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Abstract. New information technologies provide a possibility of collecting a large amount of fun-
dus images into databases. It allows us to use automated processing and classification of images
for clinical decisions. Automated localization and parameterization of the optic nerve disc is par-
ticularly important in making a diagnosis of glaucoma, because the main symptoms in these cases
are relations between the optic nerve and cupping parameters. This article describes the automated
algorithm for the optic nerve disc localization and parameterization by an ellipse within colour
retinal images. The testing results are discussed as well.
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1. Introduction

Eye fundus examination is one of the most important diagnostic procedures in ophthal-
mology. A high quality colour photograph of the eye fundus is helpful in the accommo-
dation and follow-up of the development of the eye disease. Evaluation of the eye fundus
images is complicated because of the variety of anatomical structure and possible fundus
changes in eye diseases. Sometimes it requires high-skilled experts for evaluation.

The ways of a better fundus image evaluation is the use of modern information tech-
nologies for processing and parameterization of the main structures of the eye fundus.

There are three main structures in the eye fundus image, used for making a diagnosis
in ophthalmology:

1) optic nerve disc;
2) blood vessels (retinal arteries and veins);
3) retina.
The optic nerve disc is the main structure for localizing other eye fundus structures as

well as a very important structure for diagnosing some eye and neurological diseases.
Characterization of such cases is the object of image analysis.
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The optic nerve head appears in the normal eye fundus image as a yellowish disc with
whitish central cupping (excavation) through which the central retinal artery and vein
pass.

Changes of the optic nerve disc can be associated with numerous vision threatening
diseases such as glaucoma, optic neuropathy, swelling of the optic nerve head, or related
to some systemic disease.

This paper focuses on automated optic nerve disc (OD) localization and approxima-
tion by an ellipse in retinal images to produce the parametric form of the optical nerve
disc. The intensity of the optic nerve disc is much higher than the surrounding retinal
background. Thus the position of OD can roughly be estimated by finding the region or
point with the maximum variance (Sinthanayothin et al., 1999). However, such a straight-
forward method often fails due to non-uniform illumination or photographic noise seen
in the retinal images.

The first problem of automated OD localization is to identify its position in retinal
images. In the literature, there are many algorithms for OD localization. Basically these
methods deal with image segmentation, dynamic contours and geometric models.

In (Sinthanayothin et al., 1999; Boyd, 1996) the vessel detection and convergence
analysis are based on the region of nearly vertical vessels emanating in the area of OD.
This algorithm led the authors to achieve an accuracy of 80%. A separate case of conver-
gence analysis is introduced in (Hoover and Goldbaum, 2003). Here every vessel forms
a separate line and the voting for the constructed lines is performed. Since this is an ex-
tension of methods (Boyd, 1996; Chaudhuri et al., 1989) this provides the accuracy of
89%. In the paper (Tobin et al., 2006) is described an accurate vasculature segmentation
method and achieve the localization accuracy up to 87%. Also segmentation method is
presented in paper (Grau et al., 2006). In this paper authors discusses anisotropic Markov
random field models for gathering prior knowledge of the geometry of the optic nerve
disc structure. A different approach was used in (Goldbaum et al., 1996), where the main
idea is segmentation accomplished by using matched spatial filters of bright and dark
blobs. However, quantitative results for nerve localization were not provided. In (Pinz et
al., 1998) the localization of optical nerve disc is accomplished by segmenting a retinal
image into vessels, fovea, and nerve. The lack of this method is that the authors have a
priori knowledge where OD is in the retinal image, and the data set used was very small.
The accuracy of this method is 91%. Segmentation and the vessel tracking methods are
also presented in (Tolias and Panas, 1998). Nerve localization is based on the brightest
region search in a restricted third of the image. The testing data set consisted only of
three fundus images, so the results are very questionable. The use of active dynamic con-
tours, described in (Morris and Donnison, 1999), is introduced, too. The main idea is
that edge gradients and terminations in the image are converted into energies. This cov-
ers the actual OD by a curve. This approach is explored in article (Xu et al., 2007). In
this article authors presents modified active contour algorithm by introducing knowledge-
based clustering and smoothing update techniques. This allows authors to achieve better
success rate (94%) compared to standard gradient vector flow snake model (12%). Geo-
metric models, presented in (Foracchia et al., 2004), probe the fundus image in a spatial
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or frequency domain with a predefined model for optic nerve disc localization. Another
approach is presented in (Lowell et al., 2004). Here authors deals with blurred images
from diabetic screening programme. Article incorporates specialized template matching
filters and active segmentation methods for OD localization and leads to accuracy of edge
Excellent-fair performance (evaluated by ophthalmologist) of 83%.

Almost all of these methods rely on the quality of vasculature segmentation.
The automated optic nerve disc approximation by a parametric curve such as an ellipse

is a second goal of this paper. Of course, 3D model parameters of optic disc could be
much more informative, but this is not possible to explore, since this problem is related
to the equipment involved with 3D photography.

However, the OD parameterization is insufficiently explored. The research is mostly
concentrated on exudates, drusen detection and parameterization, but not the optical disc
itself.

This problem is extremely difficult since, in general, the OD in the retinal image does
not have a homogenous structure. This is due to a vascular tree within the optic nerve
disc, and we have to deal with colour images. This article describes an algorithm for OD
localization in retinal images and parameterization by an ellipse.

Use of new information technologies provides a possibility of collecting a large
amount of fundus images into databases. It allows us to use automated processing and
classification of images for clinical decisions.

The automated localization and parameterization of the optic nerve head is particu-
larly important in making a diagnosis of glaucoma, because the main symptoms in these
cases are links between the optic nerve and cupping parameters and differences in the
symmetry between eyes. Besides, tracking of the disease progress is almost impossible
without a quantitative change in patient’s fundus images with the lapse of time. Thus, the
parameterization of the optic nerve disc is crucial.

2. Image Pre-Processing and Scaling

The eye fundus images were collected in the Department of Ophthalmology of the Insti-
tute for Biomedical Research of Kaunas University of Medicine, using, the fundus camera
Canon CF-60UVi, at a 60◦ angle. 6,3 Mpixel images (image size 3072 × 2048 pixels)
were taken. The magnification quotient was 0,0065248 mm/pixels, common magnifica-
tion quotient for the system eye-fundus camera was 0,556782 ± 0,000827 (mean ± SD).
The scale (mm/pixels) for the fundus camera was 0,01171875 mm/pixels.

In order to localize OD, first of all we have to pre-process an image. The first step
of image pre-processing is accomplished by scaling down the retinal image to the size
of 768 × 512 pixels. Scaling is performed in order to decrease the computation time.
Basically the circular Hough transform is the most time consuming procedure, since for
every pixel in a spatial domain it calculates circle of radius r in a Hough space. In the case
of the initial image, it has to be done 6291456 times. In the case of a scaled down image
it has to be done 16 times less. This leads to a substantial acceleration of approximation
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by the ellipse, which is very important at this stage. Besides, the size of the optic nerve
disc is much larger than the details lost in the scaling operation. Also, as shown in the
results section, quantitative parameters have a minor difference between that, achieved
from a non-scaled image, and those achieved from the scaled down fundus image.

Since the blood vessels are located within the area of the optic nerve disc and we will
search for a round object in the image, the second step of pre-processing is to remove
the vessels from the area of OD. Segmentation methods work on a gradient image and
lock onto homogeneous regions enclosed by strong gradient information. This task is
extremely difficult in our context since the optic disc region, as mentioned before, is
invariably fragmented into multiple regions by the blood vessels.

2.1. Mathematical Morphology

Morphological operations typically probe an image with a small shape or template known
as a structuring element. The four basic morphological operations are erosion, dilation,
opening, and closing (Soille, 1999). The grey-scale erosion can be described as a calcu-
lation of the minimum pixel value within the structuring element centred on the current
pixel Ai,j . Denoting an image by I and a structuring element by Z, the erosion operation
IΘZ at a particular pixel (x, y) is defined as

IΘZ = min
(i,j)∈Z

(Ax+i,y+j), (1)

where i and j index the pixels of Z.
The grey-scale dilation is considered in a dual manner and thus can be written as

I ⊕ Z = max
(i,j)∈Z

(Ax+i,y+j). (2)

The opening of an image is defined as erosion followed by dilation, while the im-
age closing includes dilation followed by erosion. Thus, the morphological operation as
closing can be defined as follows:

I • Z = (I ⊕ Z)ΘZ = min
(i,j)∈Z

(
max

(i,j)∈Z
(Ax+i,y+j)

)
. (3)

The closing operator usually smoothes away the small-scale dark structures from
colour retinal images. As closing only eliminates the image details smaller than the struc-
turing element used, it is convenient to set the structuring element big enough to cover
all possible vascular structures, but still small enough to keep the actual edge of the OD.
Mendels et al. (1999) applied the closing grey-level morphology operation to smooth the
vascular structures while keeping the actual edges of the optic disc.

The fundamental concepts of grey-level morphology operations cannot be directly
applied to colour images (Goutsias et al., 1995). Each colour retinal image I can be
described as a set of three independent vectors {R, G, B}. If we assume that each of these
vectors represents a grey-scale image (Fig. 1), we can apply the morphological closing
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Fig. 1. The top row is a colour image decomposed into colour vectors; the bottom row shows images after
morphological closing.

operation (3) to each colour vector with the disc structuring element whose diameter is
14 pixels. The diameter of the structuring element should not be smaller than the widest
vessel underlying in the image. Thus, in our case, the vessels are not wider than 14 pixels.

2.2. Recombination of the Results

After decomposing the retinal image into R, G, and B bands and processing each band
separately, we can recombine the results. However, a recombined result is not valid in
general.

As described by Peters (1997), let us consider a separate erosion of R, G, and B

bands, using the structuring element Z. Each pixel after erosion (RΘZ) is the minimum
value of initial R within the structuring element neighbourhood of the pixel. Descrip-
tions of GΘZ, BΘZ are similar. The problem is that the minimum is valid only for the
separate R, G, B bands. After we recombine those separate bands into the structure for
colour representation, it becomes not clear which minimum to use. Thus, this violates the
property of erosion (1) where the minimum has to be over all the three bands within the
structuring element Z. The same scheme results in dilation.

However, the recombination of processed bands of the retinal image does not intro-
duce a colour distortion and we achieve a closed colour retinal image (Fig. 2). The colour
distortion is avoided because, in general, the morphological closing fills the dark holes
in bright regions. Further, the optical nerve disc is a bright region in the retinal image,
and the brighter the region, the higher the value of each band’s pixel brightness. Hence,
by selecting an appropriate structuring element’s size, we eliminate dark regions formed
by vasculature and replace them by the surrounding brighter region, located around the
vessels replaced.

In further investigation, in order not to loose the optical disc details, we will use the
closed colour retinal image converted to grey-scale, since the OD edge describes all the
three colour bands. This approach suffers from unwanted details seen in the R and B
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Fig. 2. The initial retinal image is shown on the left; the closed colour image is shown on the right.

bands, which do not belong to the optic nerve disc. Thus, as a reference the closed G

band fundus image for the same patient’s eye is also used which is least polluted with
additional details.

3. Localization of the Optical Nerve Disc

After the pre-processing step has been completed, we have to localize the OD center. The
difficulty is that we even do not know a priori where the optical disc lies in the retinal
image. Thus, localization is performed in two steps, by applying the Canny edge detector
and Hough transform to the edge-detected image.

3.1. Edge Detection

The Canny operator is one of the most widely used edge detection algorithms due to its
performance. Canny has defined three criteria to derive the equation of an optimal filter
for step edge detection: good detection, good localization, and clear response (only one
response to the edge) (Canny, 1986). We describe a scheme of the Canny edge detector
algorithm.

The first step is to filter out any noise in the original image before trying to detect and
locate any edges. Consider a two-dimensional Gaussian function:

Gσ =
1√

2πσ2
e(− i2+j2

2σ2 ), i = 1 . . . n, j = 1 . . . m. (4)

The main advantage of the Gaussian function is that we can easily approximate by a
discrete convolution kernel. The discrete approximation can be calculated using

hg(i, j) = e(− i2+j2

2σ2 ), (5)

h(i, j) =
hg(i, j)∑

i

∑
j hg

, (6)

where m, n are the dimensions of the discrete approximation matrix. In our case, the stan-
dard deviation for noise suppression used σ = 2. This parameter is set experimentally.

Once a suitable mask has been calculated, the Gaussian smoothing is performed using
the standard convolution methods.
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3.2. Edge Gradient Detection

After smoothing the image and eliminating the noise, the next step is to find the edge
strength by taking the gradient of the image.

Thus, for each pixel value at (x, y) in the smoothed retinal image I , we calculate

∇I(x, y) =
(
Ix(x, y), Iy(x, y)

)′
, (7)

where Ix(x, y), Iy(x, y) are image gradients along the x and y axis, respectively.
Calculation of edge strength is performed by

Es(x, y) =
√

I2
x(x, y) + I2

y (x, y). (8)

Once the gradient has been found, the calculation of its direction comes to be possible:

Eo(x, y) = arctan
(Ix(x, y)

Iy(x, y)

)
. (9)

Further non-maximum suppression has to be applied. There are only four directions
when describing the surrounding pixel degrees: 0, 45, 90, and 135. Thus, each pixel has
to be grouped in one of these directions to which it is closest. Next we check whether
each non-zero pixel (x, y) in the image is greater than its two neighbours perpendicular
to the gradient direction E0(x, y). If so, keep the pixel (x, y), or else set it to 0.

And the final phase of the Canny edge detector is to apply the hysteresis threshold.

3.2.1. Otsu’s Threshold Method
By thresholding the previous result at two different levels τ1 and τ2, we obtain two binary
images T1 and T2. The difficulty is that we cannot apply the static threshold level τ1

since there are no retinal images with identical properties. For automated threshold level
calculation we use Otsu’s method (Otsu, 1979).

Otsu’s method maximizes the a posteriori between-class variance σ2
B(t) given by

σ2
B(t) = w0(τ1)

[
1 − w0(τ1)

](μT (τ1) − μ1(τ1)
1 − w0(τ1)

− μ1(τ1)
w0(τ1)

)
, (10)

where

w0(τ1) =
τ1∑

i=0

ni

N
; w1(τ1) = 1 − w0(τ1);

μ1(τ1) =
τ1∑

i=0

i
ni

N
; μT (τ1) =

L−1∑
i=0

i
ni

N
.

The optimal threshold τ1 is found by Otsu’s method through a sequential search for
the maximum of max0�τ1<L σ2

B(τ1) of τ1, where ni represents the number of pixels in
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the grey-level i, L is the number of grey-levels, and N is the total number of pixels in the
image (Tian et al., 2003).

We assume that to calculate the threshold level τ1, the black background around the
retina is omitted. Also, after image pre-processing, a supplementary noise is observed.
This leads to the appearance of unwanted details since, in origin, Otus’s method was
designed for weak gradient change detection. After the threshold, described in the next
section, the edge detected images contain too many edge details. Thus, after a careful
computation, the original parameter τ1 is scaled to 25% and the parameter τ2 is calculated
as follows: τ2 = 0.1τ1.

3.2.2. Hysteresis Threshold
After the parameters τ1 and τ2 have been calculated, we threshold the image at these
two levels. For all unvisited pixels (x, y) in the image T2 we trace each segment in T2

to its end and set them as contour points. At the segment end in the image T2 we seek
its neighbours in the image T1(since this image has much more details). If there are
neighbouring pixels in the image T1, we denote them as contour points, too.

As described in the recombination of the results section, to detect edges, we use grey-
level images from the closed band G, and the closed colour retinal image converted to
grey-scale. This is necessary because there are cases where band G does not provide any
information about OD, and the bands B, R are very noisy. In addition, using the closed
grey-scale image with all bands, we retain all the nested information about OD.

The results of the edge detection scheme described are shown in Figs. 3, 4.
Here, in the right-side figures, the boundaries of OD are displayed 5 times magnified.

Fig. 3. The closed G band image after edge detection.

Fig. 4. The closed grey-level retinal image after edge detection.
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3.3. Applying Hough Transform in the Optic Nerve Disc Localization

After the edge detection has been completed, we apply the Hough transform (Hough,
1965) to the optic nerve disc localization. This is necessary because the optic disc struc-
ture in retinal images is nearly circular. We describe here the main idea. The general
Hough transform can be found in (Ballard, 1981).

The circular Hough transform is the method for transforming the image plane into the
Hough plane. Each picture element in the image plane is transformed into a circle in the
Hough plane.

Thus, in the case of a circle, this model has three parameters: two parameters indicate
the centre of the circle and one parameter the radius. In this scheme the parameter space
is congruent with the image space, that is, each point in the image maps to a point in the
same position in the parameter space (Ashbrook and Thacker, 1998). To detect a circle
of radius r, the circles of this radius are plotted in the Hough parameter space centred on
every edge pixel found in the image. Thus, an array of peaks is formed for each edge-
detected fundus image. A peak emerges when the circles in the Hough space intersect
one another. Such peaks in the Hough parameter space indicate the possible centres of r

radius circles.
The problem is that we do not know both: where the OD lies in the retinal image and

how large it is. We iterate the circular Hough transform each time with the different circle
radius r and select the highest peak value in the peak array formed (Fig. 5).

After the parameters for the circle have been selected, we assume that we have ap-
proximately found the OD centre coordinates and optic nerve disc radius. Fig. 6 shows the
optic nerve disc boundary after Canny edge detection and the resulting iterative Hough
transform circle (dashed line).

4. Optic Nerve Disc Approximation by the Ellipse

After we have approximately calculated a radius of the circle and its centre coordinates,
the next step is to choose the points describing the OD boundary.

Fig. 5. The location of a circle in the image space is indicated by a highest peak in the peak array.
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Fig. 6. The result of Iterative Hough transform referring to the edge from the retinal image area.

This is done by varying the circle radius on polar coordinates. The OD boundary can
lie (as seen in Fig. 6) either within the circle found or outside it. In this case, we state that
the binary image point (x, y) is selected as a boundary of the optic disc by iteration

phi=0
Do While phi < 2 * π

Increase phi
radius = r*0.9

Do While (radius < r * 1.1)
x = Hough centre x + (radius * Cos(phi))
y = Hough centre y + (radius * Sin(phi))

If point(x,y)=TRUE Then
Add point(x,y) to boundary point accumulator

End If
Increase radius

Loop radius
Increase dphi

Loop phi

Here: phi is a direction; dphi is a direction angle step; radius is the current radius, r is the
radius obtained by the iterative Hough transform.

In other words, we iterate the angle and the radius in polar coordinates, found by
the iterative Hough transform, and check whether the image point (x, y) is set to 1. If
so, we add it to the boundary point accumulator, or else move further to check another
point (x, y).

Here the radius r is restricted to the interval [r ∗ 0.9, r ∗ 1.1], whereas there are many
cases where, after detecting the edge inside the area of OD, we see the edges of ex-
cavation. As usual, these edges (we assume them to be noise) are located near the OD
boundary and can be defined as false ones. Also, the optic disc boundary is not always
round or ellipse-shaped after edge detection. Consequently, several fragments of bound-
ary arcs can form a round-shaped structure and other fragments, starting from the true
OD boundary, can stretch along the retina as a line (Fig. 7). These lines are no more than
noise left from vessel tree removal.

After the optical disc boundary coordinates have been accumulated from both binary
images (as described before, from the closed grey-level and the closed G band image) of
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Fig. 7. OD boundaries with noise after edge detection.

the same patient of the same eye, we apply the least squares ellipse fitting algorithm to
the parametric form of cone calculation depending on the data set collected.

4.1. Least Squares Method

Since our objective is to parameterize the optic disc by an ellipse, we further introduce
the least squares algorithm for fitting the ellipse. A full description of the algorithm can
be found in (Fitzgibbon et al., 1999). Since this algorithm solves the best fit problem
to the data set, it also controls the rotation of a cone and guarantee that the calculated
parameters of an elliptic cone fit best to the given data set.

In general, the cone can be expressed as

F (Eparam, x) = Eparam · x = ax2 + bxy + cy2 + dx + ex + f = 0, (11)

where Eparam = [a b c d e f ] are the parameters of a cone and x = [x2 xy y2 x y 1]
are pixel coordinates from the boundary accumulator array. F (E; xi) is the so-called al-
gebraic distance from the point (x, y) to the cone F (Eparam; x) = 0. So the fitting of the
general cone can be approached by minimizing the sum of squared algebraic distances:

ΘA(Eparam) =
N∑

i=1

F (xi)2. (12)

Bookstein (1979) has shown that problem (12) can be solved as a problem of eigen-
values

DT DEparam = λCEparam. (13)

Here D is the design matrix and D = [x1 x2 . . . xn]T , C is the constraint matrix.
The appropriate constraint on the ellipse is well known, namely, that the discriminant

b2 − 4ac has to be negative. However, this constrained problem is difficult to solve in
general, since the Kuhn–Tucker (Rao, 1984) conditions do not guarantee the solution.
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Data scaling is performed by applying ET
paramCEparam = 1quadratic constraint C of

the form

ET
param

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0
0 -1 0 0 0 0
2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Eparam = 1, (14)

which compels the constraint to become 4ac − b2 = 1. Thus, this reduces the ellipse
fitting algorithm to minimizing

E =
∥∥DEparam

∥∥2
, (15)

with respect to the constraint ET
paramCEparam = 1.

Therefore, by differentiating the equation and assuming that λ is a Lagrange multi-
plier, we arrive at the system of equations:

SEparam = λCEparam, (16)

ET
paramCEparam = 1, (17)

where S is the scatter matrix DT D.
The problem described is easily solved by eigen-vectors of Eq. (16). If (λi, ui) solves

(16), then it also does solve (λi, μui) for any μ, and from (17) we can find μi that satisfies
μ2

i u
T
i Cui = 1 by using

μi

√
1

uT
i Cui

=

√
1

uT
i Sui

. (18)

Finally, by applying E∧
parami

= μiui, we solve Eq. (18).
Thus, by the Fitzgibbon et al. (1999) scheme, the best parameters of the ellipse corre-

spond to an eigen-vector identified by a minimal positive eigen-value.

5. Results

Eye fundus images were provided by the Department of Ophthalmology of the Institute
for Biomedical Research of Kaunas University of Medicine (BRKU). The testing set
consisted of 54 retinal images.

Within the scope of our investigation, only the retinal images of glaucomatous and
healthy eyes were taken.

The results were evaluated by two criteria: optic nerve disc position in retinal image
identification and approximation by ellipse accuracy.
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In the first case, in the OD localization there was only one false result which leads the
proposed algorithm to the accuracy of 98%. In the second case, in the optic nerve disc
approximation by ellipse correctness measurements we excluded the case where the OD
localization failed. Next, a comparative parameter space was constructed.

In this step, the ophthalmologists from the BRKU set the points describing the optic
nerve disc boundary by hand in the provided retinal images. These fundus images were
not scaled down. Further, the least squares method described above was incorporated to
produce the parametric form of each optic disc from all the 54 retinal images. Since the
reference points were set by ophthalmologists, the defined elliptic parameters formed a
reference parameter space for the proposed automatic algorithm testing. As described
in the least squares section, the rotation of ellipse is totally controlled by the algorithm.
Besides, the reference points and that gathered by an automatic algorithm were provided
to the same least squares algorithm to get a parametric cone representation.

The comparative parameter space was formed of major and minor axes as well as
horizontal and vertical diameters of the ellipse. The vertical and horizontal diameters of
a cone were used here to indirectly show and evaluate the rotation of the ellipse. For the
approximated examples shown in Figs. 8, 9, 10 both data sets (ellipse parameters from
the reference points and ellipse parameters from the proposed algorithm) is provided in
Table 1.

Fig. 8. Excellent approximation by the ellipse.

Fig. 9. Good approximation by the ellipse.

Fig. 10. Poor approximation by the ellipse.
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Table 1

Some values from two data sets compared

Ellipse parameters from
reference points

Ellipse parameters from
proposed algorithm Average

error rate
%OD

major
axis

OD
minor
axis

OD hori-
zontal

diameter

OD
vertical

diameter

OD
major
axis

OD
minor
axis

OD hori-
zontal

diameter

OD
vertical

diameter

2.54 2.44 2.44 2.54 2.56 2.46 2.54 2.49 1.89

2.18 2.09 2.09 2.18 2.17 2.08 2.14 2.08 1.96

2.27 2.15 2.19 2.22 2.28 2.16 2.19 2.19 0.52

2.28 2.16 2.18 2.25 2.22 2.11 2.11 2.21 2.44

2.22 2.06 2.08 2.20 2.29 2.07 2.23 2.12 3.54

2.43 2.29 2.31 2.41 2.45 2.43 2.42 2.42 3.02

2.59 2.56 2.53 2.51 2.49 2.42 2.47 2.40 4.02

2.30 1.97 1.98 2.19 2.34 1.95 2.19 1.98 5.80

2.45 2.43 2.42 2.42 2.50 2.29 2.21 2.21 6.19

2.41 2.02 2.04 2.39 2.40 2.21 2.40 2.21 8.64

2.22 2.15 2.20 2.18 1.70 1.57 1.57 1.73 24.81

2.25 2.14 2.21 2.18 1.51 1.35 1.50 1.34 35.22

The overall average error rate achieved for the major axis of the ellipse was 4.97%, for
the minor axis – 6,06%, for the horizontal diameter – 9,26% and for the vertical diameter
of the ellipse – 7,37%.

Such a high error rate of the horizontal and vertical diameters of the ellipse is self-
explanatory. Since the OD in retinal images has nearly a circular shape (the average dif-
ference in the provided data-set of minor and major axes is 0,2mm), thereof the ellipse
rotation angle with respect to the positive Cartesian of the axis x is very neat. In other
words, OD has more degrees of freedom to be rotated to vouch for the best fit problem.

We assume that the excellent approximation is when the average of parameters from
two sets differ less than 3%, a good approximation is when the average of parameters
are between 3% and 6%, and a poor approximation is when the average of parameters is
more than 6%.

As can be seen from Table 1, the last two lines the average error between parameters
is more than 20%. In all such cases in eye fundus images the optic nerve disc has a very
weak edge gradient and can hardly be seen even by eye, as shown in Fig. 10, the last two
images. Consequently, the made up OD boundary data set collected is very small. This
is because we restrict the radius r when selecting boundary points in the section of optic
nerve disc approximation by the ellipse and that leads to the fact that the least squares
method fails to produce the right parametric form of the ellipse.

Some examples of the algorithm work are provided in Figs. 8, 9, and 10.
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6. Conclusions

This paper provides an efficient algorithm for the optic nerve disc localization and ap-
proximation by a parametric curve such as an ellipse. In the pre-processing step we have
showed that after applying the morphological closing operation to decomposed image
colour channels, the recombined result does not cause colour distortion in the retinal im-
age, while the vascular tree is removed from the colour retinal image.

In the second section, the Canny edge detection algorithm was introduced to deter-
mine a boundary of the optic disc. The introduction of non-static threshold value com-
putation by Otsu’s method extended this algorithm. This extension automatically selects
values for the Canny threshold depending on the intensity of each retinal image. To local-
ize an approximate centre of the optic nerve disk, the iterative circular Hough transform
was used that led the algorithm accuracy of the localization up to 98%.

Finally, the least squares method was applied to calculate the ellipse parameters on the
set of OD boundary points. The resulting ellipse parameters were compared and showed
that the elliptic parameters, obtained by the proposed algorithm, on the average did not
differ from those obtained by the reference points more than 10%. Also, the reference
points have been taken from a non-scaled down image, which shows that the loss of
information is minor in this context of problem.
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Automatinis akies nervo disko parametrizavimas

Povilas TREIGYS, Vydūnas ŠALTENIS, Gintautas DZEMYDA,
Valerijus BARZDŽIUKAS, Alvydas PAUNKSNIS

Akies dugno tyrimas yra viena iš svarbiausi ↪u oftalmologijos diagnozavimo procedūr ↪u. Akies
dugno nuotrauk ↪a sudaro trys grupės struktūr ↪u: akies nervo diskas, kraujagyslės ir tinklainė. Atskiru
atveju akies nervo diske gali būti stebima pakitusi ekskavacija. Taigi, automatinis akies dugno
nuotraukoje esanči ↪u struktūr ↪u klasifikavimas ir parametrizavimas galimas tik aiškiuose (kokybiš-
kuose, aiškiai išreikštos anatominės struktūros) vaizduose. Tokio tipo nuotrauk ↪u kompiuterizuota
automatinė analizė yra ypač sudėtinga. Be to, automatinis optinio nervo disko lokalizavimas ir
parametrizavimas yra svarbi oftalmologinė procedūra nustatant glaukomos diagnoz ↪e, kadangi pa-
grindiniai lig ↪a nusakantys požymiai yra parametr ↪u santykiai tarp akies nervo disko bei galimai
pakitusios ekskavacijos. Šiame straipsnyje autoriai pateikia algoritm ↪a automatiniam akies nervo
disko lokalizavimui bei parametrizavimui elipse spalvotose akies dugno nuotraukose. Taip pat,
straipsnyje yra aptariami siūlomo algoritmo darbo rezultatai.


