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Abstract. Multidimensional scaling is a technique for exploratory analysis of multidimensional
data widely usable in different applications. By means of this technique the image points in a low-
dimensional embedding space can be found whose inter-point distances fit the given dissimilarities
between the considered objects. In this paper dependence of relative visualization error on the
dimensionality of embedding space is investigated. Both artificial and practical data sets have been
used. The images in three-dimensional embedding space normally show the structural properties of
sets of considered objects with acceptable accuracy, and widening of applications of stereo screens
makes three-dimensional visualization very attractive.
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1. Introduction

Multidimensional scaling (MDS) is a technique for exploratory analysis of multidimen-
sional data widely usable in different applications (Borg and Groenen, 2005; Cox and
Cox, 2001); e.g., applications of MDS based visualization of observation points in in-
teractive optimization systems is discussed in (Törn and Žilinskas, 1989). Let us give a
short formulation of the problem. The dissimilarity between pairs of n objects is given
by the matrix (δij), i, j = 1, . . . , n, and it is supposed that δij = δji. The points in an
m-dimensional embedding space xi = (xi1, . . . , xim), i = 1, . . . , n should be found
whose inter-point distances fit the given dissimilarities. Different measures of accuracy
of fit can be chosen defining different images of the considered set of objects. In the case
the objects are points in a high-dimensional vector space such images can be interpreted
as different nonlinear projections of points in high-dimensional space to their images in
an embedding space of lower dimensionality. The problem of construction of images of
the considered objects is reduced to minimization of accuracy of a fit criterion, e.g., of
the most frequently used least squares STRESS function

S(x) =
n∑

i<j

wij

(
d(xi,xj) − δij

)2
, d(xi,xj) =

( m∑
k=1

∣∣xik − xjk

∣∣r)1/r

, (1)
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where x = (x1, . . . ,xn); d(xi,xj) denotes the distance between the points xi and

xj , and wij > 0, i, j = 1, . . . , n denote weights. To define a particular criterion a

norm in Rm should be chosen implying the particular formula for calculating distances

d(xi,xj). The most frequently used norm is Euclidean (r = 2). However, MDS with

other Minkowski norms in embedding space can be even more informative than MDS

with Euclidean norm (Arabie, 1991). Analysis of MDS results corresponding to different

norms can highlight different properties of the considered objects similarly as different

orthogonal projections of a three-dimensional object complement each other.

MDS is a difficult high-dimensional (x ∈ RN , N = n × m) global optimization

problem, especially when the number of objects is large (Bernatavičienė et al., 2007).

Complexity of such optimization problems is similar to the complexity of the distance

geometry problems, e.g., to the problems of molecular conformation (Pardalos et al.,

1996). In the present paper MDS based on STRESS criterion with city-block distances

(r = 1) in the embedding space is considered. Besides of multimodality the non differen-

tiability of STRESS in this case cannot be ignored, STRESS can be non differentiable even

at the minimum point. Since the objective function can be non differentiable at local min-

imizer, application of local descent methods with high convergence rate, e.g., of different

versions of Newton method, seems questionable. Therefore to develop a local minimiza-

tion algorithm we employ the piecewise quadratic structure of the objective function.

A survey of city-block MDS was presented in (Arabie, 1991). A combinatorial ap-

proach for city-block MDS was proposed in (Hubert et al., 1992), where combinatorial

local search is used to construct good object orders along dimensions, and least-squares

are used to estimate the coordinates of image points for the objects based on the object or-

ders. A smoothing approach for city-block MDS was proposed in (Groenen et al., 1998),

where smoothing excludes some local minima of STRESS.

For global minimization of multimodal functions randomized methods seem most

promising (Zhigljavsky and Žilinkas, 2008). A heuristic algorithm based on simulated

annealing for two-dimensional city-block scaling was proposed in (Brusco, 2001). A

two level minimization method for the two-dimensional embedding space was proposed

in (Žilinskas and Žilinskas, 2007) where a problem of combinatorial optimization is tack-

led by evolutionary search at the upper level, and a problem of quadratic programming

is tackled at the lower level. The parallel version of the algorithm is proposed and inves-

tigated in (Žilinskas and Žilinskas, 2006). The generalized method for arbitrary dimen-

sionality of the embedding space is developed and experimentally compared with dis-

tance smoothing approach and simulated annealing in (Žilinskas and Žilinskas, 2008a).

The widening of applications of stereo screens makes such a generalization an urgent

problem for stereo visualization of multidimensional data. In this paper the dependence

of accuracy of fit on dimensionality of the embedding space is analyzed.
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2. MDS with City-Block Distances

STRESS (1) with city-block distances can be redefined as

S(x) =
n∑

i=1

n∑
j=1

wij

( m∑
k=1

∣∣xik − xjk

∣∣ − δij

)2

. (2)

Let A(P) denote a set such that

A(P) =
{
x | xik � xjk for pki < pkj , i, j = 1, . . . , n, k = 1, . . . , m

}
, (3)

where P = (p1, . . . ,pm), pk = (pk1, pk2, . . . , pkn) is a permutation of 1, . . . , n; k =
1, . . . , m.

For x ∈ A(P), (2) can be rewritten in the following form (Žilinskas and Žilinskas,
2008a)

S(x) =
n∑

i=1

n∑
j=1

wij

( m∑
k=1

(
xik − xjk

)
zkij − δij

)2

,

where

zkij =
{

1, pki > pkj ,

−1, pki < pkj ,

∣∣∣∣ k = 1, . . . , m, i, j = 1, . . . , n.

Therefore for fixed P and x ∈ A(P), S(x) is a quadratic function implying that the
minimization problem

min
x∈A(P)

S(x) (4)

is a quadratic programming problem. The objective function in (4) can be written in the
following form:

S(x) =
n∑

i=1

n∑
j=1

wij

( m∑
k=1

(
xik − xjk

)
zkij − δij

)2

=
n∑

i=1

n∑
j=1

wijδ
2
ij − 2

n∑
i=1

n∑
j=1

wijδij

m∑
k=1

(
xik − xjk

)
zkij

+
n∑

i=1

n∑
j=1

wij

( m∑
k=1

(
xik − xjk

)
zkij

)2

.

The first summand is a constant, and need not be taken into account in minimization. Let
us assume δij = δji, δii = 0, wij = wji. The second summand is a linear function which
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can be simplified as follows

−2
n∑

i=1

n∑
j=1

wijδij

m∑
k=1

(
xik − xjk

)
zkij

= −2
n∑

i=1

n∑
j=1

wijδij

m∑
k=1

xikzkij + 2
n∑

i=1

n∑
j=1

wijδij

m∑
k=1

xjkzkij

= −4
n∑

i=1

n∑
j=1

wijδij

m∑
k=1

xikzkij = −4
m∑

k=1

n∑
i=1

xik

n∑
j=1

wijδijzkij .

Similarly the third summand can be written as a quadratic function

n∑
i=1

n∑
j=1

wij

( m∑
k=1

(
xik − xjk

)
zkij

)2

=
n∑

i=1

n∑
j=1

wij

m∑
k=1

m∑
l=1

(
xik − xjk

)(
xil − xjl

)
zkijzlij

=
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

(
xikxil − xikxjl − xjkxil + xjkxjl

)
wijzkijzlij

=
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

xikxilwijzkijzlij +
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

xjkxjlwijzkijzlij

−
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

xikxjlwijzkijzlij −
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

xjkxilwijzkijzlij

= 2
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

xikxilwijzkijzlij − 2
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

xikxjlwijzkijzlij

= 2
m∑

k=1

m∑
l=1

n∑
i=1

xikxil

n∑
j=1

wijzkijzlij − 2
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1,j �=i

xikxjlwijzkijzlij

− 2
m∑

k=1

m∑
l=1

n∑
i=1

xikxilwiizkiizlii

= 2
m∑

k=1

m∑
l=1

n∑
i=1

xikxil

n∑
t=1,t�=i

witzkitzlit − 2
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1,j �=i

xikxjlwijzkijzlij .

Furthermore the linear and quadratic parts can be divided by 4 without influence to min-
imization.

From (3), x ∈ A(P) means that

xik � xjk for pki < pkj , i, j = 1, . . . , n, k = 1, . . . , m,
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which is equivalent to constraints

x{j|pkj=i},k � x{j|pkj=i+1},k, k = 1, . . . , m, i = 1, . . . , n − 1,

and can be redefined as

x{j|pkj=i+1},k − x{j|pkj=i},k � 0, k = 1, . . . , m, i = 1, . . . , n − 1.

STRESS function and constraints are invariant with respect to translation (addition
of constant values to xik, i = 1, . . . , n). We exclude this unfavorable property (w.r.t.
optimization) by centering the solution by means of the following constraints

n∑
i=1

xik = 0, k = 1, . . . , m.

Summarizing the above algebra the problem of minimization of S(x) over A(P) is
reduced to the quadratic programming problem

min

[
−

m∑
k=1

n∑
i=1

xik

n∑
j=1

wijzkij

+
1
2

( m∑
k=1

m∑
l=1

n∑
i=1

xikxil

n∑
t=1,t�=i

witzkitzlit

−
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1,j �=i

xikxjlwijzkijzlij

)]

s.t.
n∑

i=1

xik = 0, k = 1, . . . , m,

x{j|pkj=i+1},k − x{j|pkj=i},k � 0, k = 1, . . . , m, i = 1, . . . , n − 1,

which can be written in the matrix form (Žilinskas and Žilinskas, 2008a) as presented
below:

min
[

− dT x +
1
2
xT Dx

]
(5)

s.t. A0x = 0, (6)

Akx � 0, k = 1, . . . , m, (7)

where

dkn−n+i =
n∑

j=1

wijδijzkij

∣∣∣∣ k = 1, . . . , m,

i = 1, . . . , n,
(8)
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Dkn−n+i,ln−n+j =
{ ∑n

t=1,t�=i witzkitzlit, i = j,

−wijzkijzlij , i �= j,

∣∣∣∣ k, l = 1, . . . , m,

i, j = 1, . . . , n,
(9)

A0kj =
{

1, j = kn − n + 1, . . . , kn,

0, otherwise,

∣∣∣∣ k = 1, . . . , m,

j = 1, . . . , mn,
(10)

Akij =

⎧⎨
⎩

1, pk,j−kn+n = i + 1,

−1, pk,j−kn+n = i,

0, otherwise,

∣∣∣∣∣∣
k = 1, . . . , m,

i = 1, . . . , n − 1,

j = 1, . . . , mn.

(11)

Polyhedron x ∈ A(P) is defined by linear inequality constrains (7). Equality con-
strains (6) ensure centering of the solution with respect to each coordinate.

For the problem (5) a standard quadratic programming method can be applied. A solu-
tion of a quadratic programming problem is not necessarily a local minimizer of the initial
problem of minimization of STRESS (1). This is because STRESS is minimized with re-
spect to P as well. If a solution of a quadratic programming problem is on the border
of polyhedron A(P), a local minimizer possibly is located in a neighboring polyhedron.
Therefore a search can be continued by solving a quadratic programming problem over
the polyhedron on the opposite side of the active inequality constrains. The permutations
in P should be updated to define the neighboring polyhedron. If i, . . . , j inequality con-
straints Akx � 0 are active, i � pkt � j + 1 should be updated to i + j + 1 − pkt.
Solution of quadratic programming problems is repeated while better values are found,
and some inequality constrains are active.

Taking into account the structure of the minimization problem (4) we apply a two-
level minimization algorithm:

min
P

S(P), (12)

s.t. S(P) = min
x∈A(P)

S(x), (13)

where the upper level problem is a combinatorial problem defined over the set P of
m-tuple of permutations of 1, . . . , n (one permutation per each coordinate of embedding
space), and the lower level problem is a quadratic programming problem with a positively
definite quadratic objective function and linear constraints setting the sequences of values
of coordinates of originals defined by permutations P. The problem at lower level is
solved using quadratic programming algorithm. Globalism of search is ensured by the
upper level algorithms.

The number of feasible solutions of the upper level combinatorial problem is (n!)m.
A solution of MDS with city-block distances is invariant with respect to mirroring when
changing direction of coordinate axes or exchanging of coordinates. The number of feasi-
ble solutions can be reduced to approximately (n!/2)m/m! refusing mirrored solutions.
It can be further reduced when the data exposes symmetries (Žilinskas, 2007).

Guaranteed methods can be applied for the upper level combinatorial problem when
the number of objects is small. Branch and bound algorithm has been developed in (Žilin-
skas and Žilinskas, 2008b). Genetic algorithms seem prospective to solve the upper level
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problem when the number of objects or dimensionality of embedding space is larger. The
idea of genetic algorithm is to maintain a population of best (with respect to STRESS
value) solutions whose crossover can generate better solutions. The permutations in P
are considered as chromosomes representing an individual. The initial population of in-
dividuals is generated randomly, and it is improved performing the local search method
described above. A mutation is performed with a predefined probability by exchanging
two random objects of randomly chosen individual. The population evolves generating
offsprings from two randomly chosen individuals of the current population with the chro-
mosomes P̂ and P̌, where the first corresponds to the better fitted parent. The fitness of
an individual is defined by the optimal value of the corresponding lower level problem.
The chromosome of the offspring is defined by the following formula

pk =
(
p̂k1, . . . , p̂kξ1 , p̃k1, . . . , p̃k(ξ2−ξ1), p̂kξ2 , . . . , p̂kn

)
, k = 1, . . . , m,

where ξ1, ξ2 are two integer random numbers from the set {1, . . . , n}; and p̃ki are num-
bers from the set {1, . . . , n} not included into the set {p̂k1, . . . , p̂kξ1 , p̂kξ2 , . . . , p̂kn}, and
ordered in the same way as they are ordered in p̌k1, . . . , p̌kn. The offspring is improved
performing the local search method described above. An elitist selection is applied: if
the offspring is better fitted than the worst individual of the current population, then the
offspring replaces the latter. The minimization continues generating new offsprings and
terminates after the predetermined computing time tc. The structure of the hybrid algo-
rithm for multidimensional scaling is presented in Algorithm 1.

Algorithm 1: Hybrid algorithm for multidimensional scaling
Input: Ninit; pp; tc; n; m; δij , wi,j , i, j = 1, . . . , n

Output: S∗

1: Generate Ninit uniformly distributed random vectors x of dimension n · m.
2: Perform search for local minima starting from the best pp generated vectors.
3: Form the initial population from the found local minimizers.
4: while tc time has not passed do
5: Randomly with uniform distribution select two parents from a current popula-

tion.

6: Produce an offspring by means of crossover and local minimization.
7: if the offspring is more fitted than the worst individual of the current population

then
8: the offspring replaces the latter.
9: end if

10: end while

3. Experimental Investigation of the Dependence of Accuracy of Fit on
Dimensionality of the Embedding Space

The visualization accuracy cannot be predicted theoretically because of the complexity
of the underlying global optimization problem. We investigate the error of fit (express-
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ing reciprocal value of accuracy) experimentally. Several sets of multidimensional points
corresponding to well understood geometric objects are needed for the experimental in-
vestigation. We want to choose difficult test problems, i.e., difficult to visualize geomet-
ric objects. The data with desired properties correspond to the multidimensional objects
equally extending in all dimensions of the original space, e.g., sets of vertices of mul-
tidimensional cubes and simplices. Dissimilarity between vertices is measured by the
distance in the original vector space defined by its metric, city-block metrics in our case.

In the results below a relative error at a solution

f(x) =

√√√√S(x)
/ n∑

i=1

n∑
j=1

wijδ2
ij

is used for comparison instead of the value of STRESS function to reduce the impact of
the number of objects; this criterion is also less sensitive to the metric in the original
space.

Sets of vertices of multidimensional simplices (Žilinskas, 2008) have been used as
data sets in this paper. The number of vertices of d-dimensional simplex is n = d + 1,
and the dimensionality of the global minimization problem is N = m × (d + 1). The
distances between any two vertices of the standard simplex are equal: δij = 1, i �= j.
Vertices of the unit simplex can be defined by

vij =
{

1, if i = j + 1,

0, otherwise,

∣∣∣∣ i = 1, . . . , d + 1, j = 1, . . . , d.

Below we use shorthand ‘simplex’ for sets of its vertices.
The hybrid global optimization algorithm composed of genetic search and quadratic

programming for MDS with city-block distances has been used to visualize simplices
of different dimensionality in embedding space of different dimensionality. Fig. 1 shows

Fig. 1. Dependence of relative visualization error on the number of vertices n of multidimensional simplices
and the dimensionality of embedding space m.
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how values of relative error at the best found solutions depend on the number of vertices
n of multidimensional simplices. Different graphs represent different dimensionalities of
embedding space m. Black circles represent the results when the hybrid global optimiza-
tion algorithm finds the same best function value in at least 10 runs out of 100. Grey
circles represent less reliable results. Relative visualization error grows with dimension-
ality of simplices as expected, however the rate of growth is fast decreasing. There is a
big decrease of visualization error between unidimensional and two-dimensional scaling,
as well as between two-dimensional and three-dimensional scaling.

Fig. 2 shows how values of relative error at the best found solutions depend on the
dimensionality of embedding space m. Different graphs represent simplices of different
dimensionality. The gray circles should be again considered with care, since the same
best function value has been found in less than 10 runs out of 100. As expected, relative
visualization error reduces when the dimensionality of embedding space is increased, as
it becomes more easy to fit image to the data. Quite a large decrease of visualization
error can be reached by changing the two-dimensional embedding space to the three-
dimensional one. Although visualization error can be further decreased using embedding
space of larger dimensionality, practical use of the dimensionality larger that three is
questionable.

A frequently used test problem for MDS algorithms is based on experimental testing
of several soft drinks (Green et al., 1989). 38 students have tested ten different brands of
soft drinks. Each pair was judged on its dissimilarity on a 9 point scale (1 – very similar,
9 – completely different). The scaled down accumulated dissimilarities have been used
as a practical data set in our experiments. This problem is referred as ‘cola’ problem in
the results below, n = 10 in this problem. As the data for this problem is dissimilarity
matrix, actual dimensionality of data is not known.

Problems of analysis of pharmacological binding affinity data (Žilinskas, 2006) have
been used as other practical data sets. ‘ruusk1’ represents binding affinity data (Ruuska-
nen et al., 2005) analyzed as properties of three human and five zebrafish α2-adrenoceptor

Fig. 2. Dependence of relative visualization error of multidimensional simplices on the dimensionality of em-
bedding space m.
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proteins, n = 8, each protein is represented by 20-dimensional vector; ‘ruusk2’ repre-
sents binding affinity data (Ruuskanen et al., 2005) analyzed as properties of 20 ligands
known to bind to the human α2-adrenoceptors, n = 20, each ligand is represented by
8-dimensional vector; ‘uhlen’ represents binding affinity data (Uhlén et al., 1998) ana-
lyzed as properties of human, rat, guinea pig and pig α2-adrenoceptor proteins, n = 12,
each protein is represented by 5-dimensional vector; ‘hwa’ represents binding affinity
data (Hwa et al., 1995) analyzed as properties of wild type and mutant proteins, n = 12,
each protein is represented by 6-dimensional vector. The binding affinity data is repre-
sented through a matrix, one dimension formed by the different ligands tested in a series
of experiments while the other dimension represents the different proteins. Dissimilarities
of proteins are computed as distances between vectors of the log10-transformed binding
affinities representing properties of the proteins. Dissimilarities of ligands are computed
as distances between vectors of the log10-transformed binding affinities representing lig-
ands.

Fig. 3 shows how values of relative error at the best found solutions of practical MDS
problems depend on the dimensionality of embedding space m. Different graphs repre-
sent different problems which are specified at vertical axis. As expected, relative visu-
alization error reduces when the dimensionality of embedding space is increased, as it
becomes more easy to fit image to the data. However for these problems the relative visu-
alization error decreases more rapidly than for high-dimensional simplices, even for the
problem ‘ruusk1’, which is composed by 20-dimensional vectors. Visualization errors
are largest for ‘cola’ problem; this is probably because dissimilarity data in this problem
are collected by psychological testing, in contrast data of other problems are distances
between multidimensional points. Visualization in three-dimensional embedding space
seems most appropriate for the considered practical data sets.

The images in three-dimensional embedding space normally show the structural prop-
erties of sets of considered objects better than in two-dimensional space. The widening

Fig. 3. Dependence of relative visualization error of practical data sets on the dimensionality of embedding
space m.
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of applications of stereo screens makes three-dimensional visualization very attractive,
however it is difficult to demonstrate the advantages of stereo images in the paper. The
classical methods of two-dimensional visualization by means of orthogonal and isometric
projections are much weaker than dynamic visualization on stereo screens. Nevertheless
some properties of the data can be grasped from such projections. For example, pro-
jections of three-dimensional image of the problem ‘ruusk2’ are shown in Fig. 4. Four
projections are shown: the left upper picture shows the orthogonal projection on the xz-
plane, the right upper picture shows the orthogonal projection on the yz-plane, the left
lower picture shows the orthogonal projection on the xy-plane, and the right lower pic-
ture shows isometric projection. In the orthogonal projections the x-axis directs left, the
z-axis directs up, and the y-axis directs right in the right upper picture and down in the left
lower picture. In the isometric projection the x-axis directs down left, the y-axis directs
down right, and the z-axis directs up. The ligands are numbered according to (Ruuskanen
et al., 2005). Agonists are indicated by the symbol ‘+’. Antagonists are indicated by the
symbol ‘x’.

Binary tree clustering and principal component analysis have been used for analysis
of the problem in (Ruuskanen et al., 2005). In the binary tree all agonist ligands cluster

Fig. 4. Projections of three-dimensional image of the properties of 20 ligands binding human and zebrafish
α2-adrenoceptors; n = 20, f ∗ = 0.0243.
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together except agonist 3, which clusters together with antagonist ligands. In the image
of principal components all agonist cluster together, but antagonist 16 is near this cluster.
Similarly in the image of two-dimensional scaling with Euclidean distances in (Žilinskas,
2006) antagonist 16 makes separation of agonist and antagonist clusters difficult. How-
ever, in the image of two-dimensional scaling with city-block distances in (Žilinskas,
2006) it is possible to draw a line which would separate agonists and antagonists.

The orthogonal projection shown in the left lower picture in Fig. 4 is quite similar to
mirrored two-dimensional image shown in (Žilinskas, 2006). The agonists 2 and 3 are
near the cluster of antagonists in this projection, but it is possible to draw a line sepa-
rating agonists and antagonists. The clusters of agonists and antagonists are separable
more clearly in the three-dimensional image. Although it is difficult to demonstrate this
on the paper, but more clear separability can be seen in the isometric projection in the
right lower picture of Fig. 4. For better understanding of three-dimensional images ac-
quired using multidimensional scaling we have created rotating pictures and placed them
on Internet (http://www.mii.lt/enoc/). The rotating images are stored in PDF
format therefore no specific software or hardware is required to analyze them. It is easier
to see volume in the rotating pictures than in the projections.

4. Conclusions

The images acquired using multidimensional scaling expose the structural properties
of sets of considered objects better in three-dimensional embedding space than in
two-dimensional space. The decrease of visualization error between two-dimensional
and three-dimensional scaling is similar to the decrease between unidimensional and
two-dimensional scaling. The widening of applications of stereo screens makes three-
dimensional scaling very attractive.
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Apie vaizdo erdvės matmen ↪u skaiči ↪u daugiamatėse skalėse

Julius ŽILINSKAS

Daugiamatės skalės – tai tiriamasis daugiamači ↪u duomen ↪u analizės metodas, taikomas dauge-
lyje sriči ↪u. Šiuo metodu ieškoma mažo matmen ↪u skaičiaus vaizdo erdvės tašk ↪u, tarp kuri ↪u atstu-
mai atitikt ↪u duotus objekt ↪u skirtingumus. Šiame straipsnyje tiriama, kaip santykinė vizualizavimo
paklaida priklauso nuo vaizdo erdvės matmen ↪u skaičiaus. Dirbtinės geometrinės ir taikomosios
duomen ↪u aibės yra tiriamos. Trimatėse skalėse duomen ↪u aibės objekt ↪u struktūrini ↪u savybi ↪u at-
vaizdavimas yra priimtinas, dėl to stereo ekran ↪u ir kit ↪u erdvinio vizualizavimo priemoni ↪u popu-
liarėjimas daro trimates skales ypač patraukliomis.


