t), nl(0)=0 (3.3b)
<n3(t) = —Anni(t) + Bsa(t), n3(0)=0 (3.3¢)
—nd(t) = —Annd(t) + Bya(t), n3(0)=0 (3.3d)

p}(t)Z_Q}ﬂ’.l(f) A'11P1(f) 53“ (t)

pi(T) = Q1,(T)x1(T) (3.3¢)
PH(t) = — Q3 21 (t) + Q14 ni(t) — Ay pi(t) — Sau(t)
pl(T) = 11(T)$1 (T) - Qll(T)nl (T) (3.3f)

Pi(t) = - Q?r’”l(t) + ?ilng(t) + Q%W%(,f)
— A}, p3(t) — S1a(?)
PH(T) = @3, (T)z1(T) — @3(T)n}(T)

- Q1,(T)n¥(T) (3.3¢9)
Pi(t) = — Q1 ni(t) ~ Ay pi(t) + Sauu(t)
pi(T) = Q1 n¥(T) (3.3h)

0=35] rl(t) Sinl(t) — Sini(t) — Sind(t)
+ B 3P1 (t) + B4P1 1)+ B1P1( )
Bpi(t) + R*®*a(t). (3.31)

The system (3.3) is a singular system in its own right.
Morever, the matrix of this system already has the form (3.1a).
In order to solve the two point boundary value problem (3.3),
it is necessary for R33 to be invertible. Towards this end, we
shall state some sufficient conditions for the invertibility of

R(= R*®) as follows:
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ASSUMPTION 3.1.
(1) (A22 B3) has full row rank;
(2) Qi, >0, R >0, j=1,2,3.

REMARKS 3.1. ,

(1) From Lemma 12 of Bender and Laub (1987), we can
obtain that assumptions (1), @3, > 0 and R!' > 0 are one
possible set of sufficient conditions for R'! to be nonsingular.

(2) If A is nonsingular, then the following relations is
true.

0 A C I 0 0

Z=|A" B 0]|=1|0 I 0
C' 0 D 0 C'AnHt I
I 0 O
X 0 I 0
—-C'(A)'BA™Y 0 I
0 A C
x| A B 0 (3.4)
0 0 D+C'(A)'BA™IC

Thus, we can get that Z is nonsingular if A is invertable, B > 0
and D > 0. According to the usual positive-(semi)definiteness
conditions which are imposed on Q*, RY, i,j,= 1,2,3 and
assumptions (2), we have @3, > 0, @3, > 0 and @3, > 0.
So from invertibility of R, R*> > 0 and R*® > 0, we can
conclude that R?? and R3? are nonsingular.

When introducing the linear transformations

—ni = fola 1= 1’273 (3.5(1)
pi=Flz, j=123 (3.5b)
—pi = Pl (3.5¢)
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Therefore @(t) can be determined by
a(t) = —RKZ(t,tg)z10 (3.6a)
with I being given by
K =5} + §4N{ + S4N? + S|N} + By P}
+ B, P? + B\ P} + B, P} (3.6b)
morever, the open-loop Stackelberg controls t;l , u? and u? are

the 13th, 14th and 15th subvector of @(t), respectively, where
Z(t, to) satisfies

Z(t,to) = [A1y — BiR™'K]Z(t,t,),  Z(t,t)=1I1 (3.6¢c)

and the N} and P/ matrices are obtained from

JV; = Alllvf - ‘N’ii‘All + (B‘H-l _ JV::'BI )R_lI&—

Nj0)=0, i=1,23 (3.7a)

P! =-Q}, — A}, P} — P} A;; — (83 + Pl B))RT'K
P{(T) = Q1,(T) (3.70)
P} = —Qh - QLiN{ - AP} — PP Au — (8, + PPB)RT'K
P{(T) = Qi1(T) + Q1 (T)N{(T) (3.7¢)

P13 = —Q?1 - Qi1N12 - Q%IJV? - '11P13 - Pi3A11
— (51 4+ P}B)R'K
P}(T) = Q1(T) + QL(T)N{(T)+ Q1 (T)N{(T)  (8.7d)
P} =—Q} N} — A} P} — PtA) — (S, + P{B)RT'K
P{(T) = Qu(T)N{(T) (3.7¢).
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Equations (3.7a-e) represent the Riccati equations to be solved
in order to obtain the open-loop Stackelberg strategy. This is
not an easy task; however, under some mild conditions de-
scribed in the following derivation, by using the well-known
eigenvector method for solving the Riccati equation, e.g.,
Abou-Kandi and Bertrand (1985), Vanghan (1969), analytical
expressions for the N} and P/ matrices may be found.

If the following matrices are defined

A = diag (A1, A1r, Anr, Ann), R=R?% (3.8a)

B' = (B}, B), Bs, B}) (3.8b)
§'=(81, 83 S5 5) (3-8¢)
%l 0 Q%l il
~ 0 0 0 11
= 3.8d
11 11 0 0

then the system (3.3) can be written in the compact form
T(t) = Ax(t) + Ba(t)  #(0) = (x4, 0, 0, 0) (3.9a)
p(t) = —Q(t)(t) — A'p(t) — Sa(t)
B(T) = Q(T)%(T) (3.9D)
0 = S'z(t) + B'p(t) + Ra(t) (3.9¢)
where Z(t) and j(t) are defined by

#(t) = (21 (), —nl(t), =n3(t), —nd(t)") (3.9d)

pt) = (P3(t), —pi(e), pi(t), P(E)). (3.9¢)
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Solving @(t) from (3.9¢) and substituting it into (3.9a-

b),we can get .
' ()=
pty)

A-BRV'S'  _BROB ) |
= o T () (3.10)
\ —(Q - SR™'S") —(A- BR™'S' p(t) o

Let ¢ be the femaining time before T, ie. ( =T —t,
and let #(¢) and p(¢) be the new variables expressed in terms
of (. Then using (3.10) one obtains the backward canonical

equation - \
- :%<;<)> Y (iir(o) . -
, (13(() =M p(¢) ‘ (3.11a)

with M being given by

_(—-(A-BR™'S'"  BR'B |
M B ( (Q—SR-'8) (A—BR1§'y (3.110) ’
while thé boundary conditions become
R (T) =0 (3.11¢)
| B(0) = Q(T)i(0) ’ (3.11d)
with Q(T) being
nI 0 QT QLT
NT) = 0 0 0 Q1:(T) «
L(T) Qn(T) 0 0

It is clear that M € R® 8" is a Hamilton matrix, and
hence its eigenvalues must be symmetric with respect to the
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imaginary axis of the complex plane. It will be further as-
sumed that the eigenvalues of M are distinct; this assumption
is make for the sake of clarity in the presentation and is by no
means necessary. ‘ '

Let D be an 8r x 8 diagonal matrix having the same
eigenvalues as A/ and arranged in such a way that

(A0 | )
D—(O _A> (3.12a)

with A being a 47 x 4r diagonal matrix with positive eigenva-
lues. Hence, there exists a nonsingular eigenvector matrix W,
so that ‘ '

D=WTMW. (3.120)
Define a new vector of variables by the transformation
W
L'E _— I;}fll I’_Vl2 ) ( (]l ) 3 13a
(13)_<W31" Wss ) \ G2 (3.130)
with .- v '

G = (41,4, 45 = (g5, 96,95 98)s 4" = (gh.q5:91) (3.13b)

= | I’V]l VVIQ = ”/’1 3'

Vi, = F; VAR—

M (Wzl 'sz) U 12 (Wzs

Wiy = (Wi Wis) '  (3.13¢)

we have

@)\ _ { exp(AQ) 0 \ [ d1(0) |
<‘j2(C)> a ( 0. eXp(—-AC)) <(]2(0)) . (3.14)
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Using the boundary condition (3.11d) for p{ (J=1,23,4)
and the coordinate transformation (3.13a), we have .

- W3161(0) + W33¢2(0) = Q(T)mﬁlfjl(o) + W12d2(0)]. (3.15a)

Thus, under the assumption (Q(T)W;, — Wss) is nonsin-
gular, §»(0) may be expressed in terms of ¢;(0).

(0) = Farl0) (3150)
with |
= [Q(T)Wiz = Waal ' [Way = QT)Waa].  (3.150)
| The‘refofe, from (3.14) for any Wl 18 o

3(¢) = H(Oa(¢) = Hi(QOa(¢) + H2(0)g(¢) . (3.16a)

‘with
H(Q) = [Hi(Q), Ha(Q)] = exp(~AQF exp(~A¢)  (3.160)
- Now using (3.13) and (3.16) with the boundary condi-
tions ny(T)=0-(: =1,2,3),
[Wzl+W23H1(T)]q1(T)+[ 792+ Was Ho(T ]q(T _0 (3.17a)
N
J(T) =G(T)0u(T) = ~{Waa + Waa Ha(T)
X ”’V‘n + Was Hi(T))q1(T) (3.170)

assuming that the above inverse exists.
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From (3.14), the following relations can be gotten

a(T) =exp(AiT)g:(0)  (3.18q)
§(0) =exp(-\T)GT) -+ (3.18D)

thus, (3.17b) leads to

i(0) = L(T)02 (0) = exp(~ Ry T)G(T) exp(Ai T)gs (0) (3.19)
where f\l = diag (A, A3; Ay) with A = diag (Aq, ‘Az,‘Ag, Ay).

Using the relation between ¢;(0) and ¢;((), one finally
obtains A

§¢) = LOan(¢) = exp(A1Q)L(T) exp(—A1 ()i (¢). (3.20)

The vector §3(¢) can be expressed in terms of ¢;(¢) only,
so that :

X0 =M(Qa©)  (321)

N(Q) = My(Q)as ()  (3210)
P(¢) = M3(()da (€) C (3210)

with

Mi(Q) = Wit + Wia L(C) + Wis [Hi(C)

HHOLE), =123  (321d)
N = INHQ), NXQY, NROY]  (3.21¢)
P() = [P}(C), PHCY, PHCY. PHCY)  (3.21F)
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Flnally, \nth the help of the above relations, analytical
expressions of the matrices in (3. ) can be deduced -

N(C) = Mz(c Ml(crl
P(¢) = Ms(( JMy(C)” .

4. Tllustrative example. Let the system and the cost
functions for a three-level Stackelberg problem be

. |
10\ (a(®)\ _ [0 1\ [
0 0/ \a(t)) ~\1 0/)\aa(t)) )

4 G) ul(t) + (1> u2(t) + (D (), - 21(0) = w10
7= / {1/22()'2(t) + /20 (D]}t + 1/2{e1 (2)]°

j=123, |

where () = [x1(t) l'z(t)]
Optlmahty conditions lead to the matn\

-(1”'0 00 0 0 0 1 '0\'
{01 0o 0 0 -1 -1 1
o0 1 0 1 -1 0 0
o0 0 1 0 1 0 O
M=11 0 2 1 -1 0 0 o
0 0 -1 2 0 =1 0 O
2 -1 -1 0 0 0 -1 0
1 2 0 0.0 0 0 -1

whose eigenvalues are +2.528; :i:l‘.‘959>; +1.595; +1.493-
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And the matrix W is given by
, / 1 1 1
-1.295 -2.193 1.194 .2
-2.095 1.355 —.7383 .4
0.6180 ~1.618 —1.618 .6
—.7292 7072 —.8072 1.032
0.9442 =1.552 —.9630 .3043
1.528 9591  .5951 .4926
\ 4508 —1.144 1.306 .6378

1 11 1 \
=~1.295 —2.193 1.194 ~ .2950
—2.095 1.355 —.7383 .4772"
6180 —1.618 —1.618 .6178
1.684 -—2.182 3.520 -5.

—2.180 4.788  4.200 = —1.540 -
—3.528 —2.959 —2.595 —2.493
1.041  3.531  —5.694 —3.228/ |

Proceeding as explained above, we can get
Y(¢) =e(¢)™![—4.390 — 4.174 exp(—.56887() .
- —4.704 exp(—.9328(¢) - 7.930 exp(—1:493¢) -
— 0475 exp(—5.056¢) — 3.871 exp(—4.487¢)
— 1310 exp(—4.123¢) + .4158 exp(— 4.020¢)]
W2(C) =e(¢)~1[1.295 + 4.980 exp(—.5688¢) '
— 10.32 exp(—.9328() —.10.27 exp(—1.493()
+ .0140 exp(—5.056¢) + 4.619 exp(—4:487¢)
— .2875exp(—4.123() + .5385 exp(— —4. 070g )]
u3(c ) =¢(¢)71[2.095 — 3.078 exp(—.5688¢)
+ 6.381 exp(—.9328(¢) — 16.61 exp(—1.493()
— 0227 exp(—5.056¢) — 2.854 exp(—4.487¢)
+. 1777é\p( 4.123C) + .8712 exp(—4.020¢)]



' X.Liu and S.Zhang - 131
where e(() is given by

e(¢) = 1+ 2.271 exp(—.5688() +8. 643exp( 9328¢)
+ 34.81 exp(—1.493¢) + .0108 exp(—5.056¢)
+ 2.106 exp(—4.487¢) + .2407 exp(—4.123¢).
~1.826 exp(—4.ozog).

5. Conclusion. This paper develops e\phc1t expressions
for three-level open-loop Stackelberg strategies for sequential
decision making problems characterized by linear continuous-
time singular system and -quadratic cost function. By using
the eigenvector method, the Riccati equations which come
from the necessary conditions of the existence of three-level
open-loop Stackelberg strategies are solved. The main ad-
vantage of the proposed method is to replace a very difficult
numerical integration problem which results from solving the
Riccati equations. The results of the note can be straightfor-
ward extended to multilevel Stackelberg problems. But the
burden of computing multilevel open-loop Stackelberg strate-
gies will be heavy increased, so is the time of computation.
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