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Abstract. The local optimization techniques is the basis of 
majority of regular (exact) algorithms for the llOI1-molloton pseudo­
boolean functions optimization as the most. simple and, a.ccordingly, 
the most universal method of the discrete optimization. However, 
the local optimization method does not guarantee the elimination of 
the total examination when the pseudoboolean optimization prob­
lem in a general state is solved. In the present paper the cutting 
off algorithms are suggested which gua.rantee the total examination 
elimination for any pseudoboolean optimization probl~m. 
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algorit.hms. 

1. Introduction. The considering pseudoboolean opti­
mization problem was submited by Antamoshkin A. and E. 
Semionkin (1991). Using by us in the sequel definitions and 
designations were introduced in this paper too. In addition 
we formulate several necessary lemmas. 

Lelnma 1.1 by Antamoshkin A. et al (1990). 

\IX E B; 1\ xn E On(X) : Ok(X) = On_k(Xn). 

Lemma 1.2 by Antamoshkin A. et al (1990). 

\IX E B; : cardOk(X) = C~. 
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Lemma 1.3 by Antamoshkin A. et al (1990). 

\/Xk E Ok(X), X E B~, k = 0, ri, 

card {01 (xk) n 01.-1 (X)} = k, 

card {01 (Xl:) n Ok+1 (X)} = n - k. 

COROLLARY 1.1 by Antamoshkin A. et al (1990). 
\/k = 1, n among the points xj E Ok(X), X E Efl, 

J = ~C~, there are no neighbouring points. 
Lemma 1.4 by Antamoshkin. et al (1990). 

n 

\/X E B; : B; = U Ok(X). 
k=O 

Lemma 1.5 by Antamoshkin A. et al (1990). 
For any unimodal of different values on B'2 function f 

for every point X E Br \ {X*} among the points Xl E 
01(X), j = 1, n, there is at least one point Xl such that 
{(,OIl f(,r\ 

J .'Lj I < .'L t 
2. The ~utting off algorithnlS 
As appe~,rs from Lemma lA the space B~ always may 

be represent.ed as a structure in the capacity of the origin of 
which any point of B2' may be chosen. Denote this point XO . 

Evidently enough that any level Ok(XO), k = 1, n - 1, 
separat.es B!j into two non-empty subsets consisting of the 
complete levels of the structure origin Xo: 

1:-1 ' n 

VI = U Oi(XO), V2 = U 0lXO). (2.1) 
i=l i=k+l 

Denote as X: the point of B; which is defined froni the 
condition f(X;) = min f(X). I.e., the point Xt supplies 

X EO.\: (XO) , " 

the minimal value of the functioll f(X) on k-.th level a"CY-o. 
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Lemma 2.1. If f is an unimodal on B!] function and 
for a certain X E 0 1 (Xk), /,~ = 1, n - 1, leX) < f(Xj;), 
XZ E 01-(XO), is correct then the points X and X* belong to 
alone subspace of B.~ : VI or v2. 

Proof. Presuppose the opposite: X E 'VI, X* E V2. And 
let X E ,o1(XO), 1 = 0, J..~ - 1, X* E Op(XO), P = ". + L n. As 
f is unimodal function then for any point X there is the curve 
pTs+l( 'F ,,-*) {,,- y1 V'" V*} B h d fi ' 'V _ _ 1. , _ 1.. = _ 1. , _ _ •••• , _1. ,_ '1. • Y t e curve e nl-

tion the points X and SI .... , Xl and X i +1 (i = 2, s - 1), xs 
and X* there are neighbouring points. And by Lemma 1.3 
and Corollary 1.1 if X E O;(XO), i = 0, n. t.hen all it's 
neighbouring points belong the lewl Oi-l (XO) or the level 
Oi+dXO). Hence the curve ly,:+l(X.X*) will passe through 
every level Oi(XO). i = l.p, including the level Ok(XO) as 
1 < k < P by the assumption. Then there is X' such that 
X' E n-,:+l(X, X*) and X' E Ok(Xo). 

1£ follows from the lemma condition and the -:nrve defi­
nition that f(X ' ) < !(Xk). But from the definition of X; we 
have that f(X') ~ !(Xi.). The obtained contradiction prO'l'es 
the lemma. 

COROLLARY 2.1. If for an ummodal function f and cer­
tain points Xl, X 2 E OdXO): 

f(X 1 ) < !(Xk- 1 ), 

f(X 2 ) < !(XZ+ 1 ), 

then X* is defined from the condition 

(2.2) 

Proof. Determine the point X' from the condit.ion 
j(X') = min {f(X 1 ),!(X2 )}. vVithout losing generalit.y as­

sume that X' = X l' According to Lemma 1.3 all neighbour­
ing to X' points lie on the levels Ok-l (XO) and Ok+l (XO). 
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By the condition f(X') < f(X) 'IX E 0 1 (X') n Ok_dXG). 

And 'IX E 01(X' ) n Ok+l(XO) we have f(X') ~ f(X 2 ) < 
j(Xk+1 ) ~ .f(X). Thus the point X' is a local minimum point. 
i.e., X* = X'. 

COROLLARY 2.2. Iffor a pseudobookan function f there 
are the points X) E Ok-l(XO)n01 (Xk)andX2 E 0k+dXo)n 
0 1 (Xn such that. f(X d < f(Xn, f(X 2) < f(X;), then the 
function f has at least two local minima X; and X; \vhen~ 

X~ E ~} and X; E Vi (the subsets 1·} and Vi are defined 
(2.1)). 

Proof. Directly follows from the lemma. 
The proved lemma permits the follmving scheme of cut­

ting off algorithms for case of unimodal of different values 
pseudoboolean functions to be proposed. 

1. The point XO E B~ and a certain ifs level OdXo). 
J.: = L n - 1, are chosen arbitrarily. Suppose 1 = O. L = n. 

2. Xi. and X k are determined from the conditions: 

;((Xk)= min ((X), (2.3) 
l' XEOdXO)' 

,j(X k ) <j(XZ), XkEOl(XZ). (2.4) 

If there is 110' X k then X* = X; and pass to item 5. 
3. If Xk E Ok-l(XO) then L = J..~, J.: J.: -

(i = 1, J... - 1- 1). 
If Xk E Ok+l(XO) then 1 = k, J... J.: + 1 

(i=l,L-J..~-l). 

4. If L - I = 2 then from the condition 

j(X*) = min {f(X L, f(~Y I)} 

we determine X*. Otherwise pass to item 2. 
5. Stop. 
Here 1 and L are numbers of first and last levels of the 

considered on step subspace. 
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Explain the scheme. 

On first step the space B'2 is deviclecl into two SUbspclces 

(item 2). According to Lemma 2.1 we determine ill whidl 
the subspace there is X* (item 3). The obtained subspac<' 
similarly is devidc'd into two ones (item 2.3). And in this way 
until the'subspace cont.aining X* will consist of 011(' If'yd (it 

is possible of course that the minimum will have beell located 
before). After that X * is determined by Corollary :2.l. 

For the of undifferent values functions the scheme is anal­
ogous but the going out of constancy sets strategy is added. 

The freedom of choice of the "cutting" level OdXo) for 
every step permits to construct the number of algorit hIllS di~3-
tinguishing the rule of determination of k in first <llle! third 
items of the scheme. vVhen an a priori information on the ob­
ject function is absent it is natural to consider r,he .. middle" 
levels and the zero point as Xo. As .. midclle" level \ve under­
stande the level number of which is equal to the arithmetic 
mean (entire part) of the numberes of land L or the lewl 
which devides the considering on the st.ep subspace into two 
equivalent ones. 

Consider the algorithm for which the "middle" leyel on 
st.ep is determined by the llumberes of first and last levels. 

Algorithm 1 
1. The point XO E B'2 and i~'s k-th level OJ;(Xo). 

k = fn/21, are chosen arbitrarily. Suppose I = O. L = 11. 

2. From the conditions (2.3) and (2.4) Xi. and Xk are 
det.ermined. 

If there is no X k then X* = X; and pass to item 5. 

3. If Xk E Ok-l(XO) then L = k, 

k - {r(k. -1)/21 
, - f(J.· - i)/21 

for 1 < fn/21, 
for I ~ fn/21; 
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", _ { r(l\~ + 1) /21 
, ,"- r(J.~ + L)/21 

for 1< fn/21. 
for 1 ~ fn/21· 

4. If L - 1 = 2 then X· from the condition: f(X·) = 
min {f( XL), I(X,)} is determined. Otherwise pass to item 2. 

5. Stop. 
Here (and in the sequel) as la J a nearest to (l integer, 

which is less than or equal to a, is denoted and analogously as 
r ala nearest to a integer, which is more than or equal to a, 
is denoted. 

Note the simplicity_ of determination of a ., cutting" level 
by the given algorithm. However that is poorly the "cutting" 
level devides a considered subspace into two non-equivalent 
ones (except the first subdivision for even n ). It is cOImected 
with the binomia.l distribution of the points of B!j an levels (see 
Lemma1.2). Therefore the points of the different subspaces 
have different. rights in suspicion on minimum. 

For nextfttlgorithm a "cutting" 1evel devides the subspace 
into equivale*t ones. 

. I 
Algorithm 2 
The iteP,ls 1 and 2 coincide with the corresponding items 

of Algorithm t 
3. If X k E Ok-l (Xo) then L = k, if X k E Ok+1(XO) the 

1= k. 
The nu."Uber of next "cutt.ing" l~vel is found among of 

values k = 1+ 1, L - 1 according to the levels cardinalities 
table for a given 11 (the triangle of Pascal). 

The items 4 and 5 coincide with the Algorithm's items 4 
and 5 too. 

Estimate the Algorithm 1 effectiveness. 

Lelnlna 2.2. Locating of the minimum point X* for an 
unimoda~ of diiferellt values on B!l ftZIlctioll by Algorithm 1 
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requires for tbe worst case (tbe estimate on top) tbe construc­
°tion ofU1(n) "cutting" levels, . 

. Proof. Conduct the induction by n. It is obvious that 
for small on the statement is correct. Let us assume that it is 
correct fo.&. certain 11. - 1 too, i.e., [11 (A') = Llog2(~: - l)J for 
k = 2, n - L Now we show the correctness of (2.4) for n. 

Devide the space B!j into two subspaces according to item 
1 of Algorithm 1. The first ., cutting" level has number r n/21· 
One of the subspaces consist~ of rn/21 + 1 levels (including 
"cutting" level) another subspace consists of Ln/2 J levels. 

Consider the subspace with greater number of levels. As 
for our algorithm the cardinality of levels is not important 
we may consider the chosen subspace as a space with di­
mension r n/21. By assumption for this space U1 (rn/21) -
Llog2(fn/21 - l)J is correct. By the algorithm [ll(n) -
U1 Un/21) + 1, 'from which U1{n) = llog2(n/2 - l)J + 1 -
Llog2(n - l)J. 

Theorem ~.1. Loca,ting of tbe minimtun p.oint of an 
unimodal of differcllt v-alues on B!i function by Algorithm 1 
requires computating of it's l"alues not less than in cL 11./21 + n 
aJld not more than in T1(n) points of B21(n > 4). 

Llog2( 11-1)J 

T1(n) = L C~+nLlog2(n-l)J, (2.6) 
i=1 

where)o = 0, )1 = rn/21, 
',: = 2, Llog2(n -l)J. 

Proof. The statement first part directly follows from the 
algorithm scheme and Lemma 1.2. 
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Prove the estimate Tt (17,) correctness. vVithout losing 

1·' '11 "V r11/ 21 0 1.-0) N genera 1 ty we \VI presuppose that _\. * E . U i (_ i . ..' ote 
~=o 

that the difficult by the computations number case when X* E 
0rn/21-dXO). According to Algorithm 1 and Lemma 2.1 
in this case it is required to look over the maxima.l number 
llog2(n - l)J of levels having numbers ji which are defined in 
the follO\viIlg way: 

Moreover the neighbouring points to Xj;, i = 1, llog2( n - l)J .. 
are looked over. I.e., not more n llog2(n - l)J computations 
of the object function are requires some more. \Vhence the 
estimate Tt ( n) follows. 

COROLLARY 2.3. 

I' cardB~ 
Im = 00, 

n-+oo Tl (17,) 

Proof. Consider the function T{ (n) = llogz( n-l)J C~n/21. 
For any n :> 7 Tl (n) < T{ (n) is correct. By the formula of 
Stirling we have 

c rn /21 _ v27!'n { 
~ for even n, 

n -. ~~:~ (,1~1 ) € for odd n, 

\Vhence 

I' card B'2 I' card B2 
uu > uu 

n-oo Tl(n) n-oo T{(n) 

CM . fo 
= y 7i /2 hm II . I)J 

n-oo ogztn-
= 00, 
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COROLLARY 2.4. For n > 13 

(2.7) 

Thus a.1read~· for small n Algorithm 1 excels the total ex­
amination: in the convergence rate mote than in twice. 'When 
n increases the algorithm advant.age appreciably risE's (see 
Fig. 1). 

• 
(5 

4 

11 

2 n z" 
T Cn) 

s 85 
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5 n n 
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Fig. 1. Dependence of relation of the cutting off algo· 
rithms effectiveness to the total examination one 
from n. n - dimension, Ti (11.) - upper est.ima.te, 
Crn / 21 + n - lower estimate. ' 

For Algorithm 2 the estimates on top will not exceed the 
according estimates for Algorithm 1. Show it. 

In Algorithm 2 by virtne of the binomial distribution of 
points' 'on levels the second "cutting" level will be near to 
rn/21th one for any n. 

Denoted as 0:'1 the number of levels between rn/21 th level 
~d next "cutting" one. 

By Algorithm 2 the number of ~, cutting" level is deter., 
mined qy rule: the cardinality of nearest to rn/21th level sub­
space ought to be not less than the cardinality of other one 
and moreover the cardina.lities of these subspace ought to aim 
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at equivalence. Thus the 0:'1 such that 

rn/21-al-l rn/21-1 

L c~ ~ L c~. (2.8) 
i=O ;=fn / 21-0 1 

. , r 

Now letn js even. Then the inequality (2.8) accepts from ., 

01+1 01 

2 
L c~/2-i ~ L C:/2- i . 

i=1 ;=1 

Using the formula of Stirling for C:/2 and equality C~ 
Cm - l n-m+l we will have 

n m 

, , 01 +1 ?(, 1) 
2" ~C:/2 (1 + 2 IT n - - s -

n +28 
8=1 

+ 4 E iI n - 2( s? ~ 1)). 
. . 7J +_~ 

c t=ls=1 ' 

or 

1 ?e: C __ , '2 CIInI +1 n - 2( s -1) 
.~t.Jvn ::::::,1 + ' · 

" n + 28 
. 'c;' 8=1 . 

~ ITi n- 2(8 - 1) 
+4L.; '). . n+:"8 

1=1 ,=1 , 

(2.9) 

For odd n we have. 

2n _ 2Crn !21 
c' n· 

2 

01+1 01 

" Cfn/21-i-~"Crn/21-i L.; n ~L.; n , 

i=2 i=1 
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from which analogously (2.9) 

1.25vn ~ ( 4 t IT ~. -;8 + 3 
. 1 11"1+_8-1. 
C= 8= 

+2°fl n-28+3 -2) (_n_)n+le (2.10) 
n + 2$ - 1 n + 1 

8=1 

From (2.9), (2.10) Q') and according dimension n are 
found easy. So for odd n Q' = 4 if n < 135. for even n Q' = 4 
if n < 196. For large nmay be found by following rough 
formules: 

1.25y'iZ < 401 + 3, for even 11. 

(2.11) 
for odd 11. 

Tt follows from the said above and Theorem 2.1 t.hat the 
number of "cutting" levels of Algorithm 2 does not exceed 
[12(71) = Llogz O'lJ + 2 = 110g2(4a:1 )J), where 0'1 is found from 
(2.9), (2.10). 

0'2,03, ... , according to subsequent "cutting" levels are 
determined similarly and similarly by the case of TI ( 11) the 
estimate on top of the.number ()f computations of t he ohjecti~~ 
function for Algorithm 2 Tz (n) is determined: 

t( n) 

T2 (n) = Lc~(n) + nt(n), 
;=1 

where ji(n) are the numberes and t(n) is munber of the "cut­
ting" levels defined [or every 11. (see, above). 

As it was noted before the estimate T2( n) would not be 
worse ·than the estimate Tl (n). As to the relation caTd Br / 
T2 (n) it ",;11 be more than two already for n > 7. 
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'With regard for Corollary 2.2 the cutting off algorithms 
scheme for polymodal case is constructed similarly to consid­
ered above scheme. But the case of polymodal pseudoboolean 
functions requires additional detailed researches. 

Conclusions. The proposed cutting off a.lgorithms elim­
inate the total examination for the case of unimodal pseudo­
boolean functions. As to the case of polymodal functions by 
Antamoshkin A. and L.Lytkina (1990) it was proved that there 
were the polymodal pseucloboolean functions (consisting of the 
alternating levels of minima and maxima) the opt.imiza.t.ion of 
which was possible by the total examination only. 

In comparison with the local optimization method it. may 
be contended that. the cutting off algorithms effectiveness is 
not less. 
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