
INFORMATICA, 2009, Vol. 20, No. 1, 3–22 3
© 2009 Institute of Mathematics and Informatics, Vilnius

On Recursive Calculation of M- and GM-Estimates
by Direct Identification in LQG Control Systems

Nasko ATANASOV
Technical University, Studentska 1, 9010 Varna, Bulgaria
e-mail: nratanasov@yahoo.com

Rimantas PUPEIKIS
Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: pupeikis@ktl.mii.lt

Received: January 2008; accepted: October 2008

Abstract. In the previous papers (Pupeikis, 2000; Genov et al., 2006), a direct approach for esti-
mating the parameters of a discrete-time linear time-invariant (LTI) dynamic system, acting in a
closed-loop in the case of additive correlated noise with contaminating outliers uniformly spread in
it, is presented. It is assumed here that the parameters of the LQG (Linear Quadratic Gaussian Con-
trol) controller are known beforehand. The aim of the given paper is development of a parametric
identification approach for a closed-loop system when the parameters of an LTI system as well as
that of LQG controller are not known and ought to be estimated. The recursive techniques based on
an the M- and GM- estimator algorithms are applied here in the calculation of the system as well
as noise filter parameters. Afterwards, the recursive parameter estimates are used in each current
iteration to determine unknown parameters of the LQG-controller, too. The results of numerical
simulation by computer are discussed.
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1. Introduction

The stochastic optimal control of a discrete-time LTI dynamic system is performed us-
ing the LQG approach (Isermann, 1984; Ȧström and Wittenmark, 1987; Glad and Ljung,
2000). In the case of various uncertainty reasons due to different sources, the solution to
the problem of the worst LQG control system performance, based on a relative entropy
constraint uncertainty description, is given in (Petersen, 2006). It has been emphasized
here (Petersen, 2006) that in designing a robust control system, one ought to determine
the type of uncertainties appearing in the system to be controlled. On the other hand, there
are many types of uncertainties in system description models. One of the main ones of
them is the uncertainty arising in the output disturbance description of a plant model to
be used. It is frequently assumed that output of the system is affected by Gaussian distur-
bance. However, nonnormal noise, and particularly the presence of outliers, degrades the
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performance of a system acting in a closed-loop. Therefore ordinary recursive techniques
used for a parametric identification of LQG control systems, as a rule, are inefficient. In
such a case, robust recursive techniques ought to be applied here according to (Huber,
1984) and (Pupeikis, 1991).

In what follows, we introduce the robust recursive generalized maximum likelihood
(GM) and maximum likelihood (M) procedures for calculating robust estimates of the
parameters of LTI dynamic systems, acting in a closed-loop in the case of correlated
noise with outliers in it. Note that the class of GM-estimators (Denby and Martin, 1979)
contains a class of maximum likelihood type estimators (M-estimators) (Huber, 1964).
The class of GM-estimators is defined implicitly by the first order condition (Lucas, 1996)

N∑
t=1

x(t)ζ
{
x(t), [y(t) − xT (t)θ]/σ

}
= 0. (1)

Here x(t) is the set of regressors, σ denotes the scale of residuals n(t) of the linear
regression model y(t) = xT (t)θ + δ(t), t = 1, . . . , N where θ is a vector of unknown
parameters. The function ζ{ · , · } in (1) depends on both the set of regressors x(t) and
the standardized residual δ(t)/σ. The conditions that ought to be satisfied by ζ{· , · }
in order that the GM-estimator have nice asymptotic properties are known in advance
(Lucas, 1996). The ordinary least-squares estimator could be obtained as a special case
of (1) by setting in it the function τ(x(t), r) = r2/2 with ∂τ(x(t), r)/∂r = ζ{x(t), r},
where r is a short form of the standardized residual. In such a case, the class of M-
estimators is obtained by setting τ(x(t), r) = ρ(r), with dρ(r)/dr = ψ(r). Various ψ(· )
functions lead to various M-estimates. The class of M-estimates was proposed by Huber
(1964) for the location parameter and was extended to the regression model (Huber, 1984;
Novovičova, 1987).

In Section 2, the statement of the problem is presented. In Section 3, an ordinary direct
approach is described for a parametric identification of the system transfer function. In
Section 4, ordinary recursive parametric identification techniques are given for estimating
the parameters of transfer functions of LTI systems in the case of various noise filters. We
analyze the recursive parametric identification, based on M- and GM- estimators in the
presence of outliers in output observations, in Section 5. Section 6 presents the simulation
and parametric identification results. Section 7 contains conclusions.

2. The Statement of the Problem

Assume that a control system to be observed is causal, linear, and time-invariant with one
output {y(k)} and one input {u(k)}, expressed by the equation

y(k) = G0(q−1; θ)u(k) + H0(q−1; ϕ)ξ(k)︸ ︷︷ ︸
v(k)

, (2)

that consists of two parts (Fig. 1): a system model G0(q−1; θ) and a noise model
H0(q−1; ϕ). Here k is the current number of observations of a respective signal, θ, ϕ are
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Fig. 1. A closed-loop system to be observed. Here GR ≡ GR(q−1; α), G0 ≡ G0(q−1; θ), and
H0 ≡ H0(q−1; ϕ).

unknown parameter vectors to be estimated, q−1 is the backward time-shift operator such
that q−1u(k) = u(k − 1), {ξ(k)} is used to generate unmeasurable noise {v(k)} and it is
assumed to be statistically independent and stationary with the following characteristics:

E{ξ(k)} = 0, E
{
ξ(k)ξ(k + τ)

}
= σ2

ξδ(τ), (3)

where E{ξ(k)} is the mean value, σ2
ξ is the variance, δ(τ) is the Kronecker delta function,

and H0(q−1, ϕ) is an inversely stable monic filter (Forsell and Ljung, 1999).
The input {u(k)} is given by

u(k) = [r(k) − y(k)]︸ ︷︷ ︸
e(k)

GR(q−1; α), (4)

where the reference signal {r(k)} is a quasi-stationary signal, independent of the stochas-
tic disturbance {v(k)}, and the LQG controller GR(q, α), which is designed by minimiz-
ing the quadratic performance function

J = lim
N →∞

E

{
1
N

N −1∑
k=0

[
y2(k) + 
u2(k)

]}
, (5)

is exponentially stable (Forsell and Ljung, 1999). Here α is the parameter vector of the
controller GR(q−1; α) and 
 is a weighting factor, the values of which are given in (Hal-
wass, 1988).

The aim of the given paper is to estimate the parameter vector θ of the LTI sys-
tem G0(q−1; θ), acting in the closed-loop (see Fig. 1) simultaneously with the current
parameter vector α of the LQG controller GR(q−1; α), by observations {u(k), y(k)}
∀k = 1, 2, . . ., in the case of additive correlated noise {v(k)}, that contains large outliers
and corrupts the output {y(k)} of the system.

3. The Direct Approach

The direct approach ignores the feedback and identifies the system G0(q−1; θ) using mea-
surements of the input u(k) and the output y(k) ∀k = 1, 2, . . . (Forsell and Ljung, 1999).
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By the direct parameric identification method one has to estimate the prediction error
value θ̂N of the vector of parameters θ by

θ̂N = arg min
θ∈DM

VN (θ, ZN ). (6)

Here

VN (θ, ZN ) =
1
N

N∑
k=1

eT
F (k, θ)Λ−1eT

F (k, θ), (7)

with

eF (k, θ) = L(q, θ)ε(k, θ), (8)

Λ is a symmetric, positive definite weighting matrix and L(q−1; θ) is a monic prefilter
that can be used to enhance certain frequency regions (Forsell and Ljung, 1999). The
prediction error is calculated by

ε(k, θ) = y(k) − ŷ(k, θ̂) = H−1(q−1; ϕ̂)
[
y(k) − G(q−1; θ̂)u(k)

]
. (9)

Here the output y(k) of the general model of the LTI system G(q−1; θ) and noise filter
H(q−1; ϕ), respectively, are in the form

y(k) = G(q−1; θ)u(k) + H(q−1; ϕ)ξ(k), (10)

where G(q−1; θ) corresponds to the first part of the Eq. (2) and H(q−1; ϕ) to the second
one. Then, the one-step-ahead predictor for the model structure (10) is

ŷ(k, θ̂) = H−1(q−1; ϕ̂)G(q−1; θ̂)u(k) +
[
1 − H−1(q−1; ϕ̂)

]
y(k). (11)

Here ϕ̂ is the estimate of the parameters vector ϕ. The parameter vector θ can be deter-
mined by the ordinary prediction error method, based on the recursive LS (RLS) of the
form

θ̂(k)= θ̂(k − 1)+
Γ(k − 1)z(k)

1 + zT (k)Γ(k − 1)z(k)
ε̂(k),

Γ(k)= Γ(k − 1)− Γ(k − 1)z(k)zT (k)Γ(k − 1)
1 + zT (k)Γ(k − 1)z(k)

(12)

with the vector of observations zT (k) = [−y(k−1), . . .,−y(k−m), u(k−1), . . ., u(k−m)],
and some initial values of the vector θ̂(0) and matrix Γ(0). Here

θ̂T (k) =
[
âT (k), b̂T (k)

]
=

[
â1(k), . . . , âm(k), b̂0(k), b̂1(k), . . . , b̂m(k)

]
, (13)
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is the current estimate of the vector θT = (aT ,bT ) = (a1, . . . , am, b0, b1, . . . , bm), and

ε̂(k) = y(k) − zT (k)θ̂(k − 1) (14)

is the prediction error on the current k-th iteration, respectively, where G0(q−1; θ) is the
system transfer function of the form

G0(q−1; θ) =
B(q−1;b)
A(q−1;a)

=
b0 + b1q

−1 + b2q
−2 + · · · + bmq−m

1 + a1q−1 + · · · + amq−m
. (15)

Here bT = (b0, b1, . . . , bm), and aT = (a1, . . . , am) are vectors of parameters to be
estimated.

It is known that RLS is efficient only in the case where

H0(q−1; ϕ) =
1

1 + A(q−1;a)
=

1
1 + a1q−1 + · · · + amq−m

, ϕ ≡ a. (16)

It could be emphasized that, before the closed-loop direct parametric identification the
respective identifiability conditions should be satisfied according to (Isermann, 1984).

4. Recursive Estimators for the Various Noise Filters

In practice, the assumption (16) is invalid as a rule, and the ordinary RLS is of little use.
Therefore a multivariate set of recursive techniques is worked out. In the case where

H(q−1; ϕ) = 1 (17)

additive noise {v(k)} ≡ {ξ(k)}, and the recursive algorithm, based on the technique, is
developed in (Steiglitz and McBride, 1965), may be used. Then, in formulas (12) and (14)
the vector of observations zT (k) and the equation error ε̂(k) must be replaced by

z∗T (k) =
[

− y∗(k −1), . . .,−y∗(k −m), u∗(k −1), . . ., u∗(k −m)
]
, (18)

and

ε̂∗(k) = y∗(k) − z∗T (k)θ̂(k − 1), (19)

respectively. Here

y∗(k) =
1

Âk−1(q−1; â)
y(k) =

1
1 + â1(k−1)q−1 + · · · + âm(k−1)q−m

y(k), (20)

u∗(k) =
1

Âk−1(q−1; â)
u(k) =

1
1 + â1(k−1)q−1 + · · · + âm(k−1)q−m

u(k), (21)
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are filtered observations after k samples; â is the estimate of a; â1(k−1), . . . , âm(k−1)

are estimates of a1, . . . , am, respectively, calculated in the recursive iteration (k − 1).
The characteristics and convergence conditions of the above mentioned algorithm were
investigated by Stoica and Söderström (1981).

Let us assume now that

H(q−1; ϕ) =
1

[1 + G(q−1;g)] [1 + A(q−1;a)]
. (22)

Here

G(q−1;g) = g1q
−1 + · · · + gn gq

−ng , ϕ ≡ (g,a) (23)

with the known integer ng . In such a case the generalized RLS (GRLS) algorithm, con-
sisting of two RLS algorithms, is used for estimating the vector of unknown parameters
θT = (aT ,bT ) = (a1, . . . , am, b0, b1, . . . , bm), and gT = (g1, . . . , gn g) according to
(Hastings–James and Sage, 1969). The first RLS algorithm calculates θ̂ by recursive for-
mulas (12), where

e∗(k) = y∗(k) − z∗T (k)θ̂(k − 1), (24)

z∗T (k) =
[

− y∗(k −1), . . .,−y∗(k −m), u∗(k −1), . . ., u∗(k −m)
]
, (25)

y∗(k) =
[
1 + Ĝk−1(q−1; ĝ)

]
y(k)

=
[
1 + ĝ1(k−1)q

−1 + · · · + ĝn g(k−1)q
−ng

]
y(k), (26)

u∗(k) =
[
1 + Ĝk−1(q−1; ĝ)

]
u(k)

=
[
1 + ĝ1(k−1)q

−1 + · · · + ĝn g(k−1)q
−ng

]
u(k), (27)

Ĝk−1(q−1; ĝ) = ĝ1(k−1)q
−1 + · · · + ĝn g(k−1)q

−ng . (28)

The second algorithm calculates the vector of the estimates ĝT = (ĝ1 k, . . . , ĝn g k) using
recursive equations of the form

ĝ(k)= ĝ(k − 1)+Λ(k)v(k)ε̃(k),

Λ(k)=Λ(k − 1)− Λ(k − 1)v(k)vT (k)Λ(k − 1)
1 + vT (k)Λ(k − 1)v(k)

, (29)

ε̃(k) =
[
1 + Ĝk−1(q−1; ĝ)

]
ε̂(k), (30)

where vT (k) = (ε̂(k), . . . , ε̂(k − nq)), ε̂(k) is of the form (14). The initial conditions for
RGLS can be chosen according to (Clarce, 1967).

Further, suppose that

H(q−1; ϕ) =
1 + F (q−1; f)
1 + A(q−1;a)

. (31)

Here

F (q−1; f) = f1q
−1 + · · · + fn fq−nf (32)
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with the known integer nf , ϕ ≡ (f ,a). Then the estimates of vectors of the parame-
ters θT = (aT ,bT ), and fT = (f1, . . . , fn f ) can be calculated using the maximum
likelihood method (ML) or its on-line version consisting of two recursive algorithms, de-
scribed in (Ȧström and Bohlin, 1965). The first recursive ML algorithm (RML) calculates
the vector of the estimates θ̂T = (âT , b̂T ) according to formulas (12), where e∗(k) and
z∗T (k) are of the form (24) and (25),respectively, with the exeption of

y∗(k) =
[
1 + F̂k−1(q−1; f̂)

]−1
y(k)

=
(
1 + f̂1(k−1)q

−1 + · · · + f̂n f(k−1)q
−nf

)−1
y(k), (33)

u∗(k) =
[
1 + F̂k−1(q−1; f̂)

]−1
u(k)

=
(
1 + f̂1(k−1)q

−1 + · · · + f̂n f(k−1)q
−nf

)−1
u(k). (34)

Here

F̂k−1(q−1; f̂) = f̂1q
−1 + · · · + f̂n fq−nf . (35)

The second algorithm calculates the vector of the estimates f̂T = (f̂1, . . . , f̂n f ) using
recursive equations of the form

f̂(k) = f̂(k − 1)+Π(k)v(k)ε̂(k), (36)

Π(k) = Π(k − 1)− Π(k − 1)v(k)vT (k)Π(k − 1)
1 + vT (k)Π(k − 1)v(k)

,

ε∗(k) =
[
1 + F̂k−1(q−1; f̂)

]−1
ε̂(k), (37)

where vT (k) = (ε∗(k), . . . , ε∗(k − nq)), and ε̂(k) is of the form (14). The initial condi-
tions for RML can be chosen according to (Isermann, 1974; Eykhoff, 1975).

In a more general case (Van den Boom, 1981), i.e., where

H0(q−1; ϕ) =
(1 + F (q−1; f))

(1 + G(q−1;g))(1 + A(q−1;a))
, ϕ ≡ (f ,g,a) (38)

the recursive algorithm of an extended least squares method (ERLS) can be used, which
for F (q−1; f) ≡ 0 turned into GRLS anf for G(q−1;g) ≡ 0 – into RML. There also
exist algorithms of stochastic approximation which are usually recursive procedures with
a scalar step (Saridis, 1974). The convergence of the recursive techniques on the basis of
a united approach is investigated in (Ljung, 1977). The simulation results of the above
mentioned algorithms are given in (Isermann et al., 1974).

5. Identification in the Presence of Outliers

Given the model (2) and measured data ZN = {u(1), . . . , u(N), y(1), . . . , y(N)} and
assuming that the white noise {ξ(k)}, k = 1, 2, . . . is really a sequence of independent
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identically distributed variables with an ε-contaminated distribution of the form

p(ξ(k)) = (1 − ε)N(0, σ2
μ) + εN(0, σ2

ς ), (39)

and the variance

σ2
ξ = (1 − ε)σ2

μ + εσ2
ς , (40)

one can determine the prediction error estimate θ̂N of the parameter vector θT =
(aT ,bT ) = (a1, . . . , am, b0, b1, . . . , bm) by minimizing

θ̂N = arg min
θ∈DM

ṼN (θ,ZN ) (41)

with

ṼN (θ,ZN ) =
1
N

N∑
k=1

ρ
(
eF (k, θ/s)

)
, (42)

or by solving the equation

N∑
t=1

z(t)
{
ψ

[
y(t) − zT (t)θ

]}
= 0, (43)

in the vector form. Here p{ξ(k)} is the probability density distribution of the sequ-
ence {ξ(k)}, k = 1, 2, . . .;

ξ(k) = (1 − γk)μk + γkςk (44)

is the value of the sequence {ξ(k)}, k = 1, 2, . . . at a time moment k; γ is a random vari-
able, taking values 0 or 1 with probabilities p(γk = 0) = 1 −ε, p(γk = 1) = ε; μk, ςk are
sequences of independent Gaussian variables with zero means and variances σ2

μ, σ2
ς , re-

spectively; besides, σμ < σς ; 0 � ε � 1 is the unknown fraction of contamination;
θN is the robust estimate of the parameter vector θ, established by processing N pairs
of input-output samples; s is the scale of residual (examples of the scale are the standard
deviation, the median, absolute deviation from the median, etc.,); ρ(· ) is a real-valued
function that is even and nondecreasing for positive residuals, and ρ(0) = 0, ψ = ρ′.

For the Huber M-estimator, the ρ-function is given by

ρ(x) =
{

x2/2 if | x |� cH ,
cH | x | −c2

H/2 if | x |> cH ,
(45)

where cH is a cutoff value. The mostly used function ψ is (Huber, 1964):

ψ(x) =
{

x if | x |� cH ,
cHsign (x) if | x |> cH ,

(46)
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with given cH > 0. To get a better performance of θ̂N in the case of very long-tailed
distributions, a function (42) satisfying ψ(x) = 0, if | x |> cH , for some cH > 0
could be selected. It is known (Novovičova, 1987) that, in both such cases, i.e., ε �= 0
and H0(q−1; ϕ) of the form (16), the current M-estimates of an unknown vector of the
parameters θ of LTI system (2) with G(q, θ) of the form (15) can be calculated using three
techniques: the S-algorithm, the H-algorithm, and the W -one. All the three of them could
be written in the general form:

θ̂(k) = θ̂(k − 1)+
Γ(k − 1)z(k)

λ(k) + zT (k)Γ(k − 1)z(k)
β(k), (47)

Γ(k) = Γ(k − 1)− Γ(k − 1)z(k)zT (k)Γ(k − 1)
λ(k) + zT (k)Γ(k − 1)z(k)

.

Here

β(k) = ŝψ[α(k)] (48)

with

α(k) = ε̂(k)/ŝ (49)

for S- and H-algorithms, and

β(k) = ŝε̂(k) (50)

for the W -algorithm;

ε̂(k)/ŝ =
{
y(k) − zT (k)θ̂(k − 1)

}
/ŝ (51)

is the same for all the three algorithms, while

λ(k) = 1 (52)

for the H-algorithm

λ(k) =
{ {

ŝψ[α(k)]/ε̂(k)
}−1

for ε̂(k) �= 0,
1 for ε̂(k) = 0,

(53)

for the W -algorithm,

λ(k) = ψ
′ [

α(k)
]−1

(54)

for the S-algorithm. Here ŝ is the robust estimate of the scale s of residuals. In (Genov et
al., 2006) it has been proposed to use

β(k) = ŝφz1ψ
[
α(k)/φz2

]
, (55)



12 N. Atanasov, R. Pupeikis

and

λ(k) =
{

φz1ψ
[
α(k)/φz2

] / [
α(k)/φz2

]
for α(k) �= 0,

φz1 for α(k) = 0,
(56)

respectively, instead of (48) and (53). Here

φz1 = φz2 = 1 (57)

for Hubers M-estimator;

φz1 = φz[h(k)], φz2 = 1 (58)

for Mallow’s, and

φz1 = φz2 = φz[h(k)], (59)

for Shweppe’s GM-estimators, respectively, where

φz[h(k)] =
√

1 − h(k) (60)

with

h(k) = zT (k)Γ(k)z(k). (61)

The S-algorithm represents a version of the algorithm proposed by Polyak and Tsypkin
(1980) for an on-line robust identification of parameters of the linear dynamic model of
the LTI system. The ordinary RLS (12) is modified by substituting the “winsorization”
step of the residuals in the first equation and changing the second equation in Eqs. (12).
The recursive H-algorithm is obtained only by inserting the “winsorization” step into the
first equation of Eqs. (12). The W -algorithm is worked out by inserting different weights
in respect to the function ψ{ · } into the already existing ordinary RLS.

It is not difficult to show that, if H0(q−1; ϕ) is of the form (17), then in formulas (48),
(51) the vector zT (k) must be replaced by (18) and ε̂(k) of the form (14) by ε̂∗(k) of the
form (19), where y∗(k) and u∗(k) are observations filtered according to (20) and (21),
respectively. If H0(q−1; ϕ) is of the form (22), then the first RLS can be replaced by the
generalized algorithm of the form (48)–(51) when calculating the vector of the estimates
θ̂(k) according to recursive formulas (12). Here the vector zT (k) is replaced by (25) and
ε̂(k) by e∗(k) of the form (24). The observations y∗(k) and u∗(k) are filtered according
to (26) and (27), respectively. The same preparations must be made when H0(q−1; ϕ) is
of the form (31) and the ordinary RML is used. The difference is that the observations
y∗(k) and u∗(k) in ε̂∗(k) and in the vector zT (k) are filtered according to (33), (34),
respectively. The matrix Γ(k) for each case of H0(q−1; ϕ) is calculated by the second
expression of (48) with λ(k) that is different for each robust technique to be chosen.
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Recursive expressions (29), and (37) are robustified by multiplying Λ(k)v(k)ε̃(k)
and Π(k)v(k)ε̂(k), respectively, by β(k), in their first equations, and substituting the
current values of λ(k) instead of unities in the corresponding denominators in their se-
cond equations.

6. Simulation Example

A closed-loop system to be simulated is shown in Fig. 2 and described by a linear differ-
ence equation of the form (Ȧström, 1987; Halwass, 1988)

(1 + a1q
−1)y(k) = (1 + b1q

−1)u(k) + (1 + c1q
−1)ξ(k), (62)

while the controller design equation is

u(k) = e(k) + w1u(k − 1) + w2u(k − 2), (63)

where

e(k) = r(k) − y(k). (64)

Here a1 = −0.985, b1 = 2 and c1 = −0.7. The coefficients of the LQG controller are
found according to (Halwass, 1988) by the formulas:

w1 = p + c1 − a1; (65)

and

w2 =
(p − a1)(c − a1)

b1 − a1
b, (66)

assuming that time delay is equal to zero and w0 = 1. Then such values of coeffi-
cients of the LQG controller described by Eqs. (65) and (66) are calculated beforehand:
w1 = 0.1005, w2 = −0.1016. The output y(k), k = 0, 1, 2, . . . of the closed-loop sys-
tem is observed without and under the additive noise v(k), k = 0, 1, 2, . . . containing
outliers according to (39)–(40) (see Figs. 3, 4, 6, 8). We calculate estimates of the pa-
rameters a1, b1, c1 of Eq. (62) by processing observations of {y(k)} and {u(k)} in each
current iteration k using ordinary RML (see Figs. 5, 7, 9), the H-algorithm with version
of M-estimator of Huber (Fig. 10), and the S-algorithm with version of Shweppe’s GM-
estimator (Fig. 11). It could be mentioned that both robust recursive procedures were
applied only in the presence of outliers in the observations {y(k)}, while the ordinary
RML was also used, in the opposite case. Afterwar ds, in each current iteration k the
coefficients w1, w2 were determined using formulas (65)–(66) despite which recursive
estimation technique of the parameters a1, b1, c1 was used. The parameter estimation re-
sults are presented in Figs. 5, 7, 9–11. It follows that the accuracy of estimates of the
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Fig. 2. A closed-loop system to be simulated. Signals: r(k) is a reference signal, u(k) is input, y(k) is output,
v(k) is an additive correlated noise, ξ(k) is a sequence of independent identically distributed variables with an
ε-contaminated distribution of the form (39), and e(k) = r(k) − u(k) is an error.

Fig. 3. Signals of the noiseless closed-loop system: 1) the reference signal r(k), 2) output y(k), 3) input u(k).

parameters a1, b1, c1 obtained by ordinary RML (see Figs. 5a, b, c, 7a, b, c, and 9a, b,
c) decreases when the number of outliers in additive noise {v(k)} is increasing. Thus,
the ordinary RML turns out to be inefficient. In such a case, the accuracy of estimates of
the coefficients w1, w2 of the LQG controller is decreasing as well. Therefore it is im-
portant to use here robust recursive techniques. The results of numerical simulation and
estimation (Figs. 10, 11) allow us only to approximately consider the quality of estimates.
Therefore, it is important to present also the averaged estimates of unknown parameters
and quantitative indicators of the calculated estimates, i.e., the confidence intervals of the
estimates with respect to the number of iterations.

10 experiments with different realizations of additive correlated noise {v(k)} were
carried out in order to investigate more precisely and to compare the accuracy of es-
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Fig. 4. Signals of a noisy closed-loop system in the absence of outliers in v(k): 1) the reference signal r(k), 2)
noisy output y(k), 3) input u(k).

Fig. 5. Dependence of current estimates of the parameters of the closed-loop system on the number of recursive
iterations when outliers in v(k) are absent (see Fig. 4): x-axis – numbers of iterations, y-axis – meanings of
the estimates. a is the estimate of the coefficient of the numerator of the noise filter transfer function, b is the
estimate of the coefficient of the denominator of the system transfer function, c is the estimate of the coefficient
of the numerator of the system transfer function, d are estimates of the coefficients of the denominator of the
controller transfer function. Straight lines correspond to the exact values of estimated coefficients. The estimates
are obtained using the ordinary RML.
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Fig. 6. Signals of a noisy closed-loop system in the presence of outliers in v(k)(ε=0.05 in (39)): 1) the reference
signal r(k), 2) the output y(k) corrupted with an additive noise with outliers in it, 3) the input u(k).

Fig. 7. Estimates of noisy closed-loop system parameters in the case of outliers in a correlated noise (see Fig. 6).
Other values and markings are the same as in Fig. 5. The estimates are obtained using the ordinary RML.

timates of the parameter vector θ of the LTI system G0(q−1; θ) simultaneously with
the current parameter vector α of the LQG controller GR(q−1; α), obtained using the
H-algorithm with a version of Huber’s M-estimator and S-algorithm with version of
Shweppe’s GM-estimator. We have used the Monte Carlo simulation with 10 data sets,
each containing 400 input-output observation pairs in the case of additive correlated
noise {v(k)}, having large outliers and corrupting the output {y(k)} (see Fig. 12). In
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Fig. 8. Signals of a noisy closed-loop system in the presence of outliers in v(k)(ε=0.1) in (39): 1) the reference
signal r(k), 2) the output y(k) corrupted by an additive noise with outliers in it, 3) the input u(k).

Fig. 9. Estimates of noisy closed-loop system parameters in the case of outliers in a correlated noise (see Fig. 8).
Other values and markings are the same as in Fig. 5. The estimates are obtained using the ordinary RML.

each ith experiment the estimates of parameters a1 = −0.985, b1 = 2, c1 = −0.7,
and w1 = 0.1005, w2 = −0.1016 have been determined. Table 1 illustrates the val-
ues b̄1, ā1, c̄1 of estimates b̂1(k), â1(k), ĉ1(k), (averaged by 10 experiments), and their
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Fig. 10. Estimates of noisy closed-loop system parameters in the case of outliers in a correlated noise (see
Fig. 8). Other values and markings are the same as in Fig. 5. The estimates are obtained using the H-algorithm
with a version of Huber’s M-estimator.

Fig. 11. Estimates of noisy closed-loop system parameters in the case of outliers in a correlated noise (see
Fig. 8). Other values and markings are the same as in Fig. 5. The estimates are obtained using the S-algorithm
with Shweppe’s GM-estimator.
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Fig. 12. Two different cases of realizations of respective signals in the case of outliers in a correlated noise
{v(k)}, used in the Monte Carlo simulation. Other values and notation are the same as in Fig. 3.

confidence intervals

Δ1 = ±tα
σ̂b1√
N

, Δ1 = ±tα
σ̂a1√

N
, Δ2 = ±tα

σ̂c1√
N

∀ k=1, 400. (67)

Here σ̂b1 , σ̂a1 , σ̂c1 are estimates of the standard deviations σb1 , σa1 , σc1 , respectively;
α = 0.05 is the significance level; tα = 2.26 is the 100(1 − α)% point of Student’s
distribution with L − 1 degrees of freedom; L = 10 is the number of experiments. Table 2
illustrates the values w̄1, w̄2 of estimates ŵ1(k), ŵ2(k), (averaged by 10 experiments),
and their confidence intervals

Δ1 = ±tα
σ̂w1√

N
, Δ2 = ±tα

σ̂w2√
N

∀ k=1, 400. (68)

Here σ̂w1 , σ̂w2 are estimates of the standard deviations σw1 , σw2 , respectively; Note that
in both tables the first line of each k corresponds to the averaged estimates and their
confidence intervals which were calculated using the S-algorithm with Shweppe’s GM-
estimator while the second one – to the same values calculated by the H-algorithm with
a version of Huber’s M-estimator. The analysis of the estimates, presented in Tables 1, 2,
implies that the results obtained by the S-algorithm with Shweppe’s GM-estimator cor-
roborate the fact that it is more appreciable than the H-algorithm with a version of Hu-
ber’s M-estimator because of a higher accuracy of recursive estimates.
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Table 1

The averaged estimates of parameters a1 = −0.985, b1 = 2, c1 = −0.7 and their
confidence intervals for different k

Observations The averaged estimates of parameters

k ā1 b̄1 c̄1

45 −0.997 ± 0.003 1.081 ± 0.015 −0.110 ± 0.008

−0.997 ± 0.003 1.081 ± 0.015 −0.110 ± 0.008

100 −0.993 ± 0.006 1.371 ± 0.168 −0.396 ± 0.089

−0.966 ± 0.029 2.453 ± 0.074 −0.169 ± 0.251

200 −0.988 ± 0.010 1.689 ± 0.213 −0.418 ± 0.054

−0.975 ± 0.012 2.397 ± 0.098 −0.223 ± 0.241

300 −0.984 ± 0.007 1.925 ± 0.213 −0.400 ± 0.004

−0.977 ± 0.010 2.384 ± 0.094 −0.234 ± 0.228

400 −0.984 ± 0.009 2.075 ± 0.196 −0.367 ± 0.003

−0.977 ± 0.009 2.374 ± 0.092 −0.263 ± 0.216

Table 2

The averaged estimates of parameters w1 = 0.1005, w2 = −0.1016 and their confi-
dence intervals for different k

Observations The averaged estimates of parameters

k w̄1 w̄2

45 −0.154 ± 0.003 −0.119 ± 0.002

−0.154 ± 0.003 −0.119 ± 0.002

100 0.115 ± 0.096 −0.097 ± 0.039

−0.194 ± 0.237 −0.178 ± 0.094

200 0.110 ± 0.067 −0.116 ± 0.018

−0.142 ± 0.239 −0.196 ± 0.061

300 0.072 ± 0.100 −0.128 ± 0.020

−0.122 ± 0.224 −0.191 ± 0.058

400 0.028 ± 0.062 −0.144 ± 0.022

−0.102 ± 0.217 −0.186 ± 0.057

7. Conclusions

Despite that the RML technique has been worked out for an additive correlated noise
generated by the filter (31) from the statistically independent and stationary sequence
with (3), it appears that the ordinary RML is also applicable in the presence of large, but
rare outliers in output observations (see Figs. 5, 7). If the number of outliers is increasing,
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then the robustified versions of the RMLs gain an advantage over the ordinary RML pro-
cedure (Figs. 9, 10, 11). It seems that the recursive estimates, obtained by the S-algorithm
with Shweppe’s GM-estimator, and the estimates of controller coefficients, recalculated
in each current iteration, approach the true values of parameters and coefficients, respec-
tively, more rapidly than that calculated by the recursive H-technique with a version of
Huber’s M-estimator (see Figs. 10, 11 and Tables 1, 2). On the other hand, the estimates
of controller coefficients are not robust even for Shweppe’s GM-estimator.
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Apie rekurentin ↪i M- ir GM- ↪iverči ↪u skaičiavim ↪a, taikant tiesiogin ↪i
LQG valdymo sistem ↪u identifikavim ↪a

Nasko ATANASOV, Rimantas PUPEIKIS

Straipsnyje vystomas parametrinio LQG (tiesinis kvadratinis Gauso) valdymo sistem ↪u iden-
tifikavimo metodas, kai tiesinės pastovi ↪u koeficient ↪u sistemos bei LQG reguliatoriaus parametrai
esti nežinomi ir turi būti skaičiuojami. Čia taikomos rekurentinės parametr ↪u ↪ivertinimo išraiškos,
grindžiamos M- ir GM- ↪iverči ↪u skaičiavimo algoritmais, kadangi LQG valdymo sistemos išėjimas
stebimas triukšme su didelėmis to triukšmo reikšmi ↪u išmetomis. Kiekvienoje skaičiavim ↪u iteraci-
joje gauti sistemos parametr ↪u ↪iverčiai taikomi LQG reguliatoriaus koeficient ↪u reikšmėms perskai-
čiuoti. Pateikti LQG valdymo sistemos modeliavimo bei jos parametrinio identifikavimo rezultatai.


