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Abstract. Most of real-life data are not often truly high-dimensional. The data points just lie on
a low-dimensional manifold embedded in a high-dimensional space. Nonlinear manifold learning
methods automatically discover the low-dimensional nonlinear manifold in a high-dimensional data
space and then embed the data points into a low-dimensional embedding space, preserving the
underlying structure in the data. In this paper, we have used the locally linear embedding method
on purpose to unravel a manifold. In order to quantitatively estimate the topology preservation of a
manifold after unfolding it in a low-dimensional space, some quantitative numerical measure must
be used. There are lots of different measures of topology preservation. We have investigated three
measures: Spearman’s rho, Konig’s measure (KM), and mean relative rank errors (MRRE). After
investigating different manifolds, it turned out that only KM and MRRE gave proper results of
manifold topology preservation in all the cases. The main reason is that Spearman’s rho considers
distances between all the pairs of points from the analysed data set, while KM and MRRE evaluate
a limited number of neighbours of each point from the analysed data set.

Keywords: dimensionality reduction, manifold learning, multidimensional data visualization,
locally linear embedding, topology preservation.

1. Introduction

Data coming from the real world are often difficult to understand because of its high
dimensionality. There are many methods for dimensionality reduction and its further visu-
alization. The common goal of visualization is to represent data from a high-dimensional
space in a low-dimensional projection space so as to preserve the “internal structure” of
the data in the high-dimensional space as far as possible and to allow the visual insight
into complex multidimensional data sets. In this paper, we concentrate on the dimen-
sionality reduction methods that deal with specific data – manifold type multidimen-
sional data.

Most of real-life data are multidimensional, but they are not truly high-dimensional.
They are just embedded in a high-dimensional space, but can be efficiently summarized
in a space of a much lower dimensionality, such as a nonlinear manifold. A manifold is
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Fig. 1. A two-dimensional manifold (a), embedded in three dimensions: (b) a linear embedding (plane),
(c) an S-shape, (d) “Swiss roll”.

a smooth low-dimensional surface embedded in a higher dimensional space. A simple
example is given in Fig. 1. A two-dimensional manifold (Fig. 1a) is embedded in three
dimensions in three different ways: a linear embedding (plane) – Fig. 1b, an S-shape –
Fig. 1c, a “Swiss roll” – Fig. 1d. The S-shape manifold and “Swiss roll” can be thought
of as curling a piece of rectangular paper (Fig. 1a). The analysed data sets are presented
in Figs. 1b, 1c, and 1d. The aim is to transfer these data into a lower-dimensional space.
In the general case, the problem is to discover the low-dimensional nonlinear manifold in
a high-dimensional data space and then transfer the data points into this low-dimensional
space.

Let the dimensionality of analysed data be n. High-dimensional data sets can have
meaningful low-dimensional structures hidden in the observation space, i.e., the data are
of a low intrinsic dimensionality d � n, in the sense of lying on or near to a smooth
low-dimensional manifold. The intrinsic dimensionality of a data set is usually defined as
the minimal number of parameters or latent variables necessary to describe the data.

An important point of a manifold is its topology, i.e., neighbourhood relationships
between the subregions of the manifold. A manifold can be entirely characterized by
giving relative or comparative proximities: a first region is close to a second one, but far
from a third one.

Nonlinear manifold learning methods are topology-preserving methods. The key pur-
pose of such methods is to preserve distances when mapping data to a low-dimensional
space so that the points, close in the high-dimensional input space, be also close in the
output space: it is necessary to unfold a nonlinear manifold.

A large number of nonlinear manifold learning methods has been proposed over the
last decade: Locally Linear Embedding (LLE) (Roweis and Saul, 2000; Saul and Roweis,
2003), Isomap (Tenenbaum et al., 2000), Laplacian Eigenmaps (LE) (Belkin and Niyogi,
2003), Hessian LLE (HLLE) (Donoho and Grimes, 2005), Local Tangent Space Analysis
(LTSA) (Zhang and Zha, 2004), and others (Lee and Verleysen, 2007). While Locally
Linear Embedding, Laplacian Eigenmaps, Hessian LLE, Local Tangent Space Analysis
try to preserve the local geometry of the manifold, Isomap aims at preserving geometry
at all scales: local and global.

This paper deals with a Locally Linear Embedding method (Roweis and Saul, 2000;
Saul and Roweis, 2003). The LLE algorithm requires these parameters to be determined:
the intrinsic dimensionality d and the number of the nearest neighbours k. Improper va-
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lues of these parameters greatly influence the results. On one hand, a large value of the
intrinsic dimensionality d amplifies noise effects, while a low value leads to overlaps in
mapping results (excessively reduced; Yin et al., 2007). It is noted in Levina and Bickel
(2005) that if the dimensionality d is too small, important data features are “collapsed”
onto the same dimensionality, and if the dimensionality is too large, the projections be-
come noisy and, in some cases, unstable. In Karbauskaitė et al. (2007), it is shown that,
if k is set too small, a continuous manifold can falsely be divided into disjoint sub-
manifolds, and thus, the mapping does not reflect any global properties. If k is too high,
a large number of the nearest neighbours causes smoothing or elimination of small-scale
structures in the manifold, the mapping loses its nonlinear character and behaves like
traditional Principal Component Analysis (Jolliffe, 1989).

In this paper, two-dimensional manifolds embedded in a three-dimensional space are
investigated. In this case n = 3 and d = 2, i.e., we can see the embedded manifolds
visually. As the structure of a manifold is known in advance, the visual impression is used
in order to evaluate the topology preservation when the manifolds are unravelled. We also
use several quantitative numerical measures to assess the embeddings computed by LLE.
We know what embeddings must be gotten on a plane. So we could say which topology
preservation measures are proper for this task. Such measures can be successfully used
to estimate the low-dimensional embeddings of high-dimensional data while looking for
the proper value of the parameter k.

There are a lot of different measures of topology preservation in the literature (Siegel
and Castellan, 1988; Goodhill and Sejnowski, 1996; Konig, 2000; Tenenbaum et al.,
2000; Venna and Kaski, 2001; Lee and Verleysen, 2007 etc.).

Different topology preservation measures are appropriate for different applications
(Goodhill and Sejnowski, 1996). Our purpose is to find and investigate such measures
that were suitable to analyse the topology preservation of a manifold. In this paper,
we investigate three main quantitative measures: Spearman’s rho (Siegel and Castellan,
1988), Konig’s measure (Konig, 2000), and mean relative rank errors (Lee and Verley-
sen, 2007). Spearman’s rho is often used for estimating the topology preservation with
a view to reduce dimensionality (Bezdek and Pal, 1995; Goodhill and Sejnowski, 1996;
Kouropteva et al., 2005; Bernatavičienė et al., 2006). It is shown in Karbauskaitė et al.
(2007) that Spearman’s rho is suitable to estimate the topology preservation after vi-
sualizing the data by the LLE algorithm, too. Konig’s measure is used to estimate the
topology preservation of the maps, obtained by self-organizing neural networks (Konig,
2000; Estevez et al., 2005). In our paper, it is shown that this measure can be also suc-
cessfully used to estimate the topology preservation after visualizing data by LLE. Mean
relative rank errors are used to estimate the topology preservation of the maps, obtained
by many nonlinear dimensionality reduction methods for the artificial and real faces (Lee
and Verleysen, 2007). In this paper, we have compared these three measures and noticed
the advantages of Konig’s measure and mean relative rank errors compared with Spear-
man’s rho.
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2. Locally Linear Embedding Algorithm (LLE)

It is noted in Yang (2006) that LLE works by assuming that the manifold is well sampled,
i.e., there are enough data, and each data point and its neighbours lie on or close to a
locally linear patch. Therefore a data point can be approximated as a weighted linear
combination of its neighbours. The basic idea of LLE is that such a linear combination is
invariant under linear transformations (translation, rotation, and scaling) and, therefore,
it should remain unchanged after the manifold has been unfolded to a low space. The
low-dimensional configuration of data points is given by solving two constrained least
squares optimization problems.

The input of the LLE algorithm consists of m n-dimensional vectors (points) Xi =
(xi1, . . . , xin), i = 1, m (Xi ∈ Rn), that are assembled in a matrix X of size n × m.
The output consists of m d-dimensional vectors (points) Yi = (yi1, . . . , yid), i = 1, m

(Yi ∈ Rd), that are assembled in a matrix Y of size d × m. The LLE algorithm has three
steps. In the first step, we identify k neighbours of each data point Xi. This can be done
either by identifying a fixed number of k nearest neighbours of each data point in terms
of Euclidean distances or by choosing all points within a ball of a fixed radius. In the
second step, we compute the weights wij that reconstruct each data point Xi best from
its neighbours Xi1, . . . , Xik, minimizing the following error function:

E(W ) =
m∑

i=1

∥∥∥∥Xi −
k∑

j=1

wijXij

∥∥∥∥
2

, (1)

subject to the constraint
∑k

j=1 wij = 1. Here Xij = (xj
i1, . . . , x

j
in), i = 1, m, j = 1, k

and ‖ · ‖ is the Euclidean norm. This is a typical constrained least squares optimization
problem that can be easily answered by solving a linear system of equations.

Consider a particular data point Xi with k nearest neighbours Xij and reconstruction
weights wij , j = 1, k that sum up to one. We can write the reconstruction error as

E(i)(W ) =
∥∥∥∥Xi −

k∑
j=1

wijXij

∥∥∥∥
2

=
∥∥∥∥

k∑
j=1

wij

(
Xi − Xij

)∥∥∥∥
2

=
k∑

j,l=1

wijwilc
i
jl =

k∑
j=1

wij

k∑
l=1

ci
jlwil. (2)

Here Ci = {ci
jl}, j, l = 1, k is the k × k local Gram matrix with the elements defined by

the following equation:

ci
jl =

(
Xi − Xij

)
·
(
Xi − Xil

)
, (3)

where Xij and Xil are the neighbours of Xi.
LLE may be generalized using other metric distances apart from Euclidean. For ex-

ample, the kernel distance may be used to find the nearest neighbours in the kernel fea-
ture space, instead of finding neighbours in the original input space (as the original LLE
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does). Kernel-based learning methods (support vector machines, the kernel PCA and oth-
ers; Cristianini and Taylor, 2000) are often used in machine learning and data mining. In
DeCoste (2001), the use of distances based on Mercel kernels is explored. As a result, a
new kernelized form of LLE, called KLLE, has been proposed.

Let φ(·) be a mapping function from the original n-dimensional space into another
high-dimensional, possibly infinite-dimensional feature space. If Xa and Xb are two vec-
tors from Rn, then the kernel is computed as follows:

κ(Xa, Xb) = φ(Xa) · φ(Xb), (4)

i.e., κ(Xa, Xb) is an inner product of two vectors φ(Xa) and φ(Xb) from the kernel
feature space without explicitly computing the coordinates of these vectors. In this way,
kernels allow large nonlinear feature spaces to be explored avoiding a vast dimensionality.
In some cases, explicit computing of the coordinates of vectors in the kernel feature space
may be useful (Dzemyda, 2001).

In DeCoste (2001), the various Mercel kernels (the polynomial kernel, the radial ba-
sis function kernel (Gaussian kernel), the linear kernel) are applied to LLE. Here the
elements of the kernel Gram matrix are defined by the following equation:

ci
jl =

(
φ(Xi) − φ(Xij)

)
·
(
φ(Xi) − φ(Xil)

)

= κ(Xi, Xi) − κ(Xi, Xij) − κ(Xi, Xil) + κ(Xij , Xil), (5)

where Xij and Xil are the neighbours of Xi.
Just like Roweis and Saul (2000) and Saul and Roweis (2003), we use the linear kernel

in this paper: φ(Xa) = Xa and κ(Xa, Xb) = Xa · Xb. Application of a nonlinear kernel
is the object of future research, based on the results of this paper. It is shown below that
even aiming merely at the linear kernel we can achieve good results.

The way to minimize error (2) is simply to solve the linear system of equations

k∑
l=1

ci
jlwil = 1, (6)

and then to rescale the weights so that they sum up to one:

wij ← wij/

k∑
l=1

wil. (7)

If the Gram matrix is singular or nearly singular – it happens, for example, when
there are more neighbours than the analysed data dimensionality (k > n), or when the
data points are not in the general position – it can be conditioned (before solving the
system) by adding a small multiple of the identity matrix

ci
jl ← ci

jl + δjlTr (Ci)t, (8)
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where Tr(Ci) is the trace of Ci, δjl = 1 if j = l, and 0, otherwise. A control parameter
t is set by the user (t > 0, t � 1).

The third step consists in mapping each data point Xi to a low-dimensional point Yi,
which preserves best a high-dimensional neighbourhood geometry represented by the
weights wij . So, the weights are fixed and embedded coordinates Yi are sought by mini-
mizing the following function:

Φ(Y ) =
m∑

i=1

∥∥∥∥Yi −
k∑

j=1

wijYij

∥∥∥∥
2

(9)

subject to two constraints: 1
m

∑m
i=1 YiY

T
i = I and

∑m
i=1 Yi = 0, where I is the d × d

identity matrix, that provide a unique solution. The most straightforward method for com-
puting the d-dimensional coordinates (d < n) is to find the bottom d + 1 eigenvectors of
the sparse matrix M = (I − W )T (I − W ), where W = (w1j , w2j , . . . , wmj), j = 1, k.
These eigenvectors are associated with the d + 1 smallest eigenvalues of M . The bottom
eigenvector, whose eigenvalue is closest to zero, is the unit vector with all equal compo-
nents and it is discarded. The remaining d eigenvectors form the d embedding coordinates
that are found by LLE.

3. Three Topology Preservation Measures

3.1. Spearman’s rho

In order to quantitatively estimate the topology preservation, Spearman’s rho (Siegel and
Castellan, 1988) is commonly used. This quantitative numerical measure estimates the
correlation of rank order data, i.e., how well the corresponding low-dimensional projec-
tion preserves the order of pairwise distances between the high-dimensional data points
converted to ranks. Spearman’s rho is computed by using the following equation:

ρSp = 1 − 6
∑T

i=1(rX(i) − rY(i))2

T 3 − T
,

where T is the number of distances to be compared (T = m(m − 1)/2), rX(i),
i = 1, T are the ranks (order numbers) of pairwise distances calculated for the original
(n-dimensional) data points and sorted in ascending order, and rY(i), i = 1, T are the
ranks (order numbers) of pairwise distances calculated for the projected (d-dimensional)
data points and sorted in ascending order. As usual, −1 � ρSp � 1. The best value of
Spearman’s rho is equal to one.

It is shown in Karbauskaitė et al. (2007) that Spearman’s rho is suitable to estimate the
topology preservation after visualizing the data by the LLE algorithm. When calculating
pairwise distances for the original data points (for rX(i)), it is necessary to use geodesic
distances with selected rather a small number of neighbours (� 10) for getting values of
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these distances (Karbauskaitė et al., 2007). In the case of a projection, the dimensionality
of which is the same as the intrinsic dimensionality, both the Euclidean and geodesic
distances may be used when calculating pairwise distances for the projected data points
(for rY(i)).

3.2. Konig’s Measure (KM)

The topology preservation measure used in Konig (2000) is based on the assessment
of rank order in the input and output spaces, too. Let us denote this measure as KM.
This measure has two control parameters – numbers of the nearest neighbours: k1 and
k2(k1 < k2). The Euclidean distances estimate a neighbourhood here. Let us denote:

– by Xij , j = 1, k1, k1 nearest neighbours of the n-dimensional point Xi, where
the distances between Xi and its neighbours satisfy the following inequality
‖Xi, Xij1 ‖ < ‖Xi, Xij2 ‖ with j1 < j2;

– by Yij , j = 1, k2, k2 nearest neighbours of the d-dimensional point Yi;
– by rX(i, j) a rank of the jth neighbour Xij of the point Xi, where the rank means

the order number of Xij in the analysed data set X = {X1, . . . , Xm};
– and by rY (i, j) a rank of the jth neighbour Yij of Yi, corresponding toXi. Here the

rank means the order number of Yij in the set Y = {Y1, . . . , Ym}.

The topology preservation measure for the ith point and the jth neighbour is calcu-
lated as follows:

KMij =

⎧⎪⎪⎨
⎪⎪⎩

3, if rX(i, j) = rY (i, j),
2, if r

X
(i, j) = r

Y
(i, l), l = 1, k1, j �= l,

1, if rX(i, j) = rY (i, t), t = k1 + 1, k2, k1 < k2,
0, else.

The general measure KM is calculated as follows:

KM =
1

3k1 × m

m∑
i=1

k1∑
j=1

KMij .

The range of KM is between 0 and 1, where 0 indicates a poor neighbourhood preser-
vation, and 1 indicates a perfect one.

Analysis of the parameters of topology preservation measure KM

The topology preservation measure KM has two control parameters: a smaller number k1

of the nearest neighbours and a larger number k2 (k1 < k2) of the nearest neighbours
of each data point. In order to analyse the influence of these parameters on the obtained
value of KM, several investigations have been pursued.

The first investigation (Fig. 2) is performed using a nonlinear two-dimensional S-ma-
nifold (m = 1000) (Fig. 16a). The LLE algorithm has been run for many times gradually
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Fig. 2. KM dependences on the LLE parameter k obtained with different combinations of k1 and k2 after
visualizing the S-manifold by LLE.

increasing the number of neighbours k ∈ [5; 100] in the LLE algorithm and calcula-
ting the topology preservation measure KM for each selected value of k. At first, while
calculating the values of KM, a smaller number k1 of the nearest neighbours was fixed
(k1 = 4) and a larger number k2 of the nearest neighbours was increased little by little
(k2 = {10, 20, 100}). Three KM dependences on the LLE parameter k have been ob-
tained with different combinations of k1 and k2: {4, 10}, {4, 20} and {4, 100}. Fig. 2a
shows that the values of all dependences are approximately equal, if the obtained value
of KM is the best one, i.e., KM ≈ 0.75. For k > 30, the values of KM are decreas-
ing. Besides, if the parameter k2 � 20, then the dependences are approximately equal.
With k2 = 10, the obtained dependence of KM has lower values than that in dependences
with k2 = 20 or k2 = 100. However, the average difference between KM (k2 = 10) and
KM (k2 = 100) is only ≈ 6%. Thus, the parameter k2 does not have a great influence
while calculating the value of KM.

Subsequently, while calculating the values of KM, the value of k2 was fixed (k2 = 20)
and the value of k1 was increased little by little; k1 = {2, 3, 4, 5}. Four KM dependences
on the LLE parameter k have been obtained with different combinations of k1 and k2:
{2, 20}, {3, 20}, {4, 20} and {5, 20}. We have noticed that the values of KM decrease
while increasing the value of k1 (Fig. 2b). However the parameter k1 influences only the
magnitude of the KM value, while the form of KM dependence on k remains approx-
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Fig. 3. KM dependences on the LLE parameter k obtained with different combinations of k1 and k2 after
visualizing the “Swiss roll“ by LLE.

imately the same. Therefore, any of these dependences can be used while looking for
such a number k (or its interval) of the nearest neighbours in the LLE algorithm that a
manifold be successfully unravelled to a lower space.

Analogical investigations have been performed with a nonlinear two-dimensional
manifold “Swiss roll“ (m = 1000) (Fig. 16b). The results obtained are similar to the
case of S-manifold (Fig. 3).

3.3. Mean Relative Rank Errors (MRRE)

In Lee and Verleysen (2007), a topology preservation measure, based on the proximity
rank, is proposed. The rank rX(i, j) is computed as follows:

• Using the analysed data set X and taking the ith point Xi as a reference, compute
all the Euclidean distances ‖Xi − Xt‖, for 1 � t � m, t �= i.

• Sort the obtained distances in ascending order, and let the output rX(i, j) be the
rank of Xj according to the sorted distances. Note that if j = arg min

1�t�m,t�=i
‖Xi −Xt‖,

then rX(i, j) = 1.
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Two different measures, called mean relative rank errors, are calculated as follows:

a) MRRE(X → Y) =
1
C

m∑
i=1

∑
j∈NK(Xi)

|r
X
(i, j) − r

Y
(i, j)|

rX(i, j)
,

b) MRRE(Y → X) =
1
C

m∑
i=1

∑
j∈NK(Yi)

|r
X
(i, j) − r

Y
(i, j)|

rY (i, j)
,

where NK(Xi) denotes the set of order numbers of K neighbours of Xi. The normaliza-
tion factor is given by

C = m

K∑
l=1

|2l − m − 1|
l

.

It scales the error between 0 and 1. Both measures (MRRE(X → Y) and
MRRE(Y → X)) vanish if the K nearest neighbours of each data point appear in the
same order in both spaces. Hence the best value of MRRE is equal to zero.

Analysis of the parameter K of mean relative rank errors

There is only one control parameter, the number K of the nearest neighbours of each
data point, in the calculation of mean relative rank errors. With a view to find out
the influence of this parameter on the mean relative rank errors (MRRE(X → Y)
and MRRE(Y → X)), an investigation with a nonlinear two-dimensional S-manifold
(m = 1000) (Fig. 16a) has been performed. The LLE algorithm has been run for many
times gradually increasing the number of neighbours k ∈ [5; 100] and calculating mean
relative rank errors for each selected value of k. Figs. 4, 5 show that the values of MRRE
increase with an increase in number K of the nearest neighbours of each data point both
in n-dimensional (Fig. 4) and d-dimensional (Fig. 5) spaces. However, the form of MRRE
dependences on k remains approximately the same. Therefore any of these dependences

Fig. 4. MRRE(X → Y) dependences on the LLE parameter k obtained with different values of K in MRRE
after visualizing the S-manifold by LLE.
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Fig. 5. MRRE(Y → X) dependences on the LLE parameter k obtained with different values of K in MRRE
after visualizing the S-manifold by LLE.

can be used while looking for such a number k (or its interval) of the nearest neighbours
in the LLE algorithm that a manifold be successfully unravelled to a lower space.

4. Comparison of Topology Preservation Measures

In this section, we will compare three topology preservation measures: Spearman’s rho,
Konig’s measure (KM), and mean relative rank errors (MRRE). We will also try to find
out which measures better estimate the topology preservation of a manifold, after embed-
ding it to a lower d-dimensional space by the LLE algorithm.

To this end, nonlinear 2-dimensional manifolds of various structure and different den-
sity are analysed. After getting their projections on a plane by LLE, the values of topology
preservation measures are calculated with various values of the LLE parameter k. In this
way, dependences of Spearman’s rho, KM and MRRE on k have been obtained.

We state that the chosen value of k in LLE is proper, if LLE succeeds in unravelling
the manifold, i.e., LLE perfectly preserves the topology of the manifold.

Fig. 6. Dependences of Spearman’s rho and KM on the LLE parameter k obtained after visualizing the
S-manifold by LLE.
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The first experiment is done using a nonlinear two-dimensional S-manifold (m=1000;
Fig. 16a). In Karbauskaitė et al. (2007), the dependence of Spearman’s rho on k has been
obtained as well as the manifold successfully unfolded with k ∈ [8; 30]. After calculating
the values of KM as k1 = 4, k2 = 10 for k ∈ [6; 100], the same proper interval of
the nearest neighbours, i.e., k ∈ [8; 30], was obtained (Fig. 6). We should note the fact
that, although the values of Spearman’s rho are always higher than KM, it is of great
importance that the intervals of the nearest neighbours, corresponding to the best values
of both measures, were coincident.

After calculating the values of MRRE (K = 5) for k ∈ [6; 100], we have obtained
that the S-manifold was successfully unfolded with k ∈ [8; 30], too (Fig. 7).

The second investigation is performed with a hemisphere (m = 294) (Fig. 16e). Fig. 8
shows that the values of all the three topology preservation measures: Spearman’s rho,
KM as k1 = 4, k2 = 10, and MRRE(X → Y) as K = 5 are the best ones for k � 23.
Thus, the local structure of the hemisphere is unravelled best in this case. Fig. 9 illustrates
the visualization of the hemisphere for different values of k.

In practice, nonlinear manifold learning methods are applied, e.g., in image process-
ing. A picture is digitized, i.e., a data point is a vector that consists of colour parameters
of pixels, and, therefore, it is of a very large dimension. Often the data are comprised of

Fig. 7. Dependences of MRRE on the LLE parameter k obtained after visualizing the S-manifold by LLE.

Fig. 8. Dependences of Spearman’s rho, KM, and MRRE on the LLE parameter k obtained after visualizing a
hemisphere by LLE.
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Fig. 9. Projections of a hemisphere on a plane.

Fig. 10. Dependences of Spearman’s rho, KM, and MRRE on the LLE parameter k obtained after visualizing
the pictures of a rotating duckling by LLE.

Fig. 11. 2-dimensional embeddings of m = 72 pictures of a rotating duckling, obtained by LLE using k nearest
neighbours.

pictures of the same object, by turning the object gradually at a certain angle, or taking a
picture of the object at different moments, etc. In this way, the points slightly differ from
one another, making up a certain manifold. For the third investigation, uncoloured pic-
tures were used, obtained by gradually rotating a duckling at the 360◦ angle (Nene et al.,
1996). The number of pictures was m = 72. The images had 128 × 128 greyscale pixels,
therefore the dimensionality of points characterizing each picture in a multidimensional
space is n = 16384. In Karbauskaitė et al. (2007), the dependence of Spearman’s rho
on k for this data set as well as the right data projections for k ∈ [2; 8] have been ob-
tained. After calculating the values of KM as k1 = 4, k2 = 10, and MRRE(X → Y)
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Fig. 12. Dependences of Spearman’s rho, KM, and MRRE on the LLE parameter k obtained after visualizing
the manifold “Twin peaks” by LLE.

Fig. 13. Dependences of Spearman’s rho, KM, and MRRE on the LLE parameter k obtained after visualizing
“Swiss roll” by LLE.

as K = 5 for k ∈ [2; 40], the same proper interval of the nearest neighbours as in Spear-
man’s rho case has been obtained (Fig. 10). Fig. 11 illustrates the visualization of pictures
of a duckling at different values of k.

Spearman’s rho has also been successfully applied to evaluate the topology preserva-
tion while investigating a manifold “Twin peaks” (m = 2000) (Fig. 16c) in Karbauskaitė
et al. (2009). We can see from Fig. 12 that, in this case, all the three measures: Spear-
man’s rho, KM as k1 = 4, k2 = 20, and MRRE(X → Y) as K = 5 also acquire their
best values approximately in the same intervals of number k of the nearest neighbours.

After investigating these manifolds (S-manifold, hemisphere, pictures of a rotating
duckling, “Twin peaks”), we can state that all the three topology preservation measures-
Spearman’s rho, KM, and MRRE- can be successfully applied to estimate the topology
preservation of manifolds, after visualizing them by LLE. However, let us investigate
manifolds of a more difficult structure, for example, “Swiss roll”, “Punctured sphere”
and verify the suitability of the measures in these cases.

The manifold “Swiss roll” (m = 1000) (Fig. 16b) is very convoluted. So it is rather
difficult to unroll it. Fig. 13 shows that the measures KM as k1 = 3, k2 = 20 and
MRRE(X → Y) as K = 5 acquire their best values with k = 6, k = 7, while the
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Fig. 14. Dependences of Spearman’s rho and KM on the LLE parameter k obtained after visualizing the “Punc-
tured sphere” by LLE.

Fig. 15. Dependence of MRRE on the LLE parameter k obtained after visualizing the “Punctured sphere”
by LLE.

values of Spearman’s rho are not the best ones with these values of the parameter k.
However, Spearman’s rho acquires the best value if k = 11. Meanwhile, KM and MRRE
do not have their best values in this case. Such a contradiction means that sometimes
conclusions, using different measures, may be different. A question arises: which measure
is best? The answer lies in Fig. 17. Obviously, the manifold “Swiss roll” is better unrolled,
if k = 6, k = 7, but not if k = 11. Consequently, Spearman’s rho is not so good for
estimating the topology preservation of this manifold.

The next investigation is pursued with the manifold “Punctured sphere” (m = 1000)
(Fig. 16d). This manifold is exclusive due to its rather a closed surface (for example,
sphere is a fully closed surface), so it is rather complicated to unravel it. We can see from
Figs. 14, 15 that, like in the case of “Swiss roll”, topology preservation measures yield
contrasting results: for k ∈ [5; 8]∪[10; 20]∪[28; 38] the values of KM as k1 = 4, k2 = 10
and MRRE(X → Y) as K = 5 gradually become worse, while, on the contrary, the
values of Spearman’s rho gradually become better, despite that the manifold is unravelled
worse and worse. The projections of the “Punctured sphere” are depicted in Fig. 18. Thus,
in this case, Spearman’s rho is also not so good to assess the topology preservation of the
manifold.
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Fig. 16. Nonlinear two-dimensional manifolds.

Fig. 17. Projections of a “Swiss roll” on a plane.

One of the main criteria, while estimating algorithms, is the computing time. In or-
der to compare the above-mentioned topology preservation measures in terms of time,
the following investigation was performed: various manifolds of different structure and
density were analysed, their projections on a plane were obtained by the LLE algorithm
and time, necessary to calculate the measures – Spearman’s rho, KM, and MRRE – was
determined. In Table 1, an average time is given to compute these measures. The values
of measures were computed by fixing different number k of neighbours and the used
computing time was averaged. It is evident that the KM and MRRE measures are calcu-
lated faster than Spearman’s rho. Seeking to find a proper number k (or an interval) of
the nearest neighbours in LLE, the dependence of the topology preservation measure on
different k should be calculated. Usually a wide interval of the nearest neighbours should
be analysed, e.g., the values of the parameter k may be taken up to 100. So it is very
important to save the computing time as much as possible, while calculating the values
of a measure. The shorter calculation time is a great advantage of KM and MRRE as
compared with Spearman’s rho.
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Fig. 18. Projections of a “Punctured sphere” on a plane.

Table 1

Average time to compute the measures

Measure
Manifold

KM MRRE Spearman’s rho

Pictures of a rotating duckling 0.18 s 0.16 s 0.20 s

Hemisphere 0.05 s 0.04 s 1.36 s

S-manifold 0.46 s 0.44 s 81.61 s

“Swiss roll” 0.48 s 0.45 s 81.81 s

“Punctured sphere” 0.47 s 0.45 s 81.86 s

“Twin peaks” 2.15 s 2.12 s 478.45 s

Conclusions

In data analysis and data visualization, a common goal is to represent data from a high-
dimensional space to a low-dimensional space so as to preserve the “internal structure” of
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the data in the high-dimensional space as much as possible. Manifold type multidimen-
sional data are often high-dimensional. Research on manifold learning gives a possibility
to discover new knowledge about the analysed data set and leads to reasonable decisions.
In this paper, we have investigated the LLE (Locally Linear Embedding) method that be-
longs to a class of nonlinear manifold learning methods that allow unravelling a smooth
low-dimensional surface embedded in a higher dimensional space.

In order to quantitatively estimate the topology preservation of a manifold, a quanti-
tative numerical measure must be used. There are lots of different measures of topology
preservation. We have investigated three measures: Spearman’s rho, Konig’s measure
(KM), and mean relative rank errors (MRRE). Two criteria were used in the comparative
analysis of the three topology preservation measures – the topology preservation quality
and computational expenditure.

After investigating the manifolds of a simpler structure, such as an S-manifold,
a hemisphere, a manifold “Twin peaks”, real pictures, we have noticed that all the three
measures – Spearman’s rho, KM, and MRRE – can be successfully applied to estimate
the topology preservation of manifolds, after visualizing the manifolds by LLE. However,
after investigating the manifolds of more complex structures, such as “Swiss roll”, “Punc-
tured sphere”, we have determined that only KM and MRRE are better for estimating the
topology preservation of these manifolds.

Calculation of KM and MRRE is faster because these criteria use the Euclidean dis-
tances only, while Spearman’s rho uses the geodesic distances that are more computa-
tionally expensive. Moreover, KM and MRRE evaluate a limited number of neighbours
of each point from the analysed data set. Spearman’s rho considers distances between all
the pairs of points from the analysed data set. Therefore, it tries to take into account the
global structure of the manifold. However, in some cases, it may be not optimal, because
some local properties of the manifold may be lost.
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Topologijos išlaikymo matai daugdaros tipo daugiamači ↪u duomen ↪u
vizualizavime

Rasa KARBAUSKAITĖ, Gintautas DZEMYDA

Dažnai praktiniuose uždaviniuose sukaupiam ↪u daugiamači ↪u duomen ↪u taškai yra išsidėst ↪e
ant mažesnio matmen ↪u skaičiaus daugdaros, ↪iterptos ↪i labai didelio skaičiaus matmen ↪u erdv ↪e.
Netiesiniai daugdaros atpažinimo metodai automatiškai atranda mažesnio matmen ↪u skaičiaus
netiesin ↪e daugdar ↪a didelio skaičiaus matmen ↪u erdvėje ir tada transformuoja tuos duomen ↪u taškus

↪i mažesnio skaičiaus matmen ↪u erdv ↪e, išsaugodami lokali ↪a duomen ↪u struktūr ↪a. Vienu toki ↪u metod ↪u
– lokaliai tiesinio vaizdavimo metodu – remiasi šio straipsnio tyrimai. Norint kiekybiškai ↪ivertinti
daugdaros topologijos išlaikym ↪a, „išvyniojus“ j ↪a mažesnio skaičiaus matmen ↪u erdvėje, reikia nau-
doti kiekybinius skaitinius matus. Topologijos išlaikymui ↪ivertinti sukurta daugybė ↪ivairi ↪u mat ↪u.
Straipsnyje tiriami trys matai. Pirmasis vertina visus atstumus tarp tiriamos duomen ↪u aibės tašk ↪u,
o kiti du – tarp nedidelio kaimynini ↪u tašk ↪u skaičiaus. Parodyta, kad antru atveju matai visada gerai
nusako daugdaros topologijos išlaikym ↪a po transformacijos.


