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Abstract. In a fuzzy identity-based encryption (IBE) scheme, a user with the secret key for an
identity ID is able to decrypt a ciphertext encrypted with another identity ID′ if and only if ID and
ID′ are within a certain distance of each other as judged by some metric. Fuzzy IBE also allows to
encrypt a document to all users that have a certain set of attributes. In 2005, Sahai and Waters first
proposed the notion of fuzzy IBE and proved the security of their scheme under the selective-ID
model. Currently, there is no fuzzy IBE scheme available that is fully CCA2 secure in the standard
model. In this paper, we propose a new fuzzy IBE scheme which achieves IND-FID-CCA2 security
in the standard model with a tight reduction. Moreover, the size of public parameters is independent
of the number of attributes associated with an identity.
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1. Introduction

An identity-based (ID-based) cryptosystem (Shamir, 1984) is a public key cryptosystem
where the public key can be represented as an arbitrary string. The user’s private key is
generated by a trusted authority, called a private key generator (PKG), which applies its
master key to issue private keys to users based on their identities. For an identity-based
encryption (IBE) scheme, a sender can securely encrypt a message to a receiver using
an unambiguous identifier, such as an email address, as the public key. ID-based cryp-
tosystems can simplify key management procedure compared to CA-based systems, so it
can be an alternative way to CA-based public key systems in some occasions, especially
when efficient key management and moderate security are required.

Shamir proposed the notion of IBE in 1984, then Boneh and Franklin (2003) pro-
posed the first practical IBE scheme. Their scheme was based on bilinear maps, but it is
only provably secure in the random oracle model. It has been shown that when random
oracles are instantiated with concrete hash functions, the resulting scheme may not be
secure (Boneh and Franklin, 2004a; Canetti et al., 1998). Canetti et al. (2003) suggested
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a weaker security notion for IBE, known as selective identity (selective-ID) security, rela-
tive to which they were able to build an inefficient but secure IBE scheme in the standard
model (without random oracles). Boneh and Boyen (2004) presented two very efficient
IBE systems (“BB1” and “BB2”) with selective-ID security proofs, also in the standard
model. The same authors (Boneh and Franklin, 2004b) then proposed an IBE scheme
which achieves adaptive identity (adaptive-ID) security in the standard model, but the
construction was impractical. Waters (2005) then proposed a much more simple exten-
sion to “BB1” also with an adaptive-ID security proof in the standard model, and its
efficiency was further improved in two independent papers (Chatterjee and Sarkar, 2005;
and Naccache, 2005). However, most of the IBE systems suffer from long parameters and
lossy reductions. Several papers (Boneh et al., 2005b; Boneh and Franklin, 2004b; Wa-
ters, 2005) have encouraged work on the problem of tight security and Waters (2005)
posed the problem regarding compact public parameters. So Gentry (2006) proposed an
anonymous IBE scheme that is fully secure in the standard model with short public pa-
rameters and a tight security reduction. His scheme is simple and efficient, and the proof
technique differs substantially from the previous work.

The concept of fuzzy identity-based encryption (IBE) introduced by Sahai and Wa-
ters (2005) provides an error-tolerance property for IBE. Namely, in a fuzzy IBE scheme,
a user with a private key for an identity ID is able to decrypt a ciphertext encrypted with
an identity ID′ if and only if ID and ID′ are within a certain distance of each other as
judged by some metric. Moreover, fuzzy IBE can be used for an application that we call
“attribute-based encryption”. In this application, a party will wish to encrypt a document
to all users that have a certain set of attributes. For example, in a computer science de-
partment, the chairperson might want to encrypt a document to all of its systems faculty
on a hiring committee. In this case it would encrypt the document to the identity “hiring-
committee”, “faculty”, “systems”. Any user who has an identity that contains all of these
attributes could decrypt the document. The advantage of using fuzzy IBE schemes is that
the document can be stored on a simple untrusted storage server instead of relying on
trusted server to perform authentication checks before delivering a document.

In 2005, Sahai and Waters first proposed the notion of fuzzy IBE and viewed an
identity as a set of descriptive attributes. Their scheme allows a private key for an identity
ID to decrypt a ciphertext encrypted with an identity ID′, if and only if the identity ID

and ID′ are close to each other as measured by the “set overlap” distance metric. They
proved the security of their scheme under the selective-ID model without random oracles
and claimed that their scheme was secure in the full model with an exponential factor in
the reduction. Moreover, their scheme can be extended to the chosen-ciphertext model
by applying the technique of using simulation-sound NIZK proofs (Sahai, 1999). Since
Sahai and Water’s work, fuzzy IBE has been discussed in the context of the attribute-
based encryption (ABE). Goyal et al. (2006) proposed an ABE scheme that provides
fine-grained sharing of encrypted data. Piretti et al. (2006) used Sahai and Waters’ "large
universe" construction of fuzzy IBE, which we simply call "Sahai–Waters construction",
to realize their secure information management architecture. They also observed that if
the random oracle (Bellare and Rogaway, 1993) is employed, computational overhead
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of the Sahai–Waters construction can be greatly reduced. Recently, Baek et al. (2007)
presented new constructions of fuzzy IBE, which were more efficient than the Sahai–
Waters’ construction because of employing the random oracles. They also pointed out
that the random oracle not only reduces computational overhead but also provides a very
short public parameters whose size is independent of the number of attributes associated
with an identity or the number of attributes in the defined universe, which is crucial in the
storage constrained applications. However, as we claimed above, when random oracles
are instantiated with concrete hash functions, the resulting scheme may not be secure.

1.1. Our Contributions

In the previous work, the fuzzy IBE scheme was only secure against selective-ID attacks
in the random oracle model or the standard model. Though the schemes that are selective-
ID secure are also fully secure as long as one hashes the identity prior to using it, the
reduction is not tight. Currently, there is no fuzzy IBE available that is fully CCA2 secure
in the standard model with a tight reduction. In this paper, we propose a new fuzzy IBE
scheme that is fully secure in the standard model. It achieves IND-FID-CCA2 security
based on the q-TBDHE assumption. Moreover, we provide the public parameters whose
size is independent of the number of attributes associated with an identity. Compared to
the previous fuzzy IBE schemes, our scheme has short parameters and a tight reduction
simultaneously.

1.2. Paper Outline

The outline of the rest of this paper is organized as follows. Section 2 gives some defini-
tions about our scheme. Then Section 3 presents our fuzzy IBE scheme in the standard
model and its correctness, security and efficiency analysis are given in Section 4. Finally,
we conclude the paper in Section 5.

2. Definitions

Below, we review the definition of a symmetric bilinear map and discuss the complexity
assumption on which our system is based. We also review the syntax and security model
for a fuzzy IBE system.

2.1. Symmetric Bilinear Map

Let p be a large prime number, G1, G2 are two groups of order p, and g is a generator
of G1. e: G1 × G1 → G2 is a symmetric bilinear map, which satisfies the following
properties (Boneh and Franklin, 2003, 2004a; Waters, 2005):

(1) Bilinearity: For all u, v ∈ G1 and a0, b0 ∈ Z∗
p, e(u

a0 , vb0) = e(u, v)a0b0 .
(2) Non-degeneracy: e(g, g) �= 1.
(3) Computability: ∀u, v ∈ G1, there exists an efficient algorithm to compute e(u, v).
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Note that e(·) is symmetric since e(ga0 , gb0) = e(g, g)a0b0 = e(gb0 , ga0). A bilin-
ear map satisfying the three properties above is said to be a symmetric bilinear map. As
shown in Boneh and Franklin (2003), such bilinear maps over cyclic groups can be ob-
tained from the Weil or Tate pairing over supersingular elliptic curves or abelian varieties,
where bilinear pairings offer an effective approach to reduce the computational cost of
ID-based cryptographic schemes (Gao et al., 2009; Sun et al., 2010).

2.2. Complexity Assumption

The security of our scheme is based on a complexity assumption that we call the deci-
sional truncated bilinear Diffie–Hellman exponent (TBDHE) assumption. It is also called
wBDHI∗ assumption in Boneh et al. (2005a).

An algorithm A that outputs k ∈ {0, 1} has advantage of ε in solving the decision
q-TBDHE if

∣∣∣Pr
[
A(g′, g, gα, . . . , gαq

, e(g′, g)αq+1
) = 0

]

−Pr
[
A(g′, g, gα, . . . , gαq

, Z) = 0
]∣∣∣ � ε,

where the probability is over the random choice of generators g, g′ ∈ G1, α ∈ Z∗
p,

Z ∈ G2, and the random bits consumed by A. We refer to the distribution on the left as
PTBDHE and the distribution on the right as RTBDHE.

We say that the decision (t, ε, q)-TBDHE assumption holds in G1, G2 if no t-time al-
gorithm has advantage of at least ε in solving the decision q-TBDHE problem in G1, G2.

2.3. Syntax

The generic fuzzy IBE scheme (Sahai and Waters, 2005) consists of the following algo-
rithms.

Setup. Taking a security parameter as input, the PKG runs this algorithm to gener-
ate its master key mk and public parameters params which contain an error tolerance
parameter d. Note that params is given to all interested parties while mk is kept secret.

KeyGen(mk, ID). Taking the master key mk and an identity ID as input, the PKG
runs this algorithm to generate a private key associated with ID, denoted by dID.

Encrypt(params, ID′, m). Taking the public parameters params, an identity ID′,
and a plaintext m as input, a sender runs this algorithm to generate a ciphertext c′.

Decrypt(params, dID, c′). Taking the public parameters params, a private key dID

associated with an identity ID and a ciphertext c′ encrypted with an identity ID′ such that
|ID′ ∩ ID| � d as input, a receiver runs this algorithm to get a decryption, which is either
a plaintext or an error message.
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2.4. Security Model

IND-FID-CCA2 Security. The semantic security against an adaptive chosen ciphertext
attack security for a fuzzy IBE system is defined by the following game between an
adversary and a challenger.

Setup. The challenger runs algorithm Setup, and forwards parameters to the adver-
sary.

Phase 1. Proceeding adaptively, the adversary issues queries q1, . . . , qm, where qi is
one of the following:

Key generation query 〈IDi〉. The challenger runs algorithm KeyGen on IDi and for-
wards the resulting private key to the adversary.

Decryption query 〈IDi, ci〉. The challenger runs algorithm KeyGen on IDi, decrypts
ci with the resulting private key, and sends the result to the adversary.

Challenge. The adversary sends (ID∗, m0, m1) to the challenger, where |ID ∩
ID∗ | < d, and ID denotes the identity that has appeared in key generation and de-
cryption query in Phase 1. The challenger selects a random bit k ∈ {0, 1}, sets c∗ =
Encrypt(params, ID∗, mk), and sends c∗ to the adversary as its challenged ciphertext.

Phase 2. A executes the following queries:

(1) Key generation query 〈ID〉, where |ID ∩ ID∗ | < d.
(2) Decryption query 〈ID, c〉, where c �= c∗.

These queries may be adaptive.
Guess. The adversary submits a guess k′ ∈ {0, 1}.
We call an adversary A in the above game an IND-FID-CCA2 adversary. The advan-

tage of A is defined as |Pr[k′ = k] − 1
2 |.

DEFINITION. A fuzzy IBE system is (t, ε, qk, qd) IND-FID-CCA2 secure if all t-time
IND-FID-CCA2 adversaries making at most qk key generation queries and qd decryption
queries have advantage of at most ε in the above game.

3. New Fuzzy IBE Scheme

Assume an identity ID = (ID1, ID2, . . . , IDn), where n is the length of ID and IDi ∈ Z∗
p,

d represents the minimal error tolerance and n � d. Now we wish to create a fuzzy
IBE scheme in which a ciphertext created using identity ID′ can be decrypted only by a
private key associated with identity ID , where |ID∩ID′ | � d. We also define the Lagrange
coefficient 	i,S for i ∈ Z∗

p and a set S, of elements in Z∗
p: 	i,S (x) =

∏
j∈S,j �=i

x−j
i−j .

3.1. Setup

Let G1, G2, g, e be defined as Section 2.1. h: (Z∗
p){0,1} × {1, 2, . . . , n} −→ Z∗

p, H: Gn
1 ×

Gl
2 −→ Z∗

p are collision-resistant hash functions, where l ∈ Z∗
p. The PKG randomly

chooses α ∈ Z∗
p, h0, h1, h2 ∈ G1, and two random polynomials f(x), q(x) ∈ Z∗

p[x] of
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degree 1 and d − 1 respectively, where f(x) = ax + b. If h0 = h−a
2 or h1 = h−b

2 ,

randomly choose f(x) again. The PKG computes g1 = gα, g2 = gq(0), g3 = g
q(0)
1 . The

public parameters are (g, g1, g2, g3, h0, h1, h2, d, h, H, f(x)) and α, q(x) are the private
keys of PKG.

3.2. KeyGen

To a user U with identity ID = (ID1, ID2, . . . , IDn), the PKG randomly chooses r0 ∈ Z∗
p

and computes

d0 = r0, di =
(
h0h

r0
1 h

f(r0)
2

) α·q(i)
q(0)h(IDi,i)+h(i) (i = 1, 2, . . . , n),

so the private key of U is dID = (d0, d1, d2, . . . , dn).

3.3. Encrypt

To encrypt a message m ∈ G2 with a key associated with identity ID′, randomly choose
s ∈ Z∗

p and a polynomial A(x) ∈ Z∗
p[x] of degree d − 1, compute:

ui = (gh(ID′
i,i)

2 · gh(i))sA(i) (i = 1, 2, . . . , n), v1 = e(g3, h1)sA(0),

v2 = e(g3, h2)sA(0), w = m · e(g3, h0)sA(0)+γ ,

β = H(u1, . . . , un, v1, v2, w, m · e(g3, h0)sA(0)),

where γ = H(u1, . . . , un, v1, v2, e(g3, h0)sA(0)).
The ciphertext of message m is c = (u1, . . . , un, v1, v2, w, β).

3.4. Decrypt

Suppose that a ciphertext c is encrypted with a key associated with identity ID′ and we
have a private key for identity ID, where |ID ∩ ID′ | � d. Choose an arbitrary d-element
subset S = {i|i ∈ {1, . . . , n}, IDi ∈ ID ∩ ID′ } and decrypt

∏
i∈S e(ui, di)�i,S(0)

vd0
1 v

f(d0)
2

= e(g3, h0)sA(0),

γ = H
(
u1, . . . , un, v1, v2, e(g3, h0)sA(0)

)
,

w/e(g3, h0)γ = R, β′ = H(u1, . . . , un, v1, v2, w, R),

and verify whether β′ = β. If yes, decrypt R/e(g3, h0)sA(0) = m. Otherwise, return an
error message.

3.5. Correctness

The correctness of the new fuzzy IBE scheme is shown as follows. As described in Sec-
tion 3.4, IDi ∈ ID ∩ ID′ if i ∈ S. Therefore,
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e(ui, di) = e
((

g
h(ID′

i,i)
2 · gh(i)

)sA(i)
,

(
h0h

r0
1 h

f(r0)
2

) α·q(i)
q(0)h(IDi,i)+h(i)

)

= e
(
gsA(i)(q(0)h(IDi,i)+h(i)),

(
h0h

r0
1 h

f(r0)
2

) α·q(i)
q(0)h(IDi,i)+h(i)

)

= e
(
gsA(i),

(
h0h

r0
1 h

f(r0)
2

)α·q(i))
,

∏

i∈S

e(ui, di)�i,S(0) =
∏

i∈S

e
(
gsA(i),

(
h0h

r0
1 h

f(r0)
2

)α·q(i))�i,S(0)

= e
(
gs
1, h0h

r0
1 h

f(r0)
2

)∑
i∈S

A(i)q(i)�i,S(0)

= e(gs
1, h0h

r0
1 h

f(r0)
2 )A(0)q(0)

= e(g3, h0)sA(0)e(g3, h1)sr0A(0)e(g3, h2)sf(r0)A(0),

∏
i∈S e(ui, di)�i,S(0)

vd0
1 v

f(d0)
2

= e(g3, h0)sA(0),

γ = H
(
u1, . . . , un, v1, v2, e(g3, h0)sA(0)

)
,

w/e(g3, h0)γ = m · e(g3, h0)sA(0) = R,

β′ = H(u1, . . . , un, v1, v2, w, R) = β, R/e(g3, h0)sA(0) = m.

4. Analysis of the New Fuzzy IBE Scheme

In this section, we analyze the security of the new fuzzy IBE scheme and compare its
efficiency with that of Baek et al. (2007) and Sahai and Waters (2005).

4.1. Security

We now prove that the new fuzzy IBE scheme achieves IND-FID-CCA2 security under
the q-TBDHE assumption in the standard model.

Theorem 1. Assume that the (t′, ε′, q)-TBDHE assumption holds in G1, G2, and h, H are
collision-resistant hash functions, then our fuzzy IBE scheme is (t, ε, qk, qd) IND-FID-
CCA2 secure for t = t′ −O(texp ·qn)−O(tpair ·qd), ε = ε′ +1/(p−1), qk+qd � q − 1,
where texp, tpair are the average time required to exponentiate and pairing in G1, G2

respectively.

Proof. Assume A is an IND-FID-CCA2 adversary described as Section 2.4, then we
construct a challenger B that solves the q-TBDHE problem as follows. At first, B is
given a vector (g′, g, gα, . . . , gαq

, Z) ∈ Gq+2
1 × G2 to decide whether Z = e(g′, g)αq+1

.
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Setup. B randomly chooses f0(x), f1(x), f2(x) ∈ Z∗
p[x] of degree q, where f0(x) =∑q

i=0 aix
i, f1(x) =

∑q
i=0 bix

i, f2(x) =
∑q

i=0 cix
i. Then he randomly chooses q(x) ∈

Z∗
p[x] of degree d − 1. Let

g1 = gα, g2 = gq(0), g3 = g
q(0)
1 , h0 = gf0(α),

h1 = gf1(α), h2 = gf2(α), f(x) = − bq

cq
x − aq

cq
.

If h0 = h
aq/cq

2 or h1 = h
bq/cq

2 , randomly choose f0(x), f1(x), f2(x) again. Then B

sends the parameters (g, g1, g2, g3, h0, h1, h2, d, f(x)) to the adversary A. Observe that
from the viewpoint of the adversary, the distribution of these public parameters is identi-
cal to the real construction since f0(x), f1(x), f2(x), q(x) are randomly chosen.

Phase 1. A adaptively issues the queries as follows.
Key generation query. A sends identity ID = (ID1, ID2, . . . , IDn) to B. B randomly

chooses r0 ∈ Z∗
p and computes

d0 = r0, di =
(
g
∑q−1

i=0
(ai+r0bi+f(r0)ci)α

i+1) q(i)
q(0)h(IDi,i)+h(i) (i = 1, 2, . . . , n),

so dID = (d0, . . . , dn). It is a valid private key, because

f(r0) = − bq

cq
r0 − aq

cq
, aq + r0bq + f(r0)cq = 0,

g
∑q−1

i=0
(ai+r0bi+f(r0)ci)α

i+1

= g
∑q

i=0
(ai+r0bi+f(r0)ci)α

i+1

=
(
gf0(α) · gr0f1(α) · gf(r0)f2(α)

)α

=
(
h0h

d0
1 h

f(d0)
2

)α
,

di =
(
h0h

d0
1 h

f(d0)
2

) α·q(i)
q(0)h(IDi,i)+h(i) (i = 1, 2, . . . , n).

Since f0(x), f1(x), f2(x), q(x) are uniformly random polynomials, then h0, h1, h2, r0

are uniformly random and independent from A’s view, and so the private keys issued by
B are appropriately distributed.

Decryption query. A sends (ID, c) to B. B first executes the key generation query to
identity ID as above, then decrypts and verifies c with the private key of ID according to
the decryption process. If c can pass the verification, B sends A the plaintext; otherwise,
B returns an error message.

Challenge. A sends (ID∗, m0, m1) to B, where |ID ∩ ID∗ | < d, and ID denotes the
identity that has appeared in key generation and decryption query in Phase 1.

B randomly chooses mk, k ∈ {0, 1}, a polynomial A∗(x) of degree d − 1, and com-
putes

u∗
i = (g′)A∗(i)(q(0)h(ID∗

i ,i)+h(i)) (i = 1, . . . , n),

v∗
1 = ZbqA∗(0)q(0) · e

(
g′, g

∑q−1

i=0
biα

i+1)A∗(0)q(0)
,
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v∗
2 = ZcqA∗(0)q(0) · e

(
g′, g

∑q−1

i=0
ciα

i+1)A∗(0)q(0)
,

w∗ = mk · ZaqA∗(0)q(0)e
(
g′, g

∑q−1

i=0
aiα

i+1)A∗(0)q(0)
e(g3, h0)γ∗

,

β∗ = H
(
u∗

1, . . . , u
∗
n, v∗

1 , v∗
2 , w∗, w∗/e(g3, h0)γ∗ )

,

where γ∗ = H(u∗
1, . . . , u

∗
n, v∗

1 , v∗
2 , ZaqA∗(0)q(0) · e(g′, g

∑q−1

i=0
aiα

i+1

)
A∗(0)q(0)

).
Then B sends c∗ to A, where c∗ = (u∗

1, . . . , u
∗
n, v∗

1 , v∗
2 , w∗, β∗).

Let s∗ = logg g′. If Z = e(g′, g)αq+1
,

u∗
i = gs∗A∗(i)(q(0)h(ID∗

i ,i)+h(i)) =
(
g

h(ID∗
i ,i)

2 gh(i)
)s∗A∗(i)

,

v∗
1 = e

(
g′, g

∑q

i=0
biα

i+1)A∗(0)q(0) = e(g3, h1)s∗A∗(0),

v∗
2 = e

(
g′, g

∑q

i=0
ciα

i+1)A∗(0)q(0) = e(g3, h2)s∗A∗(0),

w∗ = mk · e
(
g′, g

∑q

i=0
aiα

i+1)A∗(0)q(0)
e(g3, h0)γ∗

= mk · e(g3, h0)s∗A∗(0)+γ∗
,

β∗ = H
(
u∗

1, . . . , u
∗
n, v∗

1 , v∗
2 , w∗, mk · e(g3, h0)s∗A∗(0)

)
,

where γ∗ = H(u∗
1, . . . , u

∗
n, v∗

1 , v∗
2 , e(g3, h0)s∗A∗(0)).

Therefore, c∗ is a valid ciphertext for mk under the randomness of s∗. Since logg g′ is
uniformly random, s∗ is uniformly random, and so c∗ is a valid, appropriately-distributed
challenge to A.

Phase 2. A executes the following queries:

(1) Key generation query 〈ID〉, where |ID ∩ ID∗ | < d.
(2) Decryption query 〈ID, c〉, where c �= c∗.

Guess. A submits a guess k′ ∈ {0, 1}. If k′ = k, B outputs 0 (indicating that Z =
e(g′, g)αq+1

); otherwise, he outputs 1.

4.2. Probability Analysis

Lemma 1. When Z is sampled according to PTBDHE, the joint distribution of A’s view
and the bit k is indistinguishable from that in the actual construction, except probability
1/(p − 1).

Proof. When B’s input is sampled from PTBDHE, B’s simulation appears perfect to A

if A makes only key generation queries. B’s simulation still appears perfect if A makes
decryption queries only on identities for which it queries the private key, since B’s re-
sponses do not give A any additional information. Furthermore, querying well-formed
ciphertexts to the decryption oracle does not help A distinguish between the simulation
and the actual construction, since, by the correctness of algorithm Decrypt, well-formed
ciphertexts will be accepted in either case. Finally, querying a non-well-formed cipher-
text for ID does not help A distinguish, since this cihertext will fail the "decrypt" check
under every valid private key for ID. Thus, the lemma follows from the following claims.
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Claim 1. Assuming the adversary does not find a collision in h, H, then the decryption
oracle, in the simulation and in the actual construction, rejects all invalid ciphertexts
under identities not queried by A.

Proof. Let log(·), log′(·) denote the logarithms to the base g, e(g, g) respectively, and an
invalid ciphertext c = (u1, . . . , un, v1, v2, w, β) associated with an identity ID for

ui =
(
g

h(IDi,i)
2 gh(i)

)siA(i) (i = 1, 2, . . . , n),

v1 = e(g3, h1)sv1A(0), v2 = e(g3, h2)sv2A(0),

w = m · e(g3, h0)swA(0)+γ , β,

where γ = H(u1, . . . , un, v1, v2, e(g3, h0)swA(0)), and si �= sv1 , sv2 or sw. Therefore,

log ui = siA(i)(q(0)h(IDi, i) + h(i)) (i = 1, 2, . . . , n),

log′ v1 = sv1A(0)(q(0)α + log h1), log′ v2 = sv2A(0)(q(0)α + log h2),

log′(w/m) = (swA(0) + γ)(q(0)α + log h0).

According to the Decrypt algorithm, a ciphertext c can be accepted if

∏
i∈S e(ui, di)�i,S(0)

vd0
1 · v

f(d0)
2

= e(g3, h0)swA(0), w/e(g3, h0)γ = R,

R/e(g3, h0)swA(0) = m, β = H(u1, . . . , un, v1, v2, w, R), (1)

where d = (d0, . . . , dn) is a private key of ID′, |ID ∩ ID′ | � d.
According to (1),

∏
i∈S e(ui, di)�i,S(0)

vd0
1 · v

f(d0)
2

=
e(gsi , (h0h

r0
1 h

f(r0)
2 )α)A(0)q(0)

vr0
1 · v

f(r0)
2

= e(g3, h0)swA(0). (2)

Because A has not queried the decryption key associated with ID′, and f(r0) =
− bq

cq
r0 − aq

cq
, according to (2),

e(g3, h0)swA(0)v
− aq

cq

2

(
v1v

− bq
cq

2

)r0 = e
(
gsiA(0)q(0),

(
h0h

− aq
cq

2

)α(
h1h

− bq
cq

2

)αr0
)

Since r0 is randomly chosen from Z∗
p, we know that

e(g3, h0)swA(0)v
− aq

cq

2 = e
(
gsiA(0)q(0),

(
h0h

− aq
cq

2

)α)
,

v1v
− bq

cq

2 = e
(
gsiA(0)q(0),

(
h1h

− bq
cq

2

)α)
. (3)

From (3),

(sw − si) log h0 − aq

cq
log h2(sv2 − si) = 0,
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(sv1 − si) log h1 − bq

cq
log h2(sv2 − si) = 0. (4)

Since log h0 = f0(α), log h1 = f1(α), log h2 = f2(α), f0(x), f1(x), f2(x) are ran-

domly chosen, log h0, log h1, log h2 are uniformly random. Because h0 �= h
aq
cq

2 , h1 �=

h
bq
cq

2 , we know si = sv1 = sv2 = sw from (4).
Therefore, a ciphertext can be accepted only if it is valid. The decryption oracle, in the

simulation and in the actual construction, rejects all invalid ciphertexts under identities
not queried by A.

Claim 2. If the decryption oracle rejects all invalid ciphertexts, then A has advantage of
1/(p − 1) in guessing the bit k.

When Z is sampled from PTBDHE, a challenged ciphertext c∗ is a valid ciphertext for
the randomness of s∗.

First, we show the adversary cannot obtain a valid ciphertext c = (u1, . . . , un, v1, v2,

w, β) for mk associated with ID from c∗, where

ui =
(
g

h(IDi,i)
2 gh(i)

)s′A′(i) (i = 1, 2, . . . , n),

v1 = e(g3, h1)s′A′(0), v2 = e(g3, h2)s′A′(0),

w = m · e(g3, h0)s′A′(0)+γ , β,

where γ = H(u1, . . . , un, v1, v2, e(g3, h0)s′A′(0)).
There are three cases to consider:

(1) (s′, A′(x)) = (s∗, A∗(x)), ID = ID∗: c = c∗, the ciphertext will certainly be
rejected.

(2) (s′, A′(x)) = (s∗, A∗(x)), ID �= ID∗: (v1, v2) = (v∗
1 , v∗

2).

ui = u∗
i · (gs∗A∗(i)

2 )h(IDi,i)−h(ID∗
i ,i), γ �= γ∗,

w = w∗ · e(g3, h0)γ−γ∗
.

Since s∗ = logg g′, and A∗(x) is uniformly random, γ, γ∗ are uniformly random,
the adversary cannot compute a valid tuple ({ui}, w) from c∗.

(3) (s′, A′(x)) �= (s∗, A∗(x)):

(ui, v1, v2, γ) �= (u∗
i , v

∗
1 , v∗

2 , γ∗),

w = w∗ · e(g3, h0)s′A′(0)+γ−s∗A∗(0)−γ∗
.

Because s∗ and A∗(x) are uniformly random, γ, γ∗ are uniformly random, the adver-
sary cannot compute a valid w from c∗.

Therefore, the adversary cannot obtain a valid ciphertext c for mk associated with ID
from c∗. Finally, we know

R∗ = mk · e(g3, h0)s∗A∗(0), w∗ = mk · e(g3, h0)s∗A∗(0)+γ∗
,
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where γ∗ = H(u∗
1, . . . , u

∗
n, v∗

1 , v∗
2 , e(g3, h0)s∗A∗(0)).

Since s∗ and A∗(x) are uniformly random, γ∗ is uniformly random, and s∗A∗(0) +
γ∗ = 0 with probability 1/(p − 1), R∗/mk, w∗/mk are uniformly random for the adver-
sary except probability 1/(p − 1). So A can guess k′ = k with probability 1

2 + 1
p−1 .

Lemma 2. When Z is sampled according to RTBDHE, the joint distribution of A’s view
and the bit k is indistinguishable from that in the actual construction.

Proof. The lemma follows from Claim 1 and the following claim.

Claim 3. If the decryption oracle rejects all invalid ciphertexts, then A has no advantage
in guessing the bit k.

When Z is sampled from RTBDHE, we know that sv1 , sv2 �= s∗. As Claim 2, the
adversary cannot obtain a valid ciphertext c for mk associated with an identity ID from
c∗. We know

R∗ = mk · ZaqA∗(0)q(0)e(g′, g
∑q−1

i=0
aiα

i+1

)A∗(0)q(0), w∗ = R∗ · e(g3, h0)γ∗
,

where γ∗ = H(u∗
1, . . . , u

∗
n, v∗

1 , v∗
2 , ZaqA∗(0)q(0)e(g′, g

∑q−1

i=0
aiα

i+1

)A∗(0)q(0)).
Since s∗, A(x), Z are uniformly random, γ∗ is uniformly random, and R∗/mk,

w∗/mk are random for the adversary. So A can only guess k′ = k with probability
1/2 and has no advantage in guessing the bit k.

Time Complexity. In the simulation, B’s overhead is dominated by computing pri-
vate keys and decrypting the ciphertexts in response to A’s queries. Each key generation
computation requires O(n) exponentiations in G1, and each decryption computation re-
quires O(n) exponentiations and O(d) pairings in G1, G2. Since A makes at most q − 1
queries, t′ = t + O(texp · qn) + O(tpair · qd).

In the reduction, B’s success probability and time complexity are the same as that
of A’s, except for additive factors depending on p and q respectively. So our fuzzy IBE
system has a tight security reduction in the standard model. This completes the proof for
Theorem 1.

4.3. Efficiency

In Table 1, we compare the efficiency of the known fuzzy IBE schemes.
In this table, n is the length of an identity, d represents the minimal error tolerance

and "sID, full" denote "selective-ID" and "adaptive-ID" model respectively.
We conclude that our fuzzy IBE scheme has short parameters and an “adaptive-ID”

security reduction in the standard model simultaneously from the table.
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Table 1

Comparison among fuzzy IBE schemes

Scheme Random Security Public Private Ciphertext Pairing

oracles model key size key size size operation

BSZ (Baek et al., 2007) yes sID O(1) O(n) O(n) O(d)

SW (Sahai and Waters, 2005) no sID O(n) O(n) O(n) O(d)

Ours no full O(1) O(n) O(n) O(d)

5. Conclusion

Fuzzy identity-based encryption provides an error-tolerance property for IBE and can
encrypt a document to all users that have a certain set of attributes. Currently, there is no
fuzzy IBE scheme available that is fully CCA2 secure in the standard model. In this paper,
we propose a new fuzzy IBE scheme which achieves IND-FID-CCA2 security based on
the q-TBDHE assumption in the standard model. Moreover, our scheme has short public
parameters and a tight reduction with an additive factor.
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Naujas standartinio modelio neraiškusis tapatybe pagr ↪istas
šifravimas

Yanli REN, Dawu GU, Shuozhong WANG, Xinpeng ZHANG

2005 m. Sahai ir Waters pasiūlė neraiški ↪aj ↪a tapatumu pagr↪ist ↪a šifravimo schem ↪a (IBE) ir ↪irodė,
kad ši schema yra saugi. Neraiški ↪aj ↪a IBE schema galima užšifruoti dokument ↪a visiems vartoto-
jams, kurie turi tam tikrus požymius. Straipsnyje pasiūlyta nauja neraiškioji IBE schema, kuri
pasiekia IND-FID-CCA2 saug ↪a standartiniame supaprastintame modelyje, o vieš ↪uj ↪u parametr ↪u
skaičius nepriklauso nuo požymi ↪u susijusi ↪u su tapatybe skaičiaus.




