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Abstract. This paper presents a novel robust digital image watermarking scheme using subsam-
pling and nonnegative matrix factorization. Firstly, subsampling is used to construct a subimage
sequence. Then, based on the column similarity of the subimage sequence, nonnegative matrix fac-
torization (NMF) is applied to decompose the sequence. A Gaussian pseudo-random watermark
sequence is embedded in the factorized decomposition coefficients. Because of the high similar-
ity of subimages and meaningful factorization for NMF, the proposed scheme can achieve good
robustness, especially to common permutation attacks. Numerical experiment results demonstrate
the good performance of the proposed scheme.
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1. Introduction

In the past two decades, digital watermarking technology has been devoted significantly
and applied in digital right protection and authentications widely (Chang and Tseng,
2004; Hassanien, 2007; Chang and Chang, 2007). On one hand, many different ap-
proaches are introduced into digital watermarking, such as signal processing, pattern
recognition, communication theory etc., which have improved the performance of wa-
termarking. On the other hand, most of the current watermarking schemes are still not
applicable in practice, since the performance of these watermarking algorithms are still
far from practical application, especially for robustness, which is the most important de-
sign criteria.

Recently, a new signal decomposition method is proposed as nonnegative matrix fac-
torization (NMF) (Lee and Seung, 1999; Lee and Seung, 2001), which decomposes a
nonnegative matrix into two physically meaningful nonnegative matrices, and has been
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successfully applied in many signal analysis domains (Berrya et al., 2006), such as frontal
face verification (Zafeiriou et al., 2006), blind signal separation (Cichocki et al., 2006),
image classification (Guillamet et al., 2003). To our current knowledge, there are only
a few applications for NMF in digital watermarking (Ghaderpanah and Hamza, 2006).
In this paper, we propose a novel digital image watermarking scheme using NMF in
subsampling domain. Through embedding a pseudo-random sequence in the NMF coef-
ficient matrix, the proposed scheme can resist many signal attacks and distortions, and
thus achieves strong robustness.

The rest parts of this paper are organized as follows. In Section 2, we introduce the
subsampling technique. In Section 3, we introduce NMF algorithm briefly. In Section 4,
the prosed watermarking scheme is described in detail. Then, the experimental results are
shown in Section 5. Finally, conclusions are given in Section 6.

2. Subsampling

Subsampling is a common method in signal processing and analysis. For a digital image
I with size M × N , subsampling decomposes it into mn subimages of size M/m × N/n,
where m and n are the subsampling intervals on the direction of column and row, which
can be described as follows:

I1(i, j) = I(m ∗ (i − 1) + 1, n ∗ (j − 1) + 1),

I2(i, j) = I(m ∗ (i − 1) + 1, n ∗ (j − 1) + 2),

I3(i, j) = I(m ∗ (i − 1) + 1, n ∗ (j − 1) + 3),

· · · · · ·
In+1(i, j) = I(m ∗ (i − 1) + 2, n ∗ (j − 1) + 1),

In+2(i, j) = I(m ∗ (i − 1) + 2, n ∗ (j − 1) + 2),

· · · · · ·
Imn(i, j) = I(m ∗ i, n ∗ j), (1)

where I1, I2, · · · , Imn denote the subimages. Generally, there are high similarity among
these submiages, i.e., the correlation coefficients between any two subimages are approx-
imately equal to 1, ρ(Ii, Ij) ≈ 1, i, j = 1, 2, · · · , mn. Fig. 1 shows some subimage exam-
ples, we can see that these subimages are highly similar. Based on this distinct character,
subsampling has been used in watermarking (Chu, 2003; Lu et al., 2006). In (Chu, 2003),
a subsampling based watermarking is proposed, which can achieve better robustness than
Cox’s scheme (Cox et al., 1997). However, there is a serious weakness for subsampling
technique in this scheme. We have proposed a permutation attack to it and defeat the
scheme simply and effectively (Lu et al., 2005). Then, a more robust anti-permutation
watermarking was developed in (Lo et al., 2007).
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Fig. 1. The first four subimages from Lenna (512 × 512), where the subsampling parameter m, n = 4.

3. Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is developed as a matrix factorization technique,
which decomposes nonnegative matrices into physically meaningful data in two dimen-
sional signal analysis, and has been used for image representation, document analysis and
clustering for its parts-based representation property. NMF results in a reduced represen-
tation of the original data. Thus, NMF can also be a feature extraction or a dimension-
ality reduction technique. A formal description of nonnegative matrix factorization can
be described as follows. Given a nonnegative matrix I ∈ R

m×n and a positive integer
p < min(m, n), NMF aims to find nonnegative matrix W ∈ R

m×p and H ∈ R
p×n to

minimize the function

f(W, H) =
1
2

‖I − WH‖2
F . (2)

The product WH is called a NMF of I , where W is the normalized factor vectors by
columns, H is the encoding vectors. In other words, NMF decomposes a nonnegative
matrix as follows:

I ≈ WH. (3)

Here, we briefly describe the multiplicative iteration algorithm of NMF proposed in
(Lee and Seung, 1999). Firstly, an objective function is selected based on the Poisson
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likelihood as follows:

D(I, WH) =
m∑

i=1

n∑
j=1

(
Iij ln

Iij

(WH)ij
− Iij + (WH)ij

)
, (4)

which, then, is simplified through some eliminiation of pure date terms, and we obtain

D(I, WH) =
m∑

i=1

n∑
j=1

( p∑
k=1

WikHkj − Iij ln
p∑

k=1

WikHkj

)
. (5)

Taking the derivative with respect to H , we have

∂

∂Hab
D(I, WH) =

p∑
i=1

Wia −
p∑

i=1

IibWia∑n
k=1 WikHkb

. (6)

The gradient algorithm then states:

Hab ← Hab − ηab
∂

∂Hab
D(I, WH), (7)

Hab ← Hab − ηab

[ p∑
i=1

IibWia∑q
k=1 WikHkb

−
p∑

i=1

Wia

]
(8)

for some step size ηab. Forcing

ηab =
Hab∑p

i=1 Wia
(9)

gives the multiplicative rule:

Hab ← Hab

∑p
i=1(WiaIib)/

∑q
k=1 WikHkb∑p

i=1 Wia
. (10)

Taking the derivative with respect to W gives

∂

∂Wcd
D(I, WH) =

n∑
j=1

Hdj −
n∑

j=1

IcjHdj∑q
k=1 WckHkj

. (11)

The gradient algorithm then states:

Wcd ← Wcd − νcd
∂

∂Wcd
D(I, WH), (12)

Wcd ← Wcd − νcd

[ n∑
j=1

Icj
Hdj∑q

k=1 WckHkj
−

n∑
j=1

Hdj

]
. (13)
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Forceing the step size

νcd =
Wcd∑n
j=1 Hdj

(14)

gives

Wcd ← Wcd

∑n
j=1(HdjIcj)/

∑q
k=1 WckHkj∑n

j=1 Hdj
. (15)

The iterative computation will stop until the objective function converges. The detailed
description of NMF algorithm can be found in (Pascual–Montano et al., 2006; Berrya
et al., 2006). The computational procedure is given as follows:

1. Initialize W and H with positive random numbers.
2. For each basis vector Wa ∈ Rm×1, update the corresponding encoding vector

Ha ∈ R1×n, followed by updating and normalizing the basis vector Wa. Repeat
this process until convergence.

Formally, the iteration algorithm in step 2 is as follows:

Algorithm 1 NMF algorithm

1: procedure NONNEGATIVE MATRIX FACTORIZATION I

2: while not convergence do
3: for a = 1, 2, · · · , m do
4: for b = 1, 2, · · · , n do

5: Hab ← Hab

∑p
i=1(WiaIib)/

∑q
k=1 WikHkb∑p

i=1 Wia

6: for c = 1, 2, · · · , p do

7: Wcd ← Wcd

∑n
j=1(HdjIcj)/

∑q
k=1 WckHkj∑n

j=1 Hdj

8: Wca ← Wca∑n
j=1 Wja

9: end for
10: end for
11: end for
12: end while
13: end procedure

4. Watermarking Procedure

In this section, we introduce a novel image watermarking scheme using subsampling and
NMF. The detail algorithm is as follows.
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4.1. Watermark Embedding

In our proposed scheme, the watermark is a pseudo-random Gaussian sequence M with
length l, i.e., M = w1w2 · · · wl, which is embedded in a given image I . An illustration
for the watermark embedding process is shown in Fig. 2. Firstly, the image I is decom-
posed using subsampling equation (1) into mn subimages, i.e., I1, I2, · · · , Imn. For each
subimage Ii with size M/m × N/n, it is spread to a column vector in a zigzag order:

Ic
i (1) = Ii(1, 1),

Ic
i (2) = Ii(1, 2),

Ic
i (3) = Ii(2, 1),

Ic
i (4) = Ii(3, 1),

Ic
i (5) = Ii(2, 2),

· · · · · ·
Ic
i (MN/(mn)) = Ii(M/m, N/n). (16)

Thus, we obtain mn column vectors Ic
i , i = 1, 2, · · · , m × n. Then, these column vectors

are combined into a new matrix C = [Ic
1 , Ic

2 , · · · , Ic
mn] with size ((MN)/(mn)) × (mn).

Fig. 3 shows a transposed matrix C from Lenna image, we can see that the column vector
in C is very similar and highly correlated, which is natural to be decomposed using NMF,
since NMF is originally designed to decompose column-similar matrices. Thus, we used
NMF to decompose the matrix C, i.e., C ≈ WH and produce two nonnegative matrix W

and H , where W is the normalized basis column vectors and H is the encoding coefficient
vectors. Here, the matrix H involves the main local features under the basis matrix W ,
and these features are marked as larger encoding coefficients.

In the proposed scheme, the watermark M is embedded into the l maximum elements
of the matrix H randomly. Suppose the watermark element wk is embedded in the coef-

Fig. 2. Watermark embedding process.

Fig. 3. The transposed matrix C constructed from the subimages, where the subsampling parameter m, n = 16.
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ficient Hij , the embedding algorithm is

Hij ← Hij + αwk, (17)

where, α denotes the watermark embedding strength. Once all the watermark elements
are embedded, the new matrix C are constructed using C ← WH , then through image
reconstruction and inverse subsampling, the watermarked image Iw is obtained. In the
watermark embedding process, due to good capability of local decomposition for non-
negative matrix factorization, the maximum elements in the matrix H denotes the local
most distinct features under the basis matrix W . Thus, the scheme can achieve a better
local watermark embedding algorithm, and the robustness will be demonstrated in the
following experiments.

4.2. Watermark Detection

Given a suspected watermarked image I∗, for the watermark detection, firstly it is decom-
posed using subsampling into subimages, the subimages are spread into column vectors
as that in the watermark embedding process, and the vectors are combined into a ma-
trix C∗, then NMF is applied to C∗, i.e., C∗ ≈ W ∗H∗. Suppose the watermark wk is
suspected to embedded in the matrix element H∗

ij , we use the following similarity detec-
tion to make a decision on whether the image is watermarked as follows:

ρ =
l∑

k=1

wkH∗
ij . (18)

Then given a detection threshold T , if ρ � T , we think the image I∗ is watermarked
using M , otherwise not.

5. Experiments

In this section, some experiments are carried out to evaluate the performance of the pro-
posed scheme. Firstly, we test the proposed scheme using the popular test image, Lenna,
shown in Fig. 4(a). In the watermarking process, the subsampling parameters m, n = 16
and l = 1000, and the watermark embedding strength α = 0.03. Fig. 4(b) shows the wa-
termarked image, and its watermark detection value ρ = 31.1. We also used other 1000
random watermark seeds to test the detection process, and the histogram of the detection
value is shown in Fig. 5, where only one is the correct watermark. If we set the detection
threshold T = 10, only the correct watermark can be detected.

We tested the robustness of the proposed watermarking scheme using some signal
processing distortions, and also we compared the performance of the proposed scheme
with the classical DCT based spread spectrum watermarking scheme proposed in (Cox
et al., 1997). Fig. 6 shows some experimental results under JPEG compression, Gaussian
lowpass filtering and noise addition with different PSNR, which are obtained through
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Fig. 4. (a) The original image, Lenna. (b) A watermarked version of (a).

Fig. 5. The response of 1000 watermark seeds, where only one is the correct watermark.

setting different filter parameters and noise strength using Matlab. We can see that the
proposed scheme achieves a strong robustness to common signal processing, furthermore,
compared with Cox’s classical scheme, it is also more robust. Furthermore, Stirmark is
also used to test the scheme using some geometrical and other distortions. Table 1 shows
some robustness test results under rotation, cropping and resizing, which also show better
robustness than Cox’s scheme. Especially, we can see that if the detection threshold T is
set to 10, the watermark can still be detection under cropping with better robustness,
while Cox’s scheme fails.

In order to further evaluate the performance of the proposed scheme, we also build
an image database including 1000 test images. Firstly, we used the database to test the
robustness under JPEG compression. Fig. 7(a) shows the histogram of the detection value
ρ under JPEG quality 60, which shows that if the threshold T is set to 10, all of the im-
ages can be thought to be watermarked. Then, we test the robustness under geometrical
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Fig. 6. Robustness under signal processing. (a) JPEG compression. (b) Gaussian lowpass filtering and noising.

Table 1

Robustness experiments under geometric attacks for the proposed scheme and Cox’s scheme

ρ
Attacks

Our Scheme Cox’s Scheme

cropping (10%) 21.5 8.4

cropping (20%) 18.8 9.1

cropping (30%) 16.9 6.3

Resizing (1.2) 27.7 21.9

Resizing (0.8) 28.8 20.2

Rotation (−60◦ ) 33.3 28.1

Rotation (40◦ ) 33.8 27.6
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Fig. 7. The histogram of the detection value ρ. (a) 1000 test images under JPEG quality 60. (b) 1000 test images
under Gaussian lowpass filtering.

cropping, the percentage for cropping is from 10% to 30%. Fig. 7(b) shows the histogram
of the detection value under cropping, where, if the threshold is set to 10, over 98% of
the images can be certificated for the corrected watermark, which also shows a good
robustness. Furthermore, we also test many other performance with the database, includ-
ing noising, lowpass filtering, rotation, resizing, etc. all of the experiments show that the
proposed watermarking scheme is quite robust to theses attacks.

Finally, we also test the robustness under permutation attack. In (Lu et al., 2005),
we proposed a simple permutation attacks, which fail most of current subsampling based
watermarking schemes through random permutating the corresponding elements in every
subimages. Table 2 gives some robustness test results under common permutation attacks,
which shows strong robustness to the permutation attack.
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Table 2

Experimental results for common permutation attacks (Lu et al., 2005)

Watermarked image Attacked image
Test image

PSNR sim PSNR sim

Lenna 37.1857 31.1 36.2732 30.2

Baboon 34.2104 33.2 32.4481 33.5

Barbara 35.7693 29.4 33.4378 28.6

6. Conclusions

In this paper, we have proposed a novel image watermarking based on subsampling and
nonnegative matrix factorization. In the scheme, a pseudo-random Gaussian watermark
sequence is embedded in the encoding vectors of NMF in subsampling domain. Experi-
mental results shows that the proposed scheme achieve strong robustness to many signal
processing and distortions due to the subimage construction for subsampling and physi-
cally meaningful factorization of NMF.
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Perdiskretizavimu ir neneigiamos matricos faktorizavimu pagr ↪istas
patikimas vandens ženkl ↪u ↪iterpimas

Wei LU, Hongtao LU

Šis straipsnis siūlo nauj ↪a patikim ↪a schem ↪a, naudojanči ↪a perdiskretizavim ↪a ir neneigiamos
matricos faktorizavim ↪a, vandens ženklams skaitmeniniame paveiksle ↪iterpti. Pirmiausia atlieka-
mas perdiskretizavimas paveikslo dalinei sekai gauti. Tada remiantis stulpeli ↪u panašumu, seka
išskaidoma faktorizuojant neneigiam ↪a matric ↪a. Gausinė pseudo-atsitiktinė vandens ženkl ↪u seka
yra ↪iterpiama ↪i faktorizuotus išskaidymo koeficientus. Dėl didelio dalini ↪u paveiksl ↪u panašumo ir
prasmingo faktorizavimo pasiūlyta schema yra patikima, ypač prieš dažnai naudojam ↪a perstatym ↪u
atak ↪a. Skaičiuojamasis eksperimentas demonstruoja pasiūlytos schemos gerum ↪a.


