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Abstract. The local optimization techniques is the basis of
majority of regular (exact) algorithms for the non-monoton pseudo-
boolean functions optimization as the mest simple and, accordingly,
the most universal method of the discrete optimization. However,
the local optimization method does not guarantee the elimination of
the total examination when the pseudoboolean optimization prob-
lem in a general state is solved. In the present paper the cutting
off algorithms are suggested which guarantee the total examination
elimination for any pseudoboolean optimization problem.
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1. Introduction. The considering pseudoboolean opti-
mization problem was submited by Antamoshkin A. and E.
Semionkin (1991). Using by us in the sequel definitions and
designations were introduced in this paper too. In addition
we formulate several necessary lemmas.

Lemma 1.1 by Antamoshkin A. et al (1990).
VX € BJAX™ € 0,(X): Op(X) = Opi(XT).
Lemma 1.2 by Antamoshkin A. et al (1990).
VX € B} : card Ox(X) = CE.
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Lemma 1.3 by Antamoshkin A. et al (1990).

VX* € Ok(X), X € B}, k=0,n,
card {Ol(Xk) NOk-1(X)} =k,
card {O1(X*)N Op11(X)} =n - k.

COROLLARY 1.1 by Antamoshkin A. et al (1990).
Yk = 1,n among the points Xjk € O(X), X € B},

J= I,—(z , there are no neighbouring points.
Lemma 1.4 by Antamoshkin. et al (1990).

VX € By : B} = | ] Ow(X).
k=0

Lemma 1.5 by Antamoshkin A. et al {1990).

For any unimodal of different values on BY function f
for every point X € B} \ {X*} among the points X} €
01(X), 7 = 1,n, there is at least one point XJ’- such that

XD < X

2. The cutting off algorithms

As appehrs from Lemma 1.4 the space B} always may
be represented as a structure in the capacity of the origin of
which any point of BY may be chosen. Denote this point X°.

Evidently enough that any level Of(X?), k = 1,n -1,
separates B into two non-empty subsets consisting of the
complete levels of the structure origin X:

© k=1 n
v=lox) %= J ox% (21

1=1 i=k+1

Denote as X} the point of B} which is defined from the

condition f(X;)= min X). Le., the point X7 supplies
f(X3) );eok(X‘*)f( J- 1€ pot x Supphes

the minimal value of the function f{X) on k-th level of X0
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Lemma 2.1. If f is'an unimodal on By function and
for a certain X € Oy(X}), k = T,n—1, f(X) < f(X}),
X} € 04(X?P), is correct then the points X and X* belong to
alone subspace of BY} : V; or V;.

__Proof. Presuppose the opposite: X € 3, X* € V5. And
let X € Of(X°), I=0,k-1, X*€O0,(X%, p=Fk+1n As
f is unimodal function then for any point X there is the curve
WX, X*) = {X,X!....,X* X*}. By the curve defini-
tion the points X and X¥!,... . Xtand X't (i =2,5 — 1), X°
and X* there are neighbouring points. And by Lemma 1.3
and Corollary 1.1 if X € 0;(X?), i = 0,n, then all it’s
neighbouring points belong the level O;_;(X?) or the level
O:+1(X°). Hence the curve W*t(X, X*) will passe through
every level O;(X°), i = I, p, inciuding the level Ox{X?) as
[ < k < p by the assumption. Then there is X' such that
X' e WX, X*) and X' € Ox(X°).

Tf follows from the lemma condition and the curve defi-
nition that f(X') < f(X}). But from the definition of X} we
have that f(X') > f(X}). The obtained contradiction proves
the lemma.

COROLLARY 2.1. If for an unimodal function f and cer-

tain points X, X, € Ox(X°):
F(X1) < f(XE0)s
FA(X2) < f(XE4)s

then X * is defined from the condition
FX*) =min {£(X), f(X2)}.

Proof. Determine the point X' from the condition
f(X') = min { fIX), f(:i:g)} Without losing generality as-
sume that X' = X;. According to Lemwa 1.3 all neighbour-
ing to X' points lie on the levels Oj—1(X°) and Og41(X°).
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By the condition f(X') < f(X) VX € O1(X') N Or1(X°).
And VX € O1(X') N Or41(X%) we have f(X') < f(X2) <
F(X{,1) < f(X). Thus the point X' is a local minimum point.
ie, X = X',

COROLLARY 2.2. If for a pseudoboolean function f there
are the points X; € Or_1(X°)N0;(X})and Xy € Oy (XN
O,(X}) such that f(X;) < f(X}), f(X2) < f(X}), then the
function f has at least two local minima X} and Xj where
X7 € Vi and X7 € V2 (the subsets 17 and V; are defined
(2.1)). A

Proof. Directly follows from the lemma.

The proved lemma permits the following scheme of cut-
ting off algorithms for case of unimodal of different values
pseudoboolean functions to be proposed.

1. The point X% € BJ and a certain it's level Oy (X°).
k= 1.n —1, are chosen arbitrarily. Suppose { = 0. L = n.

2. X7 and X, are determined from the conditions:

FXT) = mi . 2.3
;‘f( X5) xeBin  FX, (2.3)
AKX < f(XE), Xk e OuX%). (2.4)

If there is no X then X* = X} and pass to item 5.
3. If Xt € Op_1(X°) then L = &k, k = k -
(t=1,k-=1-1).
f Xi € Orp1(X%) then I = k, k = &k + 1
(2=1,L—-k-1).
4. If L — ! = 2 then from the condition

(X% = min {£(X1, (X))

we determine X*. Otherwise pass to item 2.
5. Stop.
Here ! and L are numbers of first and last levels of the
considered on step subspace.
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. Explain the scheme.

On first step the space BY is devided into two subspaces
(item 2). According to Lemma 2.1 we determine in which
the subspace there is X* (item 3). The obtained subspace
similarly is devidéd into two ones (item 2. 3). And in this way
until the subspace containing X* will consist of one level (it
is possible of course that the minimum will have been located
before). After that X* is determined by Corollary 2.1.

For the of undifferent values functions the scheme is anal-
ogous but the going out of constancy sets strategy is added.

The freedom of choice of the "cutting” level Ox(X°) for
every step permits to construct the number of algorithms dis-
tinguishing the rule of determination of & in first and third
items of the scheme. When an a priori information on the ob-
ject function is absent it is natural to consider the "middle”
levels and the zero point as X°. As "middle” level we under-
stande the level number of which is equal to the arithmetic
mean (entire part) of the numberes of [ and L or the level
which devides the considering on the step subspace nto two
equivalent ones.

Consider the algorithm for which the "middle” level on
step is determined by the numberes of first and last levels.

Algorithm 1

1. The point X% € BJ and it's k-th level Ox(XY).
k = [n/2], are chosen arbitrarily. Suppose Il = 0. L=mn.

2. From the conditions (2.3) and (2.4) X} and X are
determined.

If there is no X then X* = X} and pass to item 5.

3. If X4 € O4—1(X°) then L = F,

k= { [(k-1/2] forl< [n/2],
| [(k=10)/2] forl>[n/2];
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If Xt € Oxp1(X°) then I =k,

- { ((k+1)/2] for I < [n/2].
T\ [(k+L)/2] forl> [n/2].

4. If L — 1 = 2 then X* from the condition: f(X*) =
min { X)), f ('f;)} is determined. Otherwise pass to item 2.

5. Stop.

Here (and in the sequel) as |a] a nearest to a integer,
which is less than or equal to a, is denoted and analogously as
[a] a nearest to a integer, which is more than or equal to a,
is denoted. .

Note the simplicity of determination of a "cutting” level
by the given algorithm. However that is poorly the "cutting”
level devides a considered subspace into two non-equivalent
ones (except the first subdivision for even n ). It is connected
with the binomial distribution of the points of B} an levels (see
Lemma 1.2). Therefore the points of the different subspaces
have different rights in suspicion on minimum.

For next Algorithm a "cutting” level devides the subspace
into equivalent ones. '

AlgOriéhm 2

The items 1 and 2 coincide with the corresponding items
of Algorithm 1.

3. I X € Op1{X% then L =k, if X} € O41(X°) the
=k

The number of next ”"cutting” level is found among of
values k = [+ 1,L — 1 according to the levels cardinalities
table for a given n (the triangle of Pascal).

The items 4 and 5 coincide with the Algorithm's items 4
and 5 too. , : .
Estimate the Algorithm 1 effectiveness. ‘

. Lemma 2.2. Locating of the minimum point X* fer an
unimoda. of different values on Bj function by Algorithm 1
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.reqmres for the worst case (the est1mate on top) the construc-
tion of Uy(n) "cutting” levels,

Ui(n) = {logy(n-1)], n>1. (2.5)

Proof. Conduct the induction by n. It is obvious that
for small n the statement is correct. Let us assume that it is
correct fo. certain n — 1 too, i.e., Uy(k) = |logy(x — 1)] for
k =2,n — 1. Now we show the correctness of (2.4) for n.

Devide the space BJ into two subspaces according to item
1 of Algorithm 1. The first "cutting” level has number [n/2].
One of the subspaces consists of [n/2] + 1 levels (including
"cutting” level) another subspace consists of |n/2] levels.

Consider the subspace with greater number of levels. As
for our algorithm the cardinality of levels is not important
we may consider the chosen subspace as a space with di-
mension [n/2]. By assumption for this space U;([n/2]) =
llog,({n/2] — 1)] is correct. By the algorithm Ui(n) =
Ui([n/2]) + 1, from which Uj(n) = |log,(n/2 -1)] +1 =
[logy(n — 1)].

Theorein 2.1. Locating of the minimum point of an
unimodal of different values on BY function by Algorithm 1

requires computating of it's values not less than in C’r n/2] +n
and not more than in Ty(n) points of BY(n > 4).

llogy(n~1)]
Ti(n)= Y C¥ +nllogy(n—1)], (2.6)

=1

where jo = 0, = [n/2], i = (i1 + J1)/2].
1 =2, |log,(n — 1)]

Procf. The statement first part directly follows from the
algorithm scheme and Lemma 1.2.
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Prove the estimate Tj(n) correctness. Without losing

[n/2] - .
generality we will presuppose that X* € U 0;(X°). Note

that the difficult by the computations number case when X* €
Ofn/21-1(X?).  According to Algorithm 1 and Lemma 2.1
in this case it is required to look over the maximal number
[log,(n — 1)} of levels having numbers j; which are defined in
the following way:

jO :0., .jl = '-7?/2.!7 ji = I—(ji--l +J1)/2}s 1= 23 L]-Og'_z(n - 1)J

Morecover the neighbouring points to X7, i=1, llog,(n —1}].
are looked over. l.e., not more n|log,(n — 1) computations
of the object function are requlreb some more. Whence the
estimate T3(n) follows.

COROLLARY 2.3.

card B2
lim ———% =
n—oo Ti(n)

Proof. Consider the function Tj(n) = |log,(n—1)] Cnfn/ 2
For any n > 7 T1(n) < Tj(n) is correct. By the formula of
Stirling we have

g %L; for even n,
C n/2 — n"'i
" | "2\/7—:7—;{'("11)6 for odd n.
Whence
n n
lim cardB2 > lim card Bj

n—oo Ti(n) n—oc Ti(n)
vn

= /7/2 lim — X = .

n—co |log,(n — 1)]
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COROLLARY 2.4. Forn > 13

1

Ti(n) < 271, (2.7)

Thus already for small n Algorithm 1 excels the total ex-
amination in the convergence rate more than in twice. When
n increases the algorithm advantage appreciably rises (see
Fig. 1).

n

2 L 2
8 T‘Cn) C o as C,[:n/z.‘-fn
I3 25

4

2
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Fig. 1. Dependence of relation of the cutting off algo-
rithms effectiveness to the total examination one
from n. n - dimension, T3(n) — upper estimate,
CI*/21 4 n — lower estimate. ‘

For Algorithm 2 the estimates on top will not exceed the
according estimates for Algorithm 1. Show it.

In Algorithm 2 by virtne of the binomial distribution of
points on levels the second "cutting” level will be near to
[n/2]th one for any n. '

Denoted as a; the number of levels between [n/2]th level
and next ”cutting” one.

By Algorithm 2 the number of "cutting” level is deter-
mined by rule: the cardinality of nearest to [n/2]th level sub-
space ought to be not less than the cardinality of other one
and moreover the cardinalities of these subspace ought to aim
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at equivalence. Thus the a; such that

fn/2l—an-1  fn/2]-1 _ :
> oG< Yy cCL (28)
| i:fO i=[n/2] —an .

~ Now let'n is ‘even. Then the inequality (2.8) accepts from
C n/2 ar1+1

_ Z Cn/2 z<ZCn/2 i

1=1

Using the formula of Stirling for C*/? and equality C7" =
Cp~lr=mtl we will have

. 0'1+1
2 <C17 (142 H n-2s-1) n:—”
L n——"(s——l)
+)4:ZI;] — ) .
=1 s=1" :
or
0’1+1 9s —1
\/1:\1-}-2]_—1 n—f—sa )
RS ! n—2(s —1) 2.9)
+ ZH n+2 (2.
<=l os=1 : E ‘
For odd n we have
’2 CLA Lkl fn/2l—i- [n/21=i
2 - ZC <ZC

=2
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from which analogously (2.9)

125V <(1 zn:;izi:

t=1 s=1" .
’ a1+1 .
n——%+3 n nti
2 -2 . 2.10
te Z n+2s—1 )<n+1) ¢ (2.10)

From (2.9), (2 10) a; and according dimension n are
found easy. So for oddna=4ifn < 135 foreven n a = 4
if n < 196. For large n may be found b\/ followmg rough
formules:

1.25\/n < 4a; + 3, for even n :
o (2.11)
1.25v/n < 4a;, for odd n

1t follows from the said above and Theorem 2.1 that the
number of "cutting” levels of Algorithm 2 does not exceed
Ua(n) = |logy a1 + 2 = |logy(4ay)]), where a; is found from
(2.9), (2.10).

@2,03,..., according to subsequent "cutting” levels are
determined similarly and similarly by the case of Ti(n) the
estimate on top of the number of computahons of the obj JPCUVG
function for Algorithm 2 Ty(n) is determined:

G D
To(n) =Y CH™ 4+ nt(n),

L=l

where ji(n) are the numberes and #(n) is number of the ~cut-
ting” levels defined for every n (see above).

As it was noted before the estimate Th(n) would not be
worse ‘than the estimate T)(n). As to the relation card B}/
T>(n) it will be more than two already for n > 7.
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With regard for Corollary 2.2 the cutting off algorithms
scheme for polymodal case is constructed similarly to consid-
ered above scheme. But the case of polymodal pseudoboolean
functions requires additional detailed researches.

Conclusions. The proposed cutting off algorithms elim-
inate the total examination for the case of unimodal pseudo-
boolean functions. As to the case of polymodal functions by
Antamoshkin A. and L.Lytkina (1990) it was proved that there
were the polymodal pseudoboeolean functions (consisting of the
alternating levels of minima and maxima) the optimization of
which was possible by the total examination only.

In comparison with the local optimization method it may
be contended that the cutting off algorithms effectiveness is
not less.
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