
INFORMATICA, 2009, Vol. 20, No. 3, 417–438 417
© 2009 Institute of Mathematics and Informatics, Vilnius

XML in Enterprise Systems

Jaroslav POKORNÝ
Faculty of Mathematics and Physics, Charles University
Malostranske nam. 25, Praha, Czech Republic
e-mail: pokorny@ksi.mff.cuni.cz

Received: September 2008; accepted: March 2009

Abstract. The widespread use of the XML format for document representation and message ex-
change has influenced techniques for data integration in last years. A development of various XML
languages, methods and tools gave rise to so called XML technology. Enterprise Information Inte-
gration (EII) requires an accurate, precise and complete understanding of the disparate data sources,
the needs of the information consumers, and how these map to the business concepts of the enter-
prise. Any integration takes place in context of an Enterprise Information System (EIS). In the
paper we explain various approaches to EII, its architectures as well as its association to Enterprise
Application Integration (EAI). We introduce basic features and issues of EII and justify why XML
technology contributes to finding sufficiently powerful support for tools for enabling EII. In par-
ticular, a database approach to XML provides a universal solution enabling to construct tools for
achieving EII. In the paper we present some features of the XML technology, mainly its database
part, and show how it is usable in EII.

Keywords: XML, enterprise information integration, XQuery, XSLT, Web services, XML
databases.

1. Introduction

The language XML (W3C, 2004c), originally designed as a standard protocol for data ex-
change, serves today as a data model and background for databases of XML documents.
Its main advantage is that it enables to create a background for applications beyond con-
ventional data models, i.e., everywhere where we need, e.g., hierarchical data structures,
recursive data structures, regular expressions, missing and/or duplicate data, and other
non-traditional data requirements. At last but not least, XML creates a technological plat-
form for Semantic Web (e.g., Antoniou and van Harmelen, 2004).

A collection of languages, techniques, and standards developed by the World Wide
Web Consortium (W3C), called an XML technology today, contributes to many applica-
tion areas, as, e.g., B2B interactions, Web services, as well as, in general, to improvement
of inter- and intra-enterprise applications. In the paper, we focus just on use of XML tech-
nology in enterprises.

Often an Enterprise Information System (EIS) is characterized as an information and
reporting tool for the preparation, visualization, and analysis of operational enterprise
data. An associated collection of activities and software components supporting access-
ing data from any source systems is then called Enterprise Information Integration (EII).

418 J. Pokorný

In other words, EII provides programmers with a single-site image of disparate data that
may be maintained in different formats, retrieved via different Application Programming
Interfaces (APIs), and managed by different remote servers. The analyst community and
other observers talk often about “virtual data federation”. Data integration is crucial in
large enterprises that own a multitude of data sources, like relational databases, Web
services, files, and packaged applications. The same holds for offering good search capa-
bilities across amounts of data sources on the Web.

EII is even considered as an industry today. By Halevy et al. (2006), factors positively
contributing to this industry include occurrence of some matured integration technolo-
gies, change of the needs of data management (creating Web sites integrating data from
multiple sources), and the emergence of XML, which subsequently causes an increased
need of people to share data. Other significant motivation for EII is the growth of un-
structured and semi-structured repositories and the convergence of the data and content
worlds.

Integration-related area contains also Enterprise Application Integration (EAI). EAI
integrates application systems by allowing them to communicate and exchange business
transactions, messages, and data with each other using standard interfaces. It enables
applications to access data transparently without knowing its location or format. EAI is
usually employed for real-time operational business transaction processing. It supports a
data propagation approach to data integration. A strong separation of EII and EAI can
mean that enterprise data is accessed by an EII tool and updated by an EAI tool. EII
solutions today should address both application and information integration.

In general, EII needs (Gilbane, 2004) to:

• support all information types, structured, unstructured and semi-structured,
• provide for context, i.e., where does the information fit in the schema or ontolo-

gy of the receiving repository/application, and what are the relevant behavioural
constraints.

Many enterprises today are moving towards the adoption of Service-Oriented Archi-
tectures (SOAs) based on XML and Web services (Fremantle et al., 2002). Web services
represent a less costly and loosely-coupled approach for EII. Often Web services are con-
sidered as part of the EII whole. Consequently, a service composition gains strength in
EIS today. A relatively little work has been done to facilitate integration at the presenta-
tion level, i.e., the development of user interfaces. This part of application development
in EIS belongs to the most time-consuming activities. Other direction of the EAI industry
is toward the use of an Enterprise Service Bus (ESB) that supports the interconnection of
legacy and packaged applications, and also Web services.

XML, enabling to declare and enforce structure of content, plays an important role
both in EIS development and EII processes. The reason is simple. In the past, any ex-
changing information between content repositories and data-oriented applications within
and across enterprise was very difficult due to incompatibility of supporting systems.
Even data warehouse solutions were considered inappropriate for supporting such needs.
EII vision is namely to provide tools for integrating data from multiple sources without
first loading their data into a central warehouse. EII should perform the integration in real
time on an as-needed basis.

XML in Enterprise Systems 419

Emergence of XML made it possible to build EII on an XML data model and query
language XQuery (W3C, 2005), i.e., with XQuery interface to these multiple sources.
The success of XML is directly related to the information integration problem. It was
only a few years ago that the majority of IT industry was looking at XML primarily as
a tool for sharing data and messages for EAI applications despite of the fact that XML
technology has been less mature and required a shift rather toward XML-centric applica-
tion development. XML was also recognized as being equally suitable for structured and
unstructured data, and, as a way to connect legacy repositories with the future growth of
more sophisticated repositories either based on XML or easily encoded in XML. XML
offered a common syntactic format for sharing data among data sources.

The purpose of this work is to summarize some parts of the XML technology relevant
for EII and show, how XML databases can help to create more responsive EII archi-
tectures. The remainder of the paper is organized as follows: Section 2 mentions some
approaches to EII as well as commercial products based on these approaches. After sum-
marizing some basics of XML technology in Section 3, in Section 4 we discuss a role of a
database approach to XML, i.e., we present how the basic database notions, like schemas
and query languages, are reflected in XML technology. We also introduce today’s ar-
chitectures of XML databases. Section 5 focuses on applications of XML databases, in
particular of native ones, in EII. Particularly we mention the concept of content man-
agement systems. Section 6 offers some open questions for research and development.
Finally, Section 7 concludes and lists future work.

2. EII: Motivations and Related Works

Data integration has been studied around for the longest period of time. There are two
main approaches to data integration:

• local architecture (data is imported to one database, typically a warehouse),
• distributed (data remains in remote sources).

The former is the traditional approach to data integration, often called Extraction,
Transformation and Loading (ETL). Data from disparate systems are accumulated into a
single data store for the purposes of manipulation and evaluation (decision support). Data
warehouses and data marts are the data stores, and ETL tools are the “data integration”
components. Typically, data integration addresses only structured information. The most
often examples of data integration include data processing in areas like health, flights,
customer support, financial data, and products. Techniques of integration are based on:

• addressing differences in the query,
• conversion all data to the same schema,
• building common indexes over data.

2.1. EII: Approaches to Integration

Often spontaneous development of data stores and applications in enterprise results in
a need of information integration. To do it in the traditional way, one has to rely on

420 J. Pokorný

Fig. 1. Traditional vs. EII approach to data integration.

adapters for accessing data sources, transformation and integration software, and data
warehouses (the left part of Fig. 1). The deficiencies of this approach include mainly
low-level programming, detail knowledge of data sources, and very limited reusability of
designed data schemas and integration rules.

By Tailor (2004), EII is the integration of data from multiple systems into a unified,
consistent and accurate representation geared toward the viewing and manipulation of the
data. Data is aggregated, restructured and relabelled (if necessary) and presented to the
user. In viewing EII from a software engineering point of view, it is a type of middleware
that allows companies to combine data from disparate sources into a single application.

EII is based on a more flexible form of integration than simple data integration. In
EII data sources are viewed by applications as a single virtual database (the right part of
Fig. 1b). EII is based on a framework that exposes rather declarative interface for specifi-
cation of integration requirements. EII provides applications a single, virtual view across
multiple data sources. Applications access data sources through these views and through
only one API of the EII server. Queries are transformed into queries against data sources.
In other terminology, this approach is based on mediation. There is also a variant called
federation, which integrates data by defining mappings between all pairs of schemas of
the member databases. This variant called also a loosely coupled federated system is not
broadly applied in real enterprise environment because of the using of private protocol
and data model, low performance, laborious process, critical implementation conditions,
immature technology and the lack of reliable infrastructure (Zhou et al., 2006). Although
the federated systems are relatively easy to implement, they do not scale well. By Mattos
(2003), an information integration infrastructure should support placing and managing
data at multiple points in the data hierarchy to improve performance and availability. By
the way, most of today’s EII systems are really federated information systems.

XML in Enterprise Systems 421

To implement mediation, EII requires an accurate, precise and complete understand-
ing of the disparate data sources, the needs of the information consumers, and how data
model is mapped into a single, generic representation – a logical data schema that speci-
fies the virtual view. A view represents a business entity – a customer, a sales pipeline, or
the performance of a manufacturer’s production floor – annotated with metadata. Busi-
ness metadata includes business definitions, descriptions, and explanations relating to the
view and its intended use. IT metadata describes how information gets from the various
sources to its destination, including locations of data sources, data transformations, map-
pings, joins, and target schemas. Both the schema development and mappings of data
sources use usually a GUI tool.

2.2. EII: Architectures and Products

Therefore, the available approaches to EII can be considered based on the underlying
logical model, the data transformation framework, and the query interface.

Logical models include relational, object-oriented, and XML. The relational solution
reminds distributed relational databases from 90ties. Due to the well-known restrictions
of relational data model in context of enterprise variety of data, it is not too perspective
solution now. For example, iWay Data Hub1 enables to create reusable relational views. In
the object-oriented approach all data sources are represented as objects, and automatically
generated code is used to transform data into the logical model. Both transformation and
query capabilities are usually proprietary in this approach. Then the EII server is a virtual
object database. The Enterprise Data Hub2 by Journée’s (acquired by Initiate Systems) is
an example of this approach.

Purely XML-oriented approaches use XML as the logical data model. All data sources
are represented as XML document collection and XQuery serves as the language of trans-
formation as well as the query language. The EII server is a virtual XML database. As
examples in this category we can mention Ipedo’s XIP3 and Liquid Data for WebLogic
(BEA Systems, 2004). In XIP it is possible to query not only collections of XML doc-
uments, which is the best known use of XQuery, but also relational databases, web ser-
vices, common data formats like CSV and fixed length formats. In addition, the Ipedo
XQuery engine also allows users to create custom data sources and make them avail-
able to XQuery developers. In combination with the distributed SQL query engine, also
offered in XIP, these capabilities represent one of the most powerful ways for EII.

However, a use of XML can be only a part of EII solution. There are tools, e.g., Meta-
Matrix (Hauch et al., 2005), providing an integrated environment for modelling different
types of data and information systems. In MetaMatrix deferent layers of metadata are
created in more domain-specific languages (including XML Schema), i.e., XML is not a
target language here. The support for multiple metamodels is ensured by OMG’s MOF
(Metadata Object Facility) architecture, i.e., relationships among metadata of different
layers are expressed by mapping specifying transformations.

1http://www.iwaysoftware.com/products/eii.html.
2http://www.initiatesystems.com/.
3http://www.ipedo.com/html/ipedo xip.html.

422 J. Pokorný

Although all approaches have their advantages and disadvantages, the XML approach
is excellent in data modelling and query capabilities, in particular with applications that
use data from nonrelational data sources, such as message queues, EJBs, XML docu-
ments, and Web services.

A more advanced approach to integration in EIS is enterprise mushups. Remind that
a mashup is a Web application that combines content from two or more applications
to create a new application. The applications can be built on-the-fly to solve a specific
business problem. For example, Damia (Altinel et al., 2007) is inspired by the Web 2.0
mashup phenomenon. It consists of (1) a browser-based user-interface that allows for the
specification of data mashups as data flow graphs using a set of operators, (2) a server
with an execution engine, as well as (3) APIs for searching, debugging, executing and
managing mashups.

Web mashups perform integration both at the application level and at the presenta-
tion level. Unfortunately, due to very little support both in terms of model and tools, the
presentation part of mashups is developed manually today. An interesting approach to
component integration at the presentation level is proposed in Yu et al. (2007).

However, the mentioned approaches did nothing to address the semantic integration
issues – sources can still share XML files whose tags are completely meaningless outside
the application. In consequence, almost all EII products in the market are limited in, or
totally lack, the capabilities of semantic interoperability and dynamic adaptation upon
changes. Approaches to EII based on Semantic Web technologies like, e.g., RDF and
OWL (Booth, 2007; Yuan et al., 2006) are in development today.

3. XML Technology – An Overview

The XML is the universal format for structured documents and data on the Web. An XML
document consists of nested XML elements starting with root element. Each element can
have attributes and text data, in addition to nested subelements. Text data and subelements
can be mixed in an element (so-called mixed content). Child text data and child elements
are strictly ordered; attributes are not. XML document can contain also entity references,
comments, processing instructions, marked (CDATA) sections, and Document Type Dec-
larations (DTD).

Here is a fragment of the contents of http://www.bn.com/bib.xml:

<book year="2000">
<title>Data on the Web</title>
<author>Abiteboul, Serge</author>
<author>Buneman, Peter</author>
<author>Suciu, Dan</author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price> 39.95</price>
</book>

XML in Enterprise Systems 423

Beside the basic specification XML namespaces (W3C, 2006) provide a simple
method for qualifying element and attribute names used in XML documents by asso-
ciating them with namespaces identified by URI references.

Data-centric XML documents are documents that are designed to be read by ma-
chines. Data-centric documents are characterised by regular structure. XML elements in
these documents generally only contain data or other elements, but not both. The order in
which sibling elements occur is generally not significant. Examples of data-centric doc-
uments are sales orders, flight schedules, scientific data, and stock quotes. This type of
XML document is primarily used to exchange data between applications. Humans rarely,
if ever, directly access this type of documents.

Document-centric XML documents are designed to be read and maintained by hu-
mans. They are characterised by less regular or irregular structure. Elements in these
documents often contain both data and other elements. The order in which sibling el-
ements occur is almost always significant. Examples are books, advertisements, email,
Web pages, general message traffic, user-generated comments and almost any hand-
written XML documents. These XML documents are always maintained by humans,
although applications often need access to certain properties of these documents.

The names of the elements and attributes and their order in the hierarchy (among
other things) form the XML markup language used for a collection of documents. We
talks about an XML vocabulary. There are a lot of XML-based standards for represent-
ing content in different industries in which vocabulary is typically defined by a group of
XML document users. In the financial sector, industry standards include Financial Prod-
ucts Markup Language (FpML)4 for financial reporting, Extensible Business Reporting
Language (XBRL)5 for general business, and in publishing – DocBook6, just to name a
few. Health Level Seven (HL7) institute7 endorsed a recommendation for using XML as
an alternative syntax for version V3 designed for electronic messages concerning health-
care workflows. There are also XML standards for representing and integrating technical
concepts, such Geography Markup Language (GML)8 for modeling and exchanging ge-
ographic information, Systems Biology Markup Language (SBML)9, and many others.

Finally, in the context of EII XML is already widely used as a messaging format across
industries and for document markup in publishing and government. Remind also ebXML
(Electronic Business using eXtensible Markup Language)10, which is a modular suite
of specifications that enables enterprises of any size and in any geographical location to
conduct business over the Internet.

4http://www.fpml.org/index.html.
5http://www.xbrl.org/Home/.
6http://www.docbook.org/.
7http://www.hl7.org/.
8http://www.opengeospatial.org/standards/gml.
9http://sbml.org/Main Page.
10http://www.ebxml.org/geninfo.htm.

424 J. Pokorný

4. Database Approach to XML

Traditional databases are based on the notions of a database model and a database
schema. Elements, attributes, mixed content, and other features of XML do not give good
assumptions for development of a unique model of XML data. For that reason different
XML applications use different models of XML data:

• tree-oriented (e.g., DOM, Infoset, XPath data model, PSVI),
• graph-oriented, supporting ID/IDREF attributes (e.g., OEM),
• object-oriented (ODMG 3.0),
• functional approaches (e.g., Pokorný, 2000),
• combinations of structured and IR models (e.g., Manning et al., 2008).

Any access to XML data must be done through an XML data model. Perhaps the
most important XML data model is this one used by languages XQuery, XSLT 2.0, and
XPath 2.0. This model is richer than usual tree-like representation. In XPath 2.0, e.g.,
sequences replace node sets from XPath 1.0.

Solutions of many problems with manipulating XML data rely on a query language.
We categorize XML queries into two classes: databases queries and Information Re-
trieval (IR) queries. Database queries return all query results that precisely match the
queries, which is similar to SQL querying in relational databases. On the other hand, IR
queries allow “imprecise” or “approximate” query results, which are ranked based on
their relevance to the queries. Only the top-ranked results are returned to users (Manning
et al., 2008).

A database user needs not only read operations but also update operations such as
inserting, deleting and modifying XML data. Despite of efforts to effectively and effi-
ciently update XML data in last years, only one serious proposal is at disposal, i.e., the
W3C working group has completed the XQuery Update Facility (W3C, 2008). It supports
XML updates at the node level.

One solution how to store XML data is to use conventional databases. It means to map
(shred) the XML documents into data structures of the existing DBMSs (XML-enabled
database). Detaching generic mappings of XML data into universal tables, usual solu-
tions of this problem have the following properties:

• predefined schema is necessary,
• data is in rows and columns with atomic cell values of multiple tables, which cause

that joins are necessary for query evaluations and row ordering is done in an ex-
plicit way,

• querying mismatch – navigations in XML data are transformed into SQL, full-text
operations are also needed,

• scalability problems.

Another possibility is to store XML data into tables generated algorithmically from
an XML Schema which is expressed in an appropriate schema language.

A more advanced solution is to develop a DBMS with a native XML storage (native
XML database or NXD), whose advantages include a support of:

• natural nested hierarchies,

XML in Enterprise Systems 425

• element ordering,
• documents as single objects,
• schema is not necessary,
• XPath and XQuery have a direct implementation,
• better scalability.

NXDs are most useful for storing document-centric data because they preserve docu-
ment order, processing instructions, comments, CDATA sections, and entity usage, while
XML-enabled databases do not.

In addition to XML-enabled databases and native XML databases, there is the idea
of a hybrid database. A hybrid database is a relational database that is XML-enabled,
but also offers native XML capabilities as defined above. It is a database that supports
both the relational data model and the XML data model in all its processing and storage
mechanisms.

The XML technology relevant to XML databases concerns mainly XML Schema and
query languages. Moreover, query languages contribute to possibilities how specify map-
ping among heterogeneous data. In the next two subsections we will discuss possibilities
that both kinds of languages offer. Their choice in EII design can significantly influence
the success of EII in practice.

4.1. Database Schemas and XML

Any database schema is a syntactic specification a class of valid data structures, i.e., XML
documents in our case. In other words, by schema we describe types of XML documents.
In principle, two main possibilities are at disposal: DTD and XML Schema language.

XML Schema provides the ability to define an element’s type (string, integer, etc.) and
much finer constraints (a positive integer, a string starting with an uppercase letter, etc.).
DTDs suppose a strict ordering of elements; schemas have a more flexible range of op-
tions (elements can be optional as a group, in any order, in strict sequence, etc.). Finally,
schemas are written in XML, whereas DTDs have their own syntax. Other significant
XML Schema languages include Relax NG (OASIS, 2001) and Schematron (Jelliffe,
2000). Both RELAX NG and Schematron are intended only for validation of instances,
i.e., their possibilities for NXDs are rather restricted. On the other hand RELAX-NG is
sometimes preferred because it is simpler and more elegant than DTD or XML Schema
languages.

There is certain relationship between schemas expressed in these languages and
database schemas. As in other DBMSs, an essential part of each schema definition lan-
guages is made by Integrity Constraints (ICs). They are useful for semantic specifica-
tion, update consistency control, query optimization. Comparing to SQL in relational
databases, possibilities of ICs in XML Schema are rather poor. Some of them are con-
tained in XML Schema type system, also some cardinality restrictions (minOccurs, max-
Occurs) are allowed.

Anyhow the DTD is popular for this XML data specification, it carries a lot of
disadvantages. Müller and Schwartzbach (2006) mention top eleven reasons for avoid-
ing DTDs:

426 J. Pokorný

• it cannot constraint character data,
• specification of attribute values is too limited,
• element and attribute declarations are context insensitive,
• character data cannot be combined with the regular expression,
• the support for modularity, reuse, and evolution is too primitive,
• the normalization features lack content defaults and proper,
• whitespace control,
• structured embedded self-documentation is not possible,
• the ID/IDREF mechanism is too simple,
• it does not itself use an XML syntax,
• no support for namespaces.

XML Schema (see, W3C, 2004a, 2004b) was regarded to overcome these issues. Nev-
ertheless, there are also problems with XML Schema. Müller and Schwartzbach (2006)
list among others the following:

• the details are extremely complicated (and the specification is unreadable)
• declarations are (mostly) context insensitive,
• it is impossible to write an XML Schema description of XML Schema,
• with mixed content, character data cannot be constrained,
• unqualified local elements are bad practice,
• cannot require specific root element,
• element defaults cannot contain markup,
• the type system is overly complicated,
• simple type definitions are inflexible.

As the most important seems the specification expressed in XML Schema is too com-
plicated. An interesting point also is a trade-of between theory and practice: real schemas
in XML Schema only rarely use advanced constructs of the language. Most of them are
structurally equivalent to a DTD.

The specific problem is to design XML Schemas. There are three ways to design XML
Schemas. The first, and the most difficult, is to attempt to create the schema directly
element by element. This requires knowing in advance what specific elements already
go where. The easier solution is to create an instance of the XML document, then use
schema extraction tools to generate a schema that is valid for that instance. The last and
most database-oriented possibility uses conceptual modelling XML data. The research in
this direction is in progress up to now.

Remind that the conventional approach to schema development includes these pro-
cesses:

• two phases of design (i.e., a vocabulary and a structure),
• schema evolution, and
• schema versioning.

Unfortunately, today’s observation of EIS shows that requirements gathering, schema
design and upgrade costs are far more than application development costs. A special fea-
ture of XML databases is that many XML documents exist whose schema was not known

XML in Enterprise Systems 427

at design time. Thus, many vocabularies are developed without any schema. As a conse-
quence there are XML databases without any schema. This fact belongs among the key
reasons for existence of NXDs. Rather loose possibilities of XML Schema development
are much more flexible than relational or object-oriented structural definition. A suffi-
cient compromise between completely schemaless and strict schema-oriented approach
is to add cheaply and manageably a small amount of structure which provides a more
compelling solution.

4.2. XML Query Languages

XML query languages serve to querying, extraction, restructuring, integration, and
browsing XML data. They include the following demands:

• pattern matching,
• navigation along the structure of XML tags via (regular) path expressions,
• powerful approach to structured data similar to, e.g., SQL,
• querying both data and metadata,
• generating structured answers to queries (new XML data, derived values).

There are a lot of standards in area of XML query languages designed by W3C,
namely XPath 1.0 (W3C, 1999b), XPath 2.0 (W3C, 2007b), XQuery 1.0 (W3C, 2007a),
XSLT 1.0 (W3C, 1999a), and XSLT 2.0 (W3C, 2007c). In the context of combining rela-
tional and XML data, a special role belongs to the language SQL/XML (ISO/IEC, 2008).

XPath 1.0. A query in XPath uses specified paths applied to a document and rich
possibilities to specify relationships between tree nodes. For example, the expression

/bib//book[publisher="Kluwer Academic"]/author
returns the authors of books with a publisher who has a name Kluwer Academic.

As an answer to a query in XPath we obtain a set of nodes in a typical case. XPath 2.0
is a strict (rather large one) subset of XQuery 1.0. The main use of the XPath language is
in other XML query languages, namely XQuery and XSLT.

XQuery language. XQuery is a functional language, comprised FLOWR (FOR-LET-
ORDER-WHERE-RETURN) clauses that can be nested and composed. Namespace dec-
larations can be used in a query expression and user defined functions as well. Even, a
new XML document with derived content can be specified with XQuery. For example,
by the expression

FOR $book IN document("bib.xml")//book
LET $a := $book/author
WHERE contains($book/publisher, "Kluwer Academic")
RETURN
<book>
{
$book/title,
<count>Number of authors: { count($a) }</count>
}
</book>

428 J. Pokorný

we specify the number of authors for each book published by Kluwer Academic. The
FOR clause iterates on a sequence and binds a variable to each node, the LET clause
binds a variable to a sequence as a whole. From this example it is visible that XQuery
includes two parts: twig pattern matching, defined by FLOWR expression in the case and
the result construction, defined by RETURN.

There are various scenarios for use of XQuery, e.g., as a transformation language in
Web services or a message broker. The language is also appropriate for data integration
and approaching large volumes both centralized of distributed textual data. The latter
includes, e.g., XML data sources scattered on the Web. Unfortunately, each scenario re-
quires different processing techniques.

XSLT. XSLT is a language of transformations. It is a declarative language for express-
ing stylesheets, i.e., instructions that help to transform XML data into a rendered format.
Such a transformation takes an XML document and a set of rules (templates) as an input
and after processing it by an XSLT processor returns a new XML document. A typical
architecture of this processing supposes XML data is in memory.

XSLT vs. XQuery. The focus and strength of XQuery seems to be the data-centric
queries (regularly structured markup), while XSLT has its advantages in document-
centric queries (semi-structured markup).

Interesting questions appear with languages XQuery and XSLT. Although completely
different, they have the same computational power (Kepser, 2004). This implies a ques-
tion why to support two languages? The answer is usability. Clearly, choosing when use
each one is not always easy. Implementation of these languages can be native as well as
via relational DBMS. A key observation is a lost of scalability in transforming queries in
these languages into sequences of SQL expressions.

SQL/XML. Integration of relational and XML data resulted in development of
SQL/XML language. SQL/XML allows relational data to be published in an XML form
(XPath data model instance) that can then be queried using XQuery. It provides to de-
fine table columns of the XML type. There is a facility called XMLTABLE that allows
an XML data collection to be viewed as through it were ordinary SQL tabular data,
i.e., XMLTABLE takes in an XPath or XQuery string, and returns the result as a table.
XMLQUERY is a function that naturally fits in the SQL SELECT clause. It takes two ar-
guments, an XML type object and an XQuery string, and returns an XML type object.
Combining SQL and XQuery lets us to query data that is stored in both relational tables
and XML in a single query.

XML retrieval. As the web-style searching becomes a ubiquitous tool, the need for
integrating exact querying (see languages like XQuery, XSLT, SQL/XML) and IR tech-
niques becomes more important. For example, in EIS environment we meet cases in
which users are not able to formulate exact queries, but they provide keyword queries
and require a ranking of partial results. In the case of XML, relevance scoring becomes
more complex because the data required for scoring could resides not directly in an ele-
ment itself but also in its descendant elements. Unlike database XML queries, there is no
commonly agreed standard language for expressing IR queries. For an excellent survey
of XML retrieval, see Pal and Mitra (2007).

XML in Enterprise Systems 429

4.3. Architectures of XML Databases: Solutions

A significant role in storing XML documents is whether the documents are data-centric
XML documents or document-centric XML documents.

As we have mentioned earlier, one possibility how to store XML data is an XML-
enabled database. In this case, whatever strategy is employed, implementation of a XML
query language leads always to generating SQL statements. This translation is known
to be difficult, and the resulting SQL can be inefficient. Beyond that, complex XQuery
queries can even be untranslatable into SQL. Thus, shredding is most feasible if only
simple XPath operations are used or if the applications are designed to work directly
against the underlying relational schema. For similar reasons XSLT implementation can
be based on use of a relational database, which serves as a temporal storage for source
and target XML documents (e.g., Kmoch and Pokorný, 2008).

An implementation of NXD is undoubtedly a challenge in the last years both for
developers and researches of database systems. In database architectures, NXDs provide
a nice example when a DBMS needs a separate engine (see, e.g., Pokorný, 2007). There
are three main approaches to NXD implementation today:

• NXD DBMS as a separate engine,
• adding native XML storage to RDBM (e.g., XML Data Synthesis by Oracle),
• hybrid solution (e.g., IBM DB2 9, ORACLE 11g, SQL Server 2008).

An advantage of the last two approaches is the possibility to mix XML with relational
data. While critical data is still in a relational format and the data that not fit the relational
data model is stored natively in XML.

With the new option of storing and querying XML in a RDBMS, schema designers
face to the decision of what portion of their data to persist as XML and what portion as
relational data. ReXSA described by Moro et al. (2007) is a schema advisor tool that is
being prototyped for IBM DB2 9, enabling to propose candidate database schemas given
a conceptual model of the enterprise data.

Bourret (2007a) registers11 42 NXD products and remarks there is certainly no clear
market leader as yet. We list a short list of the most cited NXDs (Table 1).

Adding to those from Section 4, NXDs may include these features:

• internal identity management systems and integration with external identity man-
agement systems like LDAP (lightweight directory access protocol),

• seamless, schema-independent persistence/caching of Java Web service messages,
XML, SOAP, and WSDL (Web Services Description Language),

• built-in support for security standards such as Security Assertion Markup Language
(SAML), Web Services Security (WSS), and XML Encryption,

• built-in support for workflow management based on Business Process Execution
Language (BPEL),

• seamless persistence of unstructured content,
• interactive and intuitive graphical environment,

11In March 2007.

430 J. Pokorný

Table 1

A list of the most cited NXDs

Tamino Developer: Software AG (Germany)

URL: http://www.softwareag.com/tamino/

Query languages: X-Query (now XQuery)

XHive/DB Developer: X-Hive Corporation

URL: http://www.x-hive.com/products/db/

Query languages: XQuery, XPath, XML Schema

XIndice Developer: The Apache Software Foundation

URL: http://xml.apache.org/xindice/

Query languages: XPath, XUpdate

Berkeley DB XML Developer: Sleepycat Software

URL: http://www.oracle.com/

database/berkeley-db/xml/index.html

Query languages: XQuery

MarcLogic Server Developer: dbXML Group

URL: http://www.marklogic.com/

Query languages: XQuery

eXist Developer: Wolfgang Maier

URL: http://exist.sourceforge.net/

Query languages: XQuery/XPath 2.0

• seamless integration with external JDBC sources with ability to read, query, insert,
update, and delete all within an XA-compliant12 transaction,

• seamless integration with HTTP and SOAP sources,
• transactions with all available data sources using XQuery,
• standards compliance by enforcing schema validation and data aggregation mapped

to a required schema,
• backup, restore, and replicate capabilities.

5. EII through XML Technology

To store XML data in a database should mean to manage large numbers of XML docu-
ments in a more effective way. Although this idea looks attractively there is also scepti-
cism from the side of XML database developers. For example, M. Kay (Software AG)
says: I generally argue that XML is designed primarily for information interchange, and
that the requirement for storage is secondary.

12An XA compliant driver is a driver that can participate in an XA compliant transaction as defined by the
X/Open.

XML in Enterprise Systems 431

A motivation for maintaining XML data in databases has roots in application de-
mands, in particular to ensure a better work with content in enterprises. With an XML
database one can, e.g., process external data (Web pages, other text databases, structured
data), resolve tasks of e-commerce (lists of products, personalized views of these lists,
orders, invoices in e-commerce, e-brokering), and support integration of heterogeneous
information sources. A typical example of the latter is an integrated processing data from
Web pages and from tables of a relational database. There are XML database vendors
who market their platforms as EII solutions (e.g., Software AG, IBM, Ipedo).

A great debate concerns question when to use NXDs and even what is the purpose
of NXDs. Bourret (2007b) distinguishes two types of uses of NXD. Among primary
uses he classes storing and querying document-centric XML data, data integration, and
processing semi-structured data. Semi-structured data has some structure, data is usu-
ally self-describing (usually schema-less). Examples of semi-structured data include data
about schema evolution, biological data, metadata, health data, catalogues, emails, and
(possibly surprisingly) economical data. Secondary uses of NXD include long-running
transactions, handling rapidly evolving schemas, working with very large documents,
querying hierarchical data, and running Web sites.

Since storing and querying XML data as well as data integration are crucial for EII
we focus on these kinds of NXDs uses in detail.

5.1. Storing and Querying Document-Centric XML Data

A good example is provided by content management. It is well-known that reuse repre-
sents an important way for companies to extend the value of their investment in content.
According to the study by ZapThink (2003), producers of content spend over 60% of their
time locating, formatting, and structuring content and just 40% for creating the content.

Moreover, the great bulk of content within an enterprise falls within the unstructured
domain and stand-alone relational DBMSs are not well prepared for management such
content. XML offered a robust technology that became a background of content manage-
ment systems (CMS). In the approach based on XML, the software architecture is called
also XML content server. Such systems provide users tools for automatic conversion and
distribution of native content via the Web. As XML separates formatting data from XML
content, a new trend is to build CMS on the top of NXD. As a consequence of using XML
the distinction between structured and unstructured information may now be blurring.

Two advantages with XML are significant in the context of CMS:

• adoption of XML by the IT industry at large,
• availability of simpler user interfaces for authoring content in XML.

By SYS-CON Media Inc. (2008), the following XML features are essential in the
context of CMSs:

• Content contribution and conversion. CMS contains information in a native format,
e.g., text document, image, spreadsheet, etc. Storing content in XML enables its
various transformations into a variety of formats, such as HTML, for reuse by
multiple applications.

432 J. Pokorný

• Content access and exchange. XML content can be easily merged with other
sources and represented in a unified way in content management repository.

• Content formatting and presentation. In CMS XML separates formatting data from
XML content. A separation of content and presentation allows different formatting
to be applied to the same content in different situation using XML stylesheets.

• Content storage. CMSs based o the top of NXD provide a number of benefits
comparing to solutions integrating content with relational databases. For exam-
ple, XML content stored in an XML database cane be more easily searched with
the help of query languages like XQuery or XPath.

• Content personalization. Based on user profiles and type of device, CMS can deal
with the content accommodated by an associate XSL stylesheet. Such tailored con-
tent is then delivered to the user.

• Content management Web services. XML plays an important role in Web services.
Most of CMSs use Web services to share and deliver data and specific content
management features in the Internet.

It seems, that XML databases have separated into three subcategories, and, conse-
quently, with three groups of vendors. One group has focused on managing XML content
or documents (e.g., Mark Logic). For example, MarkLogic Server provides a platform
for CMS combining traditional DBMS based on XML with full-text searching. The other
two categories are related with EISs.

5.2. Data Integration

XML database can provide a middle tier Operational Data Store (ODS) platform. In the
third category of uses, XML database focuses on managing persistent data on a middle
tier for data integration applications, in particular EII applications (e.g., Ipedo).

• Operational data store. A middle tier ODS can provide the necessary infrastructure
for managing enterprise data and bringing it closer to the consuming business ap-
plication, while simultaneously reducing the burden on backend systems of record.
XML databases are an ideal technology to serve as an ODS because of their ability
to maintain schemas and to bind heterogeneous data sources. Furthermore, XML
databases’ support for XA-compliant transactions make them an ideal ODS and
EII technology that enables both read and write capabilities across heterogeneous
systems.

• Enterprise information integration. XML databases enable EII by providing a plat-
form for querying across heterogeneous data sources, resulting in view of all com-
mon entities spread across enterprise systems or services. EII provides huge bene-
fits to business users. Typically, CMSs can become a source of integration in EII.
Although relatively new, most current EII approaches are still based on similar prin-
ciples of loosely-coupled federated systems. Moreover, a key issue, i.e., resolving
differences in schemas and integrate them into one central schema, is often not
requited in today’s EII applications. In such systems data is managed as schema-
less, eliminating the need for schema management and database administration.
Obviously, finding information is a prerequisite to integrating it.

XML in Enterprise Systems 433

5.3. Towards EII and Web Services Integration

Web services create huge amounts of new data, specifically the exchange of data-rich
XML messages. These messages contain important information that many organizations
will want and need to store, access, query, audit, analyze, and repurpose. It is nearly im-
possible to persist all of these messages in a relational database because of the inflexible
data model they impose. It is necessary to know what type of data the message will con-
tain and set up relational tables to store it. Additionally, one will have to write code that
knows, for every message type, how to take the incoming message, shred it, and populate
the tables.

Here it is possible to use NXD as a “glue” to connect existing enterprise systems.
For example, in SOAP XML-based object serialization format can be used to perform
asynchronous messaging and RPC between non-XML applications. Although messages
are probably data-centric, their natural format is XML. It makes sense to build a message
queue on a NXD, particularly in cases when EII is event-driven rather than query-driven.
Then data changes, for example, could be accumulated in a message queue and an EII
query scheduled to run at periodic intervals to read the data from the queue and update
a data store with the changes. We obtain XML-specific capabilities and, consequently,
better scalability as the volume and complexity of e-business transactions increases. XML
databases are particularly useful for handling new message types or evolving message
structures. Storing message content in a native XML database reduces the development
time and cost at least 50% by elimi nating the need to define object-to-relational mapping.

The immediate popularity of XSLT accelerated the EAI development, and some use
of XSLT is probably a requirement in all EII solutions today. Any exchange of XML
information is namely going to involve a combination of mapping of information objects,
and in most cases these will involve structural transformations to account for different
contexts, i.e., uses of the information. There is simply no reason to use anything but XSL
for this.

Uses for a native XML database include:

• providing a unified master data-access layer across the enterprise,
• validating, persisting, querying, and repurposing XML,
• becoming XML-standards compliant,
• aggregating content from a variety of systems JDBC, HTTP, file system, Web ser-

vices),
• serving as an enterprise data cache and operational data store to improve data-

access response times and relieve burden on backend systems,
• supporting an enterprise data bus solution,
• intelligent tools to repurpose the data (using XSLT and XQuery).

A trend is apparent now. The ability to efficiently store and access XML and rela-
tional data types in one system represents a key point of differentiation among enterprise
database vendors. It also allows enterprise developers to build data-driven applications
using XML data types. Open source RDBMS from companies such as PostgreSQL cur-
rently also supports this hybrid XML-relational data-storage capability.

434 J. Pokorný

6. Open Questions for R&D

Today’s demands on XML processing applicable not only on EII, but also in general,
include:

• New query capabilities based on XML retrieval. This means a retrieval not only via
key words; more generally, user defined functions are required, like automatic ab-
stract generating, techniques based on the notion of document similarity or proxim-
ity between terms. In other words, queries as “something about X” or “something
like X” are needed.

• Conceptual modelling XML data. As XML gets near to the core of applications,
a modelling of XML data should become an inseparable part of modelling of ap-
plication data on the conceptual level. Today, structure of XML data is designed
usually directly, without the conceptual schema. This makes more difficult, e.g.,
modelling hierarchies like it is used in ER modelling. With XML conceptual mod-
elling also automatic transformations to XML Schema is easier and more accurate.
The research in this area is represented, e.g., by Nečaský (2007).

• Schema extraction given a body of XML data. Since schema definitions are not
obligatory in XML documents, there is often a need to extract the schematic in-
formation from XML documents. The extracted schema should, one side, tightly
represent the data, and be concise and compact, on the other side. As the two re-
quirements essentially contradict each other, finding an optimal trade-off is a dif-
ficult and challenging task. Today’s attempts do not go far than to DTD inference
(see, e.g., Garofalakis et al., 2000).

• Language for expressing complex ICs. XML data, just like traditional databases,
may be specified by both type constraints and ICs, such as keys, foreign keys, and
functional dependencies, which depend primarily on the equality of data values.
Due to the hierarchical nature of XML data generalizing relational ICs to XML
ICs is not trivial. Remind that languages like DTD and XML Schema offer only
very limited possibilities for ICs formulation. An excellent overview of these issues
is in Fan (2005).

• Implementation issues. Finally (never ending) issues concern representation of
XML data in external memory and its indexing. Such a representation influences
effectiveness of XML query languages as well. Improvements of XML-enabled ap-
proach can be also achieved accessing XML content via object-relational DBMSs.

7. Conclusions

We have shown that EII is a broad notion that raises more questions than it answers. In
the survey (Zhou et al., 2006) the authors address four challenges of EII including scala-
bility, horizontal vs. vertical integration, central integration, and semantics. For example,
with an increasing number of sources, the scale-up efficiency decreases. Integration is
mostly horizontal than vertical in the most EII systems and the only vertical part is their

XML in Enterprise Systems 435

centralized administration. Really significant challenge is information sharing, which re-
quires considering more semantics in EII. As we mentioned in the paper, techniques of
the Semantic Web can contribute to this problem. Despite the success of the first XML
applications in EII it seems that it can still help significantly to respond to these chal-
lenges.

Acknowledgements

This research has been supported by the grant of GACR No. GA201/09/0990.

References

Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng, Y.-H., Simmen, D.,
Singh, A. (2007). Damia – A data mashup fabric for intranet applications. In: VLDB ’07, Vienna, Austria,
pp. 1370–1373.

Antoniou, G., van Harmelen, F. (2004). A Semantic Web Primer. The MIT Press (April 1, 2004).
BEA Systems (2004). Liquid data for WebLogic: Integrating enterprise data and services. In: Proc. of SIGMOD

2004, Paris, France, pp. 917–918.
Booth, D. (2007). RDF and SOA. In: W3C “Web of Services” Workshop.

http://dbooth.org/2007/rdf-and-soa/rdf-and-soa-paper.htm.
Bourret, R. (2007a). XML Database Products.

http://www.rpbourret.com/xml/XMLDatabaseProds.htm.
Bourret, R. (2007b). Going Native: Use Cases for Native XML Databases.

http://www.rpbourret.com/xml/UseCases.htm.
Fan, W. (2005). XML constraints: Specification, analysis, and applications. In: Proc. of DEXA’05 Conf., Copen-

hagen, Denmark, pp. 805–809.
Fremantle, P., Weerawarana, S., Khalaf, R. (2002). Enterprise services. Communications of the ACM, 45(10),

77–82.
Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K. (2000). Xtract: A system for extracting docu-

ment type descriptors from XML documents. In: Proc. of SIGMOD Conf., Dallas, Texas, USA, pp. 165–176.
Gilbane, F. (2004). What is Enterprise Information Integration (EII)? The Gilbane Report, Vol. 12(6), Bluebill

Advisors, Inc., 1993–2005.
Hauch, R., Miller, A., Cardwell, R. (2005). Information intelligence: Metadata for information discovery, ac-

cess, and integration. In: Proc. of SIGMOD Conf., Baltimore, Maryland, USA, pp. 793–798.
Halevy, A.Y., Rajaraman, A., Ordille, J. (2006). Data integration: The teenage years. In: Proc. of VLDB ’06,

Seoul, Korea, pp. 9–16.
Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pollock, J., Rosenthal, A., Sikka, V. (2005).

Enterprise information integration: Successes, challenges and controversies. In: Proc. of SIGMOD Conf.,
Baltimore, Maryland, USA, pp. 778–787.

ISO/IEC 9075-14 (2008). Information Technology – Database Languages – SQL, Part 14, XML-Related Spec-
ifications (SQL/XML).

Jelliffe, R. (2000). The Schematron: An XML Structure Validation Language Using Patterns in Trees.
http://xml.ascc.net/resource/schematron/.

Lu, E.J.-L., Wu, B.-Ch., P Chuang, P.-Y. (2006). An empirical study of XML data management in business
information systems. Journal of Systems and Software, 79(7), 984–1000.

Kepser, S. (2004). A simple proof of the Turing-completeness of XSLT and XQuery. In: T. Usdin (Ed.), Extreme
Markup Languages. IDEAlliance.
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01/
EML2004Kepser01.html.

436 J. Pokorný

Kmoch, O., Pokorny, J. (2008). XSLT Implementation in a relational environment. In: Proc. of the IADIS Multi-
Conference on Computer Science and Information Systems – Subconference Informatics, Amsterdam, The
Netherlands, pp. 91–98.

Manning, Ch.D., Raghavan, P., Schütze, H. (2008). Introduction to Information Retrieval. Cambridge Univer-
sity Press.

Mattos, N.M. (2003) Integrating information for on demand computing. In: Proc. of VLDB’03, Berlin, Germany,
pp. 8–14.

Moro, M.M., Lim, L., Chang, Y.-C. (2007). Schema advisor for hybrid relational-XML DBMS. In: SIG-
MOD’07, Beijing, China, pp. 959–970.

Müller, A., Schwartzbach, M.I. (2006). An Introduction to XML and Web Technologies. Addison-Wesley.
Nečaský, M. (2007). XSEM – A conceptual model for XML. In: Roddick, J.F., Annika, H. (Eds.), Proc. Fourth

Asia–Pacific Conference on Conceptual Modelling (CRPIT), Ballarat, Australia, Vol. 67. Australian Com-
puter Society, pp. 37–48.

OASIS (2001). RELAX NG Specification.
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

Pal, S., Mitra, M. (2007). XML Retrieval: A Survey, Technical Report, CVPR. TR/ISI/CVPR/IR07-01.
Pokorný, J. (2000). XML functionally. In: Desai, B.C., Kioki, Y., Toyama, M. (Eds.), Proc. of IDEAS2000.

IEEE Comp. Society, pp. 266–274.
Pokorný, J. (2007). Database architectures: Current trends and their relationships to requirements of practice.

In: Advances in Information Systems Development: New Methods and Practice for the Networked Society.
Springer-Verlag, pp. 269–279.

Smik, R., Parikh, A., Ramachandran, A. (2004). Use XML databases to empower Java Web services. Java-
World.com, 12/06/04.

SYS-CON Media Inc. (2008). The role in XML in content management. XML Journal.
Tailor, J.T. (2004). Enterprise Information Integration: A New Definition. Integration Consortium, DM Review

Online, September 2, 2004.
W3C (1999a). XSL Transformations (XSLT), Version 1.0. W3C recommendation.
W3C (1999b). XML Path Language (XPath), Version 1.0. W3C recommendation.

http://www.w3.org/TR/xpath.
W3C (2004a). XML Schema, Part 1, Structures (Second Edition). W3C recommendation.

http://www.w3.org/TR/xmlschema-1/.
W3C (2004b). XML Schema, Part 2, Datatypes (Second Edition). W3C recommendation.

http://www.w3.org/TR/xmlschema-2/.
W3C (2004c). Extensible Markup Language (XML) 1.1. (Second Edition). W3C recommendation.

http://www.w3.org/TR/xml11/.
W3C (2005). XQuery 1.0, An XML Query Language, W3C Working Draft, 04 April 2005.

http://www.w3.org/TR/xquery/.
W3C (2006). Namespaces in XML 1.0 (Second Edition). W3C recommendation.

http://www.w3.org/TR/xml-names/.
W3C (2007a). XQuery 1.0, An XML Query Language. W3C recommendation.

http://www.w3.org/TR/xquery/.
W3C (2007b). XML Path Language (XPath), Version 2.0. W3C recommendation.

http://www.w3.org/TR/xpath20/.
W3C (2007c). XSL Transformations (XSLT), Version 2.0. W3C recommendation.

http://www.w3.org/TR/xslt20/.
W3C (2008). XQuery Update Facility 1.0. W3C candidate recommendation.

http://www.w3.org/TR/xqupdate/.
Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M. (2007). A framework for rapid integration

of presentation components. In: WWW 2007, Banff, Alberta, Canada, pp. 923–982.
Yuan, J., Bahrami, A., Wang, Ch., Murray, M., Hunt, A. (2006). A semantic information integration tool suite.

In: Proc. of VLDB’06, Seoul, Korea, pp. 1171–1174.
ZapThink (2003). Market for XML-enabled content lifecycle solutions to exceed $ 11.6 billion by 2008; XML

key to solving critical content management problem: Content reuse. Business Wire.
Zhou, J. Wang, M., Zhao, H. (2006). Enterprise information integration: State of the art and technical challenges.

In: Proc. of PROLAMAT, IFIP TC5 International Conference, pp. 847–852.

XML in Enterprise Systems 437

J. Pokorný, prof. RNDr., CSc. received the PhD degree in theoretical cybernetics from
the Charles University, Prague, Czechoslovakia, in 1984. Currently he is a full professor
of computer science the Faculty of Mathematics and Physics at Charles University and
the member of its Department of Software Engineering whose head he was from 1994 to
2006. As the deputy-dean and vice-dean for research and international affairs he works
from 2008. He is also a visiting professor at Faculty of Electrical Engineering of the
Czech Technical University, Prague. J. Pokorny has published more than 250 papers and
books on data modelling, relational databases, query languages, file organization, and
XML technology. His research interests include also information retrieval, semistructured
data, and indexing methods. He is a member of ACM and IEEE.

438 J. Pokorný

XML organizacij ↪u informacinėse sistemose

Jaroslav POKORNÝ

XML formatas plačiai paplito kaip duomen ↪u aprašymo būdas bei ↪isitvirtino kaip žinuči ↪u, ku-
riomis apsikeičia šalys, formatas. Paskutiniais metais duomen ↪u integravimo technikoms tai padarė
nemaž ↪a ↪itak ↪a. Visa eilė sukurt ↪u XML kalb ↪u, ↪ivairūs metodai bei ↪irankiai prisidėjo prie taip vadi-
namos XML technologijos atsiradimo. Organizacijos informacijos integracija (EII) reikalauja tik-
slaus ir pilno skirting ↪u duomen ↪u šaltini ↪u, informacijos vartotoj ↪u poreiki ↪u supratimo, bei gebėjimo
visa tai susieti su organizacijos verslo s ↪avokomis. Bet kokia integracija vyksta organizacijos infor-
macinės sistemos (EIS) kontekste. Šiame straipsnyje mes analizuojame ↪ivairius būdus, kaip gali-
ma atlikti organizacijos informacijos integracij ↪a, pateikiame galimas jos architektūras bei s ↪asajas
su organizacijos sistem ↪u integracija (EAI). Mes pasiūlome organizacijos informacijos integraci-
jos bazini ↪u savybi ↪u bei iššūki ↪u rinkin↪i ir pagrindžiame, kodėl XML technologija padeda surasti
pakankamai galingas priemones organizacijos informacijos integracijos ↪igalinimui. Konkrečiai
gryn ↪uj ↪u XML duomen ↪u bazi ↪u atsiradimas pateikia universal ↪u sprendim ↪a, ↪igalinant↪i konstruoti or-
ganizacijos informacijos integracijos instrumentus. Straipsnyje mes pateikiame kai kurias XML
technologijos savybes – didži ↪aja dalimi susijusias su grynosiomis XML duomen ↪u bazėmis, ir pa-
rodome, kuo jos naudingos organizacijos informacijos integracijai.

