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Abstract. In the present paper, the neural networks theory based on presumptions of the Ising
model is considered. Indirect couplings, the Dirac distributions and the corrected Hebb rule are
introduced and analyzed. The embedded patterns memorized in a neural network and the indirect
couplings are considered as random. Apart from the complex theory based on Dirac distributions
the simplified stationary mean field equations and their solutions taking into account an ergodicity
of the average overlap and the indirect order parameter are presented. The modeling results are
demonstrated to corroborate theoretical statements and applied aspects.
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1. Introduction

The behavior of particles in statistical physics for ferromagnetic materials is described
as usual by the mean field theory. The theory corresponds to a large number of particles
or spins in the limit of a dimension. The possible fluctuations are automatically leveled
in the thermodynamic limit, given the good conditions to find a complete solution. The
mean field theory can form rather rich structures with different consequences.

It is known, that the ferromagnetic alloys can achieve the following phases: para-
magnetic, ferromagnetic (antiferromagnetic), spin glasses, and some time mixed states
(Amit et al., 1985b; Edwards and Anderson, 1975; Kirkpatrick and Sherrington, 1978;
Sherrington and Kirkpatrick, 1975). The spinglass transition was studied on the basis
of practical experiments and Monte Carlo simulation (Kasuya, 1956; Lee and Young,
2003; Nakamura and Endoh, 2002; Petrakovskii et al., 2001). Among different phases
there exists a phase transition which is revealed itself at a certain critical temperature. The
phase transition line, which divides the spin glass domain from the paramagnetic phase
or the ferromagnetic one, is nonlinear as a complicated phase transition limit (Katzgraber
and Young, 2005; Krzakala, 2005). The line existence and form the mostly depends on
the strength of the external field, for example, even in small fields there is no line in one-
or three-dimensional spin glasses (Young and Katzgraber, 2004).
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At a higher temperature than critical, there is a paramagnetic phase: the spins are not
polarized. Below the critical temperature, the system of spins drops into a new phase
called a spinglass phase. In this phase, ergodicity as well as symmetry of the original
system are broken. The Boltzmann measure is arranged in several states of the spin con-
figuration space called pure states. Spins tend to freeze in a certain preferred direction.
This direction depends both on the spin state and on the spin number. Thus, the spinglass
phase is in an ordered phase.

Besides temperature in the particle physics, a communication among the spins plays
an important part, when the spins are situated in the neighboring places as well as
found far from each other. If to take an affair with the alloy AuFe, the concentration
of spins (Fe) in the metallic host (Au) is rather low and the distance among spins is fairly
large, i.e., their interactions are only weekly correlated. Apart from this, the so-called
the Rudermann–Kittel–Kasuya–Yosida (RKKY) (Rudermann and Kittel, 1954; Kasuya,
1956; Yosida, 1957) interaction is known when the spins interact mainly indirectly.

The direct ferromagnetic interactions of couplings and the indirect RKKY ones con-
tain randomness, as a rule. In Hemmen’s (1982) work, the ferromagnetic coupling has
been taken on the average as random, expressed by two independent, identically dis-
tributed variables. A more general case has been studied in the Provost and Valee (1983)
paper, where there are no limitations of random variables.

In the present article, the ferromagnetic and Ising-like models are considered in the
general case, where ferromagnetic couplings are not averaged as in Amit et al. (1985),
Hemmen (1982) but they are random patterns and the system is a similar to a neural
network (NN). A special attention will be paid to memorization of the system and ergod-
icity properties of the random coupling variables. In Section 1, the state of the considered
problem is discussed. Section 2 is devoted to definition of the free energy density func-
tion. Its solutions are considered in Section 3 taking into account the Dirac distributions.
Sections 4, 5 discuss the stationary statement of the free energy function and modeling
results.

2. Free Energy Density of NN as an Ising System

The mean field theory for ferromagnet and spinglasses allow us to provide an exact so-
lution to a constant infinite-ranged exchange couplings in the thermodynamic limit. For
the disordered system, an analogous infinite-ranged problem was defined and solved by
Sherrington and Kirkpatrick (1975). Various thermodynamic quantities and competition
properties were studied.

In this section, we try to include unaveraged couplings, that are variable, and random
and RKKY interactions accepted as other than interpreted in Hemmen (1982), and to
apply this theory to the neural network system. One may assume that the neurons of NN
are on a regular lattice and interactions via random synapses are related.
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The Hamiltonian expressing the direct and indirect interactions among neurons in NN
is as follows:

H = −1/2
N∑

(ij)

JijSiSj − 1/2
N∑

(ij)

r∑
(ρν)

ηρνζρ
i ζν

j SiSj (i �= j), (1)

where Jij are direct couplings between i and j neurons, ηρν are indirect couplings, ‖ηρν ‖
is a symmetric regular matrix, ζρ

i and ζν
j are components (ρ, ν = 1, 2, . . . , r) of the �ξi

and �ζj that are N random independent equally distributed vectors with mean zero and
variance one, Si and Sj are the state or potential variables of the ith and jth neurons.

The free energy density according to the Boltzmann distribution

f = −1/β lim
N →∞

N −1 ln(Z), (2)

where Z =
∑

{S} exp(−βH) is the partition function as the normalization constant of
the Boltzmann distribution, β = 1/T (T is the temperature).

The other variables will be defined in the next two sections devoted to study of the
mean field theory solutions and ergodicity.

3. Solutions of the Functional with Dirac Distributions

The free energy density in the thermodynamic limit can be defined as leading to the
Dirac distributions of general quantities of an overlapping function and other ordering
parameters.

Let us introduce them. First, the direct couplings among neurons are expressed over
the embedded patterns {ξi} or {ξj } for the ith or jth neuron (Hebb (1949) postulate) as
follows

Jij =
1
p

p∑
μ=1

ξμ
i ξμ

j , (3)

where p is the number of embedded patterns.
Second, the vector of order parameters �m whose components are an external source

conjugate to the product ξμ
i Si is introduced. �m is the vector of the average overlap be-

tween the local magnetization Si and ξ. The average overlap of one �m component is
presented as follows

mμ =
1
N

N∑
ß=1

ξμ
i Si, (4)

that is, �m ≡ {m1, m2, . . . , mp}.
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Third, the components of the indirect order parameter vector �q are presented

qν =
1
N

N∑
ß=1

ζν
i Si, (5)

that is, �q ≡ {q1, q2, . . . , qr }.

The free energy is given by

−βf = lim
N →∞

N −1 lnTrexp(−βH). (6)

The trace, Tr, is a finite sum over all neuron configurations.
In order to calculate free energy density one includes the p + r Dirac distributions

δ(Nmμ −
∑N

i=1 ξμ
i Si) (μ = 1, 2, . . . , p) and δ(Nqν −

∑N
i=1 ζν

i Si) (ν = 1, 2, . . . , r).
The expansion of δ functions in Fourier integrals (over τν and tν) leads to factorization
of the trace operation.

Hamiltonian (1) with regard to (3–5), and the Fourier transformation of Dirac distri-
butions assumes the following expression

H = − 1
2p

(N2 �m2 − pN) − 1
2
N2(�qη�q)

+
N

2
�m

p∑
μ=1

N∑
i=1

ξμ
i Si + N(�ζη�q)

1
N

N∑
i=1

Si. (7)

First and fourth members in right-hand side are formed from the first member of (1)
regarding with (3) and (4). Second and fifth members are folowed from the second mem-
ber of (1) and formula (6),

Then the Boltzmann partition function

Z = Tr exp(−βH)

= Tr

∫ ∏
(μ,ν)

mμ qν exp
[
βN2

2p

(
�m2 − pN

)
+

β

2
N2(�qη�q)

]

× exp
[

− �m

p∑
μ=1

N∑
i=1

ξμ
i Si − (�ζη�q)

1
N

N∑
i=1

Si

]

× δ

(
Nmμ −

N∑
i=1

ξμ
i Si

)
δ

(
Nqν −

N∑
i=1

ζν
i Si

)

=
(1

2

)p+r
∫ ∏

(μ,ν)

mμ τμ qν tν exp
[

β

2p

(
N2 �m2 − pN

)
+

β

2
N2(�qη�q)

]

× exp
[
N(�m�τ + �q�t )

]

−
N∑

i=1

ln 2 cosh
[
Nβ

p
(�m�ξi) + Nβ(�ζη�q) + (�ξi�τ) + (�ζ�t )

]
. (8)
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There are used the multiple integrals, differetials of which are the order parame-
ters mμ, qν , and auxiliary variables rμ and tν followed from an integration of δ-functions.

The free energy density

f = − 1
βN

ln(Z)

= − (p + r)
βN

ln 2 +
1
2

− N

2p
�m2(�qη�q) − N

β
�m�τ + �q�t

+
1

βN

N∑
i=1

ln 2 cosh
[
Nβ

p
(�m�ξi) + Nβ(�ζη�q) + (�ξi�τ) + (�ζ�t )

]
. (9)

Note that the last member of (8) and (9) expresses the condition of the ergodicity or
selfaveraging. According to the Birkhoff ergodic theorem, the average of all values of
vectors �ξi at the same time is equal to the average of one �ξ over time. It means that

1
N

N∑
i=1

ln 2 cosh
[
Nβ

p
(�m�ξi) + Nβ(ζη�q) + (�ξi�τ) + (�ζ�t)

]

=� ln 2 cosh
[
Nβ

p
(�m�ξ) + Nβ(ζη�q) + (�ξ�τ) + (�ζ�t )

]
�, (10)

where �· � means the average with respect to the probability measure dμ(�ξ) of one of
the �ξi. The free energy density can be presented

f = − (p + r)
βN

ln 2 +
1
2

− N

2p
�m2(�qη�q) − N

β
�m�τ + �q�t

+
1
β

� ln 2 cosh
[
Nβ

p
(�m�ξ) + Nβ(ζη�q) + (�ξ�τ) + (�ζ�t )

]
� . (11)

It is considerably better to solve integral (8) by the Monte Carlo technique and to neglect
the fluctuations in the thermodynamic limit; it will be equivalent to n → 0 in the mean
field theory (Sherrington and Kirkpatrick, 1975). The modeling of free energy density (8)
is achieved by a steepest-descent integration at the beginning with (τμ, tν) then with
(mμ, gν). Equations (9) or (11), the solution of which determines a saddle point relative
(τμ, tν), are a generalization of theories Hemmen (1982), and Provost and Vallee (1983).

4. The Stationary Statement of the Free Energy Function

Though the solutions, based on Dirac distributions, are more accurate, however for the
qualitative evaluation suffices to apply more simplified technique represented below.
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Omitting some arrangements of formulas (7) and (8), the Boltzmann partition function
can be presented as

Z = exp
{

1
2

− N2

2p
�m2 − N2

2
(�qη�q)

+
N∑

i=1

ln 2 cosh
[
Nβ

p
(�m�ξi) + Nβ(�ζη�q)

]}
. (12)

The free energy density reduces to

f = − 1
Nβ

ln Z0 = − 1
Nβ

[
1
2

− N2

2p
�m2 − N2

2
(�qη�q)

+
N∑

i=1

ln 2 cosh
[
Nβ

p
(�m�ξi) + Nβ(�ζη�q)

]
. (13)

Then the local optimum equations are as follows

�m =
1
N

N∑
i=1

�ξi tanh
[
Nβ

p
(�m�ξi) + Nβ(�ζη�q)

]
. (14a)

�q =
1
N

N∑
i=1

�ζ tanh
[
Nβ

p
(�m�ξi) + Nβ(�ζη�q)

]
. (14b)

With respect to ergodicity

�m =� �ξ tanh
[
Nβ

p
(�m�ξ) + Nβ(�ζη�q)

]
� . (15a)

�q =� �ζ tanh
[
Nβ

p
(�m�ξ) + Nβ(�ζη�q)

]
� . (15b)

All solutions (15a) and (15b) will be more predictive at the critical temperature Tc; be-
low Tc their behavior can face a complex problem of choosing the states that are energe-
tically favored.

5. Some Modeling Results

The main task of brief modeling is to answer a question whether the solutions (14a), (14b)
or (15a), (15b) of free energy density (13) achieve the saddle point or the local (global)
minimum point.

The second question raised is what behavior of the overlapping vector �m and vector
�q will be dependent on the random patterns �ξi and �ζ.
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In the first task, we have calculated the free energy function (13) in a simplified way;
the random parameters were fixed and function (13) was analyzed for one component of
the vectors �m and �q. It is suffices to evaluate the character of the free energy function
surface.

The modeling results of the free energy function are graphically shown in Fig. 1.
We see that the local minimum also is the global one with approximately mmin = 0.6,
qmin = 0.1, and there is no saddle point what has been mentioned in Amit et al. (1985a),
Hemmen (1982), and Provost and Valee (1983).

The second modeling task was more complicated to solve. We have modeled the five-
dimensional vectors �m and �q, afterwards found their projections and moduli dependent
on the variable parameter β. Moduli of vectors were averaged for random parameters
{�ξi} and {�ζ} and expressed as that: Mm =� ‖ �m‖ � and Mq =� ‖�q‖ �.

The modeling results, shown in Fig. 2, corroborate the increase of averages of vector
moduli, depending on an inverse temperature (β = 1/T ). It is shown that both global
minimum parameters possess a saturation zone. This is probably challenged by the pres-
ence of hyperbolic tangents in both solutions. Another version of this modeling case was
aimed at termination of the same vector moduli dependency on a number of patterns p

which characterize a memory capacity (α = p/N ) in neural networks. In separate about
memory capacity and information retrieval from an associative memory in neural net-
works has been considered in Garliauskas (2005, 2007). Some results of modeling are
reflected in Fig. 3.

The vector moduli are decreasing dependent on p at a fixed number of neurons N .
With a view to memorize more patterns in the neural network it is necessary to increase N

significantly.
Note that the behavior of these two vector moduli is identical with the only difference

in the quantified values.

Fig. 1. The surface of the free energy density function.
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Fig. 2. The averaged moduli of vectors �m and �q dependency on the inverse temperature parameter β.

Fig. 3. The averaged moduli of vectors �m and �q dependency on the number of embedded patterns p.

6. Conclusions

In conclusions it can be noted that:

1. Introducing of the Hebb rule, embedded random patterns by an overlap parameter,
and a vector of indirect order parameters allows to generalize the mean field theory
applied to NN. Thus the development of applied statistical mechanics in an ideal-
ized Ising presentation for the neural network theory can enrich the theory itself
and some applied areas.

2. The numerical modeling results show that the overlapping macroparameter de-
creases when number of embedded patterns are increasing at fixed number of neu-
rons in the network.

3. After some numerical modeling, it was established that the free energy density
optimal solution is global minimum and no saddle point as supposed.

4. Further findings of the best neural network technologies with randomness and
fuzziness, based on statistical physics, could be useful and fruitful.
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↪Iterptieji šablonai, netiesioginiai atsitiktiniai ryšiai ir atminties
imlumas neurotinkluose

Algis GARLIAUSKAS

Straipsnyje nagrinėjama neurotinkl ↪u teorija, grindžiama Izingo modeliu. Analizuojami netie-
sioginiai neuron ↪u ryšiai, Dirako skirstini ↪u taikymai ir korekcija ↪ivedant Hebo taisykl ↪e. ↪Isimenamieji

↪iterptieji šablonai neurotinkle ir netiesioginiai ryšiai imami atsitiktiniais. Teorini ↪u teigini ↪u patvir-
tinimui pateikiami skaitmeninio modeliavimo rezultatai.


