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Abstract. Detecting communities in real world networks is an important problem for data analysis
in science and engineering. By clustering nodes intelligently, a recursive algorithm is designed to
detect community. Since the relabeling of nodes does not alter the topology of the network, the
problem of community detection corresponds to the finding of a good labeling of nodes so that
the adjacency matrix form blocks. By putting a fictitious interaction between nodes, the relabeling
problem becomes one of energy minimization, where the total energy of the network is defined by
putting interaction between the labels of nodes so that clustering nodes that are in the same com-
munity will decrease the total energy. A greedy method is used for the computation of minimum
energy. The method shows efficient detection of community in artificial as well as real world net-
work. The result is illustrated in a tree showing hierarchical structure of communities on the basis
of sub-matrix density. Applications of the method to weighted and directed networks are discussed.
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1. Introduction

Nowadays community detection is becoming an increasingly important problem in the
research of many areas in science and engineering. Biologists find the communities of
proteins or cells to reveal the complex but organized system. Social scientists study the
communities of social networks to investigate human behaviors. Analyzing communities
of the stock market can show the relationships between different stocks. Studying com-
munities in online social networks, such as facebook, can give us more information about
our online behaviors. Analysis of ferromagnetic interactions between particles also re-
veals properties of ferromagnetic materials (Garliauskas, 2009). However, the definition
of a community is still diverse (Newman and Girvan, 2004; Reichardt and Bornholdt,
2006; Newman, 2004; Newman, 2006; Li et al., 2008; Hastings, 2006), making the prob-
lem of community detection more difficult. Nevertheless, a common feature of various
mathematical definitions of community is that a community is a group of nodes that has
strong relations, manifested through the higher density of links within the group than the
density of links between nodes from different groups. This is the feature that we use in
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this paper to define community. Thus, the problem of community detection becomes one
of finding groups of connected nodes so that the density of links within group is high-
est, resulting in an image analysis problem for an adjacency matrix with highest density
contrast. Many techniques have been explored to solve the problem of community detec-
tion (Newman and Girvan, 2004; Reichardt and Bornholdt, 2006; Newman, 2004, 2006;
Li et al., 2008; Hastings, 2006; Šutiene et al., 2010). A common solution is to change
the community detection problem into the optimization of some quantitative functions.
Examples of these quantitative functions include the modularity introduced by Newman
and Girvan in 2004 (Newman and Girvan, 2004) and the Hamiltonian in Potts model
introduced by Reichardt and Bornholdt in 2006 (Reichardt and Bornholdt, 2006). Both
techniques show effectiveness in community detection, but some research indicates that
resolutions of community sizes are limited for these techniques (Kumpula et al., 2007a,
2007b; Fortunato and Barthelemy, 2007). Improvement of quantitative functions has been
tried (Li et al., 2008). Special community detection methods are also explored to search
for fuzzy communities (Reichardt and Bornholdt, 2004; Nepusz et al., 2008). Specific
methods are also designed for special networks (Barber, 2007). In this paper we intro-
duce a new community detection method by defining an energy function for the network.
After minimizing the energy, nodes from the same community will be clustered. Then we
use a technique of tree building to construct hierarchical structure of communities. The
technique is based on the density ordering of subsets. We have tested our method for both
the artificial networks and real networks and find it to be very efficient.

2. Node Clustering

A network of N nodes can be described by its adjacency matrix A, which is an N × N

matrix whose elements are defined by Aij = 1 when there is a link between node i and
j and is zero otherwise. In general, the raw data of the network will have a correspond-
ing adjacency matrix with a distribution of 1 and 0 that is rather uneven, or seemingly
random. A common feature for all definitions of community is that a community in the
network can be considered as a group of nodes such that the links inside the community is
dense. In order to properly define the density of links, we introduce the notion that there
are two kinds of links, one between nodes inside the same community and the other kind
of links are those that connect nodes inside the community with some nodes outside the
community. Since the labeling of the nodes does not alter the topology of the network,
we can label nodes belonging to the same community sequentially. In this way, the cor-
responding adjacency matrix, which depends on our labeling of nodes, will have a block
form. Each block will consist of nodes in a common community. In another word, since
nodes in the same community are more likely to have links, the corresponding adjacency
matrix Aij is more likely to be 1 if node i and node j are in the same community. For
example, if nodes 1 to 10 belong to the same community, then in the first 10 × 10 sub-
matrix, we have more likely to find 1s inside this block than outside, corresponding to
a sub-matrix with higher density than other parts of the adjacency matrix.



Community Detection Through Optimal Density Contrast of Adjacency Matrix 137

The problem for community detection is then transformed into one of relabeling the
nodes in such a way as to reveal the block structures of the adjacency matrix. The best
relabeling will provide the highest density contrast, where the density of links is the
density of 1s. The quality of the detection algorithm is then measured by the image quality
of the adjacency matrix, with highest density contrast being the better description of the
community structure of the given network.

Since there are N ! ways to label the nodes, exhaustive search will be prohibitive for
large N . In this paper, we aim at finding an efficient algorithm to search among these N !
ways of relabeling the one that yields the highest density contrast in the adjacency matrix.
With this in mind, we introduce the concept of network energy. The network energy is
defined on the basis of the adjacency matrix:

E =
∑
i,j

w(i, j) · Aij .

Here i, j denotes the index order of nodes, which runs from 1 to N for a network with
size N . The weight w(i, j) measures the contribution of the link Aij to the total network
energy. Here the weight has the following properties:

(1) w(i, j) = f(|i − j|), which means w(i, j) is only a one-variable function of |i − j|.
(2) f(d1) > f(d2), when d1 > d2.

Since when i = j, Aij is 0 (no self linkage), we can assume |i − j| > 0. Here are two
examples of the definition of weight function:

(1) gravitational energy:

w1(i, j) = − 1
|i − j| ,

E1 =
∑
i,j

Aij ·
(

− 1
|i − j|

)
.

(2) distance:

w2(i, j) = |i − j|,
E2 =

∑
i,j

Aij · |i − j|.

From the conditions of the weight function we can infer that the smaller the distance
is between the position of entry and the diagonal line of adjacency matrix, the smaller
|i − j| is, and the smaller w(i, j) will be. We then like to minimize the total energy so
that nodes in the same community can be clustered. As it is more likely to have links
between nodes from the same community, more 1s will appear near the diagonal of the
adjacency matrix after the minimization of total energy. This in turn will give a better
node clustering.

Note that the weight function is thus far arbitrary as long as condition (1) and (2) are
satisfied. The form of the energy function is just a mean to cluster the nodes, and there
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is no physical significance on their interpretation. The objective is to cluster nodes by
minimizing energy, though which particular choice of energy weight w(i, j) is reflected
in the efficiency of the search algorithm for a good labeling of the nodes to reveal highest
density contrast. In literature, the idea of node clustering is often used before constructing
a hierarchical tree of communities (Sales-Pardo et al., 2007).

3. Computation of Minimum Energy

In our community detection method, we use a recursive procedure to compute the index
order that minimize the energy of network. Here a greedy algorithm is applied in order to
achieve high efficiency.

First we need to define the neighbor index order for this optimization problem. For
a network of size N , a particular index order, I , is a 1 × N array. We define the neighbor
index order X as an index order that can be acquired by exchanging two elements of I .
So for a network of size N , every index order I has N · (N − 1)/2 neighbor index orders.

Our algorithm for the minimization of the network energy is a greedy method, which
involves the continuous evolution of the index order I to a better neighbor index order
X . Suppose the initial index order is denoted by I0. In the pth evolution, the five steps of
our algorithm are,

1. Calculate the energy after the last evolution E(Ip−1) with the index order Ip−1.
2. Search for the best neighbor index order of Ip−1, which is denoted by Xp−1.
3. Calculate the energy E(Xp−1) with the index order Xp−1.
4. If E(Xp−1) < E(Ip−1), then Ip = Xp−1. Go to the next evolution.
5. If E(Xp−1) > E(Ip−1), then Ip−1 is better than its neighbors. Stop the evolution.

In this greedy method, the network energy E always decreases as much as possible.
It has the advantage of fast convergence but with the drawback of the danger of being
trapped in local energy minimum.

4. Application Tests

In this section, artificial networks with different size and community numbers are used to
test our community detection method. In addition, a network of American college football
games with 115 nodes as well as a dolphin social network of 62 nodes are also used for
the testing of the method. All the tests demonstrate that our method is quite efficient.

4.1. Artificial Network

The artificial networks we use are ideal networks with known community structure, with
nodes in the same community fully connected and nodes in different communities un-
connected. We choose an index order randomly to hide the community structure and then
apply the greedy method to search for the best index order. Here the network energy is
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Table 1

Test results for ideal networks

Network Community Community Test Average Number of times

size number size times iteration trapped in local

minimum

25 2 21, 4 10 3.9 0%

25 4 12, 8, 3, 2 10 7.5 0%

50 2 28, 22 10 11.2 0%

50 6 20, 12, 12, 3, 2, 1 10 19.2 0%

75 4 46, 20, 6, 3 10 21.2 0%

75 7 35, 23, 7, 4, 3, 2, 1 10 27.9 0%

100 3 86, 11, 3 10 11.9 0%

100 6 44, 25, 19, 7, 4, 1 10 37.3 0%

defined as total distance of nodes. For each artificial network, we perform our algorithm
10 times and the results are shown in Table 1. In these tests, we never run into local mini-
mum, showing that our method is effective for networks with ideal community structure.
We can also see that the average iteration required for the detection of the community
structure increases with the network size as well as the number of communities.

4.2. Football Network

One real network we use to test our community detection method is the American col-
lege football network between Division I for the regular season in fall 2000 (Girvan and
Newman, 2002). In this network, nodes represent football teams and edges represent
existence of games between the two teams. Community structure exists in this network
because the teams are divided into conferences, with about 8–12 teams each. Teams in the
same conference play much more games than teams from different conferences. Again
we randomly choose an index order and apply the greedy method. Figures 1 and 2 are the
pictures of the adjacency matrix before and after the adjustment of index order.

Here a white dot denotes a 1 in the matrix and a black dot denotes a 0. In Fig. 2, several
blocks with high density appear along the diagonal line. The greedy method works well
in this example.

Fig. 1. Adjacency matrix of original football network.
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Fig. 2. Adjacency matrix of adjusted football network.

Fig. 3. Adjacency matrix of adjusted dolphin network.

4.3. Dolphin Network

The second real world network for the validation of our community detection method
is a social organization formed by bottlenose dolphins living off Doubtful Sound, New
Zealand (Lusseau et al., 2003). In this network, nodes represent dolphin individuals and
links represent that there is a frequent association between two dolphins. Previous work
indicates that large communities as well as tiny communities (communities with only
two or three dolphins) probably exist in this dolphin network, although there are also
some random links between communities to make the whole network more insensitive to
sudden disasters (Lusseau, 2003; Lusseau and Newman, 2004). Now we use our greedy
method to see whether community structure exists in this network. Results are shown
in Fig. 3. A few blocks do form at the diagonal line. However, there are also some 1s
far away from the diagonal line in the network, meaning that there are links connecting
different blocks in the right bottom corner. This observation is consistent with previous
results, which also indicates that some blocks may interact with each other to form a
larger block.

Summarizing the above results, we conclude that the greedy method is effective for
both artificial and real world networks.

5. Hierarchical Structures of Communities

In this section, we will introduce a technique to build a hierarchical tree of communities
based on sub-matrix density. It is an agglomerative method for hierarchical clustering
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that works on the adjacency matrix after node clustering. We treat the whole network as
a large community, which is composed of several smaller communities. Each community
can also be composed of even smaller communities. Since nodes in the same community
are more likely to have links, we assume that the density of parent community is smaller
than its sub-communities. Suppose the community is of size M . We define density as
D = 1

M2

∑
i,j Aij . The technique of tree building is based on the adjusted adjacency

matrix. Note first that the existence of a community in the network corresponds to the
existence of a block of dense 1s around the diagonal of the adjacency matrix after index
order adjustments. Given a community of size M , we can let a sub-matrix of size M slide
along the diagonal line and calculate its density, as is shown in Fig. 4. We then obtain
a density curve ρ(k, M) parameterized by the position k of the sliding block of size M .
Here k is the index along the diagonal, 0 < k < N − M , with N denoting the size of the
network. It is reasonable that a density peak will appear at the position of the community,
since the density of the community should be larger than its neighboring subsets, which is
composed of nodes from more than one community. With this insight, we conclude that if
there is a community of size M , then there will be a peak in the density curve as we slide
down the block. However, a density peak does not always indicate a community. The
reason is that we do not know a priori the size of the community, so that a density peak
for a particular chosen block size M need not correspond to the existence of a community
of size M . Nevertheless, we can try all possible block size M . For a given size M , we
can draw a density curve and find the local maxima of the density curve. If there is a
local maximum of the density curve at k, we interpret that there is a possible community
of size M with nodes inside the block of size M located at the diagonal position k. This
particular subset of nodes, is denoted as V (k, M). It contains M nodes. We call V (k, M)
the candidate set of nodes forming a possible community of size M . Let’s denote the
set of candidate set V (k, M), corresponding to a local maximum for the density curve
ρ(k, M) for block size M , as S(M).

S(M) =
H(M)⋃
h=1

V
(
k(h), M

)
.

Here h is the label for the hth local maximum along the density curve, and k(h) is the
corresponding position of this local maximum along the diagonal. H(M) is the total
number of local maximum for the density curve ρ(k, M). The collection of sets of lo-
cal maxima {S(M): M = 2, . . . , N − 1} consists of all possible sets of block of size
M = 2, . . . , N − 1 that are candidate communities.

Now we can build a tree of communities. We rank these local maxima to form an
ordered list of candidate communities. We examine the candidate sets one by one in the
odered list and we first select the candidade set V (k, M) with the largest density. Then
decision on selecting candidate set in the list is made based on the following criterion:

1. If none of the nodes in the selected group belongs to a certain community that
already exists, then this group forms a new community.
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Fig. 4. A block of size M sliding along the diagonal line.

2. If the selected group of nodes includes one or more communities that already ex-
ist and it does not overlap with other communities, then a hierarchical structure
of communities is built. The selected group of nodes is identified as the parent
community of sub-communities included.

3. If the selected group of nodes overlaps with one or more communities that already
exist, it is not considered as a community.

The last criterion is based on our naive assumption that communities do not overlap.
In our classification, if two possible subsets of nodes overlap, only the group with a larger
density is considered as a community.

With this technique, we can build a hierarchical structure of communities with de-
tailed community information, such as the number of communities, the size of each com-
munity and the tag of nodes that compose each community. Test results are shown below.

5.1. Hierarchical Structures of Artificial Network

The technique of tree building is effective for ideal networks generated by the computer.
For example, a network of size 100 with 5 communities is shown in Fig. 5. The informa-
tion about the groups of nodes is given in Table 2. Node 100 is an independent node and
does not belong to any communities. The hierarchical community structure for this ideal
network is shown in Fig. 6.

Here ‘(x y), z’ denotes that the community is consisted of the xth to the yth nodes
after the relabeling of index order and the density of links is z. We can see that the
community information is shown correctly.

Fig. 5. Ideal network used to test the tree building technique.
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Table 2

Groups of nodes in the ideal network

Group number Nodes

1 1–25

2 26–69

3 70–88

4 89–92

5 93–99

Fig. 6. The tree of ideal network communities.

5.2. Hierarchical Structures of Football Network

In this section, we use the American college football network to test the technique of tree
building. Results are shown in Fig. 7. The whole network can be divided into 17 com-
munities. Detailed information of these communities is available. As we know the truth
of community structure of this football network, we can compare it with the results of
tree building, as shown in Table 3. From the results we can see that, more than 95% of
nodes are grouped correctly. For some conferences, teams are divided into more than one
group, which means sub-community structure is detected in these conferences.

5.3. Hierarchical Structures of Dolphin Network

To validate our tree building technique, the dolphin network is also used. Results (Fig. 8)
shows that two large communities exist in the dolphin network (nodes 1 to 21 and nodes
23 to 59) while the larger community of the two can be further divided into 3 sub-
communities (nodes 23 to 33, nodes 34 to 47 and nodes 48 to 59). In addition, tiny
communities composed of two or three dolphins are also detected in our method (see
Table 4 for details). Comparing our results with previous results (Lusseau and Newman,
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Fig. 7. The tree of football network communities.

Table 3

Results of tree building for football network

Label of community detected True community labels in that community

1 6, 6, 6, 6, 6, 6

2 6, 6, 6, 6, 6, 6, 6

3 11, 5, 10, 10, 10, 10

4 1, 1, 1, 1, 1, 1, 1, 1

5 7, 7, 7, 7, 7, 7, 7, 7

6 9, 9, 9, 9

7 9, 9, 9, 9, 9

8 0, 0, 0, 0, 0, 0, 0, 0, 0

9 4, 4, 4, 4, 4

10 10, 10, 10, 11

11 3, 3, 3, 3, 3, 3

12 3, 3, 3, 3, 3, 3

13 11, 11, 11, 11, 11, 11, 4, 11, 11

14 8, 8, 8, 8, 8

15 8, 8, 8, 8, 8

16 2, 2, 2, 2, 2

17 2, 2, 2, 2
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Fig. 8. The tree of dolphin network communities.

Table 4

Results of tree building for dolphin network

Nodes Name of nodes Previous results

(Lusseau and Newman, 2004)

1–3 Zig, TR82, Ripplefluke In community 1

6–9 Feather, DN21, Gallatin, Web In community 1

12–13 Jet, MN23 In community 1

16–19 Mus, Number1, Notch, Beescratch In community 1

23–24 TR88, TR120 In community 2.3

25–27 PL, Oscar, TR77 In community 2.2

32–33 Zipfel, TSN83 In community 2.3

34–35 Thumper, Shmuddel In community 2.3

38–40 SN63, Stripes, Scabs In community 2.3

43–46 Grin, SN4, SN9, SN100 In community 2.3

48–50 Double, CCL, Zap In community 2.3

54–57 Jonah, Patchback, MN105, Trigger In community 2.1

2004), we find that only minor differences are present (e.g., tiny communities are grouped
a little bit differently to form sub-communities in the two largest communities).

Note that in Table 4, community 2.1, 2.2, 2.3 denote the 1st, 2nd and 3rd sub-
community in the community 2, corresponding to the dark grey, light grey and white
sub-community in Lusseau and Newman (2004).
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6. Discussion

Here we like to discuss the generalization of our method to weighted and directed net-
work.

For weighted network, the elements of adjacency matrix can be any real values.
Our energy minimization method can still be used. The elements in our energy func-
tion E =

∑
i,j f(|i − j|) · Aij with large Aij will be pushed to the diagonal line after

index order adjustment, which means nodes that have strong links will be clustered to-
gether. On the other hand, the density of subset is still defined as average of elements in
the sub-matrix. So subsets that contain strong links will have a larger density, which may
be identified as a community with higher probability. We can still apply our tree building
method to detect hierarchical structure of communities. We expect that our community
detection method will still be effective for weighted networks.

As for directed network, we cannot apply our techniques directly to detect commu-
nities. Our definitions for the energy function as well as density of block of size M are
defined in reference to a symmetric adjacency matrix, corresponding to undirected net-
work. For a directed network, we have an asymmetric adjacency matrix. However, we
can construct its symmetric part by defining

A′
ij =

1
2
(Aij + Aji).

If we assume that the results of community detection on the symmetric part of the directed
network is the same as that of the original network, Aij , then we can apply our technique.
The validity of this assumption is yet to be tested on real data.

7. Conclusion

In this paper we introduce a method of community detection, which includes the process
of node clustering and tree building. By the introduction of interaction energy between
labels of nodes, we can find the minimum energy of the network, corresponding to a re-
labeling of the nodes so as to reveal the clustering structure in the adjacency matrix.
This method has been tested on idealized network structure with pre-assigned commu-
nity structures, as well as on real network data. Our results show that the method is quite
efficient, as we use the greedy method to minimize energy for index ordering of nodes.
Furthermore, with a sliding block algorithm on the density curve, we collect all possible
candidate sets for communities. Based on these candidate sets, we can build a tree to re-
veal hierarchical structure of communities. It is based on the assumption that the density
of a community is larger than neighboring subsets composed of nodes from more than
one community. This tree building technique is tested on both artificial networks with
pre-assigned communities as well as real networks. The results are very good.

Our method is simple and efficient, though the search for local maxima along the
density curve using greedy method may sometimes run into errors, the method overall
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is quite fast. The problem of tree building is simple and good, though error may occur
in situation of overlapping communities. One advantage of tree structure is that it shows
more information about communities. We can see which communities have closer con-
nection with each other, indicating that they may form a larger community with a smaller
density. Future research will apply our techniques for weighted and directed network, as
well as addressing the more theoretical issue of overlapping communities. We hope that
this technique also find application in knowledge discovery in data mining on the web.
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Bendrij ↪u nustatymas per optimalaus tankio kontrasto gretimumo
matricas

Tianzhu LIANG, Kwok Yip SZETO

Bendrij ↪u nustatymas realaus pasaulio tinkluose yra aktuali duomen ↪u analizės problema.
Darbe sukurtas rekursyvinis algoritmas bendrijoms nustatyti klasteriuojant viršūnes intelektiniu
būdu. Kadangi viršūni ↪u pervardijimas nekeičia tinklo topologijos, bendrij ↪u nustatymo problema
suvedama ↪i viršūni ↪u sužymėjim ↪a, suformuojant gretimumo matricoje atitinkamus blokus. ↪Ivedus
fiktyvius s ↪aryšius tarp viršūni ↪u, viršūni ↪u pervardijimo problema suvedama ↪i energijos minimiza-
vimo uždavin↪i, apibrėžiant bendr ↪aj ↪a tinklo energij ↪a per s ↪aryšius tarp viršūni ↪u tokiu būdu, kad
viršūnės, esančios toje pačioje bendrijoje, mažint ↪u energij ↪a. Emergijos minimumui apskaičiuoti
yra pritaikytas godusis algoritmas. Metodas leidžia efektyviai nustatyti bendrijas dirbtiniuose ir
realiuose tinkluose. Rezultatai iliustruojami medžiams turintiems hierarchin ↪e struktūr ↪a. Aptariami
metodo pritaikymai svoriniams ir kryptiniams grafams.


