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Abstract. The aim of this paper is to concentrate in one place
and to show the relations among the matrix block impulse response,
block impulse response, matrix impulse response and impulse re-
sponse of linear time-varying (LTV) systems, frozen-time LTV sys-
tems, linear periodically time-varying (LPTV) systems, and linear
time-invariant (LTI) systems.
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Introduction. The input-output behaviour of a LTV
system (Loeffler and Burrus, 1984; Huang and Aggarwal,
1980, 1983; Park and Aggarwal, 1985; Portnoff, 1980) can be
characterized in the time domain by a weighting pattern, or
Green's function, g(k, k;) which represents the response of the
system at time k to a unit sample applied at time k;. Equiv-
alently, the same system can be described by a time-varying
impulse response h(k, k;) defined as the response of the sys-
tem at time & to a unit sample applied k; samples earlier, i.e.,
at time (k — k). Furthermore, the time-varying impulse re-
sponse h(k, k1) and the Green’s function g(k, ;) are related by
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h(k,ky) = g(k, k — k1) or, equivalently, g(k, k1) = h(k,k—ky).
"If y(k) is the response of a system to the input z(k;). then
y(k) is given by

yk)= S g(k, k1) 2(kr) (1)
ki=—-o0
or _
y(k) = Z~ h(k, lt'l) -’l?(k - kl)
= > Ak k= k) 2(k)
kij=—oc0

In the system (of filter) theory (Zadeh and Desoer, 1970) im-
pulse responses have fundamental importance, as they com-
pletely characterize the behaviour of the system (or filter).

" On the other hand, block implementation has some ad-
vantage such as fewer computations, a possibility to use fast
convolution techniques for intermediate computations, effi-
cient implementation by parallel processors, and reduced
roundoff noise. Block structures have been studied by Barnes
and Shinnaka (1980); Burrus, 1972; Clark, Mitra and Parker
(1981); Nikias (1985); Vaidyanathan and Mitra (1988).

The aim of this paper is to show a close connection be-
tween scalar and block impulse responses of different types
of linear systems and to analyze the relations between these
impulse responses and the coefficients of difference equations

(ARMA models).

Block difference equation of LTV systems. Let us
assume that a linear dynamical time-varying system is de-



554 A Unified View on Block and Scalar

scribed by the difference equation

N

M -

D bilk)e(k — i) =Y @(k)ylk i),
=0 =0 (3)
Go(k)#£0, M N, £=0,1,2,...

where z(k) is the input signal, y(k) is the output signal of the
LTV system.

Define k=mL+n,m=0,1,2,....n=0.1....,L — 1,
L =1,2,3,... Listhelength of the block. Then from equation
(3) we obtain the block difference equation of the LTV system

r »

" B im)X(m—-i)=S A4,,Y(m—1),
; ;o ! (4)
m=490,1,2,..., r<p,

where Y (m) and X(m) are the m-th output and input blocks
of the length L, respectively

Y(m) = Lg(mL), ceoyy(mL +n),...,y(mL+ L — 1)] T,

¢

X(m) = fe(mL),...,x(mL +n),....2(mL+ L= 1)},
‘va,-(m) and'ﬁr‘i(m) are the L x L matrices given by _Ep.i(mf) =
= [dn;], where @p; = Gif4n—;(iL+mL +n), 1 =0,1,...,p,
E’,,,-(m) = [Z,U-], where ‘l;nj = Z,-L+,,_j(iL + mL + n),
1=0,1,...,7; n,j=0,1,...,L—1. p and r are such smallest
integers that inequalities pL > N and rL > M are valid. If
L2 N,thenp=r=2.

From equation (4) we obtain

E’,g,—(\m )X (m — 1)

s

1}
o

Y(m) = ,;1\;%,( m)

P
- A;})(‘m) Z A, i(m)Y (in — 1) .

=1
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or

?

r b
Y(m) =) B,i(m)X(m -i)- Y Ap(m)Y(m—i). (5)
i=1

t=0

where 4, ;{m) = ‘:1\;})(m)2p,;(m), t=0,1,...p.
B, (m) = .Z;%,(m)ﬁr,,-(m), 1=0,1....r

Block impulse response of LTV systems. According
to the definition of the block impulse response, H(m,imny) is
the output of block difference equation (5) at time m to a
block unit pulse input X(m — m,) applied at time m,; block
earlier, i.e., :

Y(m) = Z B, i(m)X[(m — my) — i)
=0
d ' (6)
- ApiY(m —1),
i=1

r<p, mzmy, mm;=012,...,

where we define ky = myL+7, j=0,1,...,L - 1.

According to the definition of the block unit-pulse input,
X{(m—my)—1] =1,fori =m—m; and X[(m—m;)—i] =0,
for i # m — m;. Then equation (6) gives the matrix block
impulse response of the LTV system Hp defined as Hp =
[Hmm, |, where Hppm, = H(m,my), m,m; = 0,1,2,... The
block impulse response of the LTV system

P
H(m,m;) = Brm—m,(m) — Z Ap i(m)H(m —i,my),
=]

(7)

m,m; =0,1,2,... m 2 my,

where B, _m,(m) = 0, for m — m; > r. H(m,m;) is the
L x L matrix given by H(m,my) = [hn;}, where hy,; = b(mL+
n, myL+j), n,j=0,1,...,L—1.
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REMARK 1: If a block unit pulse input signal of the
LTV system is X(m;) = 1, for m;y = 0 and *{m;) = 0.
for m; # 0, then equation (5) gives block Green's function
G(m,m;) = H(m,m —m;). ‘

For the non-recursive LTV system (A4, ;(m) = I,for: =0
and A, ;(m) = 0, for ¢ # 0) the block impulse response is

H(m m1) = Brm—m, (M),

m,m; =0, 1,.., , m>=my,

(8)

. where Brmem,(m)=0,form—my; >r.

For the recursive LTV system (Br,m—m,(m) = I, form =
my and By gm—m,(m) = 0, for m # m;) the block impulse
response is as in (7).

The impulse response of a slowly varying system 1ay be
approximated by the invariant impulse response through freez-
ing the variant difference equation at an instant of considera-
tion (Nikolic, 1975). We obtain the block impulse response of
the frozen-time LTV system H*(m,m;) from equation {7)

H3(m,m1) = Brm—m, (m1)

p - .
= > Api(m)H(m —i,my), (9

, =1
mm; =0,1,2,... m2=2m,,

where B, m—m,(m1) =0, for m — m; > r.

A special case of LTV systems is LPTV systems. Con-
sider a discrete-time linear system, whose coefficients vary
periodically in time, with period L. For such systems it is

valid: - a;(k + Ly=1ayk),i=10,1,....N: k =0,1,2.... and
b(l+L)—b(L)z—01 JAM:Ek=0,1.2....

If the length of the block is.equal to L, then equation (7)
gives the block impulse response of the LPTV system

=1
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where B, = 0,for 0 > m > r. A,;. B, » and H(m) are
the L x L matrices given by Api = .4;33:4\},,,-, :=0,1,...,p;

/\_1 -~
BT,m = ‘4p,OBT,m’ m = 0’ ]-a ceesy Ty

Ap.,' = [Ei,,j], where an]’ = aiL+n_j(iL + n),
| n,g=0.1.....L -1,
5,,,,, = [‘b\n]'].. where ’b\,,j =E,,,L+n_j(77z.L + n).
n,y}=0,1..... L~-1,

H(m) = [hy;], where hp; = h(mL +n —j),
mj=01...L-1

For the non-recursive LPTV system (4,; = I, for i =0

and A, ; =0, for 1 # 0) the block impulse response is
H(m) = By n, m=20,1,2,..., | (11)

where B, = 0. for 0 >m >r.

For the recursive LPTV system (Bym = I, for m = 0
and B, ,, = 0, for m # 0) the block impulse response is as in
(10). S . HIPRISE & ,

. A special case of LTV (or of LPTV) systems is LTI sys-
tems. From equation (7) we obtain the block impulse response
of the LTI system '

]7
H(m)=Brm— Y Ap:H(m=—1i), m=012,... (12)
=1

where B, ,, = 0, for 0 > m > r. 4,. Brm and H(m) are
the L x L matrices given by 4,; = -A;%,Ap’,',vi =0,1,...,p;
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A——l —~ ’ "
Br,m = AP,OBT‘-"” m = 0, l., PEEE ,7‘,

—~

Api = [@,j], where Gp; = GiL4n—j,
n,g=01,...,L -1,

§,.‘m = [Enj}, where E,,j = 3mL+n—j,
n,j=0,1,...,.L -1,
H(m) = [hnj], where h,j = h(mL +n — j),

m=0,1,2,...,

n,j=01,...,L—1

For the non-recursive LTI system (A4, ; = I, for i = 0 and
A, =0, for i # 0) the block impulse response is

H(m) = B, m, m=20,1,2,..., (13)

where B, , =0, for 0 >m > r.
For the rgcursive LTI system (B, = I, for m = 0 and
B, . =0, for/m # 0) the block impulse response is as in (12).
Scalar fmpulse Response of LTV systems. If L =1,

thenn =0, m =k, m; = k;, p= N, r = M. So from equation
(5) we obtain a difference equation of the LTV system

M N

y(k) = > bi(k)a(k — i) = Y ai(k)y(k — i),

1=0 i=1

k=01,2,..., M<N,

(14)

where
bi(k) = a5 ()bs(k), i=0,1,...,Ad;
Go(k)#0, k=0,1,2,...
ai(k) = a3t (k)a(k), i=0,1,...,N.
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The matrix impulse response of the LTV system Hj; =
[{hxk, ], where hir, = h(k,k;) we obtain from block impulse
response (7) of the LTV system

N
Rk, ky) = by_g, (K) =) ai(k)A(k i ky).
o =l

kb =0,1,2,..., k> k.

(15)

where by_, (8) = 0, for k — &y > M, i.e., according to the
definition of impulse response of the LTV system h(k, k) is
the output of the difference equation (14) at time k to @ unit
pulse input applied k; samples earlier.

REMARK 2: If an input signal of the system is (k) =
for ky =0 and x(k;) = 0, for Ay 76 0, then equatxon (14) gives
Green's function g(k, ky) = h(k. k — ky).

For the non-recursive LTV system (a;(k) = 1. for ¢ = 0
and a;(k) = 0, for ¢ # 0) we have scalar impulse response

h(k ki) = be—p, (B), k> ki kb =01.2...., (16)

where bi_y, (k) =0, for k — ky > M.

For the recursive LTV system the scalar nnpulse response
is asin (15), where bg—k, (k) = 1, for k—ky = 0 and bp—i, =0,
for k — k1 #0.

The scalar impulse response of the linear frozen-time LTV
system gives equation (9). For the scalar system L = 1. then
m =k, m; = k;, p= N, thus

N
Rk, ky) = bk, (k1) - Zaz kl)h(l — k. k)

t=1

' k,k1=0,1,2,..., k>k1,

(17)

where bg_r, (k1) =0, for k — k3 > M.
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The scalar impulse response of the LPTV system h(k, k1)
gives equation (7). Asm=£%, m; =&, p=2N, sc

N
hk k1) = b, (k) = > aik)h(k — i, k1),
©oa=1

E=0,1,2,..., k>=hk,

(18)

where bi—g, (k) =0,for k —ky > M; by =0,1,...,L - 1.
For the non-recursive LPTV system the scalar impulse
response 1s

h(k,ky) = bk (k),  k=01,2,...,  k>k. (19)

where by_ (k) =0, for k—ky > M; ky = 0,1,..., L — L.
For the recursive LPTV system the scalar impulse re-
sponse 1s :

N.

I . . :
Lol = :) — E (R)R(k — 2,k
h([ﬁ. "‘l) = bk_kl(k) al(l\>h(’t -2, ]\‘1)3 (20)

=1

;1.7-:0,.1,2,..., k>k17

where by_s (k) = 1, for k — k; = 0 and by_y, (k) = 0, for
k=% #0;%4 =0,1,2,...,L - 1. o

. A special case of the scalar impulse response of the LTV
(or LPTV) system is the scalar impulse response of the LTI
system. In such a case h(k, k) = h(k — ky) = (k") = h(k).
From equation (15) we have

N ‘ 4
h(k) = b —Za}h(k-—i), E=0,1,2,..., (21)
i=1

where b = 0, for & > M.
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For the non-recursive LTI system the scalar impulse re-
sponse L
h(k) = by, k=0,1,2,. o (22)
where by =0, for k > M. o .
For the recursive LTI system the scalar impulse response
R(F)=be = aih(k=i), k=0,1,2,..., (23)
=1 o
where by = 1, for k = 0 and b; = 0, for k # 0.

For all the cases discussed earlier we can form matrix
impulse responses Hj; = [hrk,}, where hgx, = h{k,k;) or
matrix block impulse responses Hg = [Hm, |, where Hipim, =
H(m,m;). In the case when L = 1, i.e., m = k, m; = k; we
have HB = H]u.

Conclusions. The main aim of this paper has been to
explore the theoretical relationship between scalar and block
impulse responses of LTV, frozen-time LTV, LPTV and LTI
systems. It has been shown that for all the cases analysed in
the paper Green’s function depend on the time index k; (m;
— for block systems), while impulse responses depend on the
time index k — k; (m — m; - for block systems). The matrices
A, i and B, ,, of block LPTV systems and block LTI systems
are different, however their impulse responses are the same and
do nct depend on the instant m; of the behavior of the block
unit pulse input! Impulse responses of scalar LPTV, LTV and
LTV with frozen-time systems are the same and depend on
the instant k; of the behavior of the unit pulse input.
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