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Abstract. To set the values of the hyperparameters of a support vector machine (SVM), the method
of choice is cross-validation. Several upper bounds on the leave-one-out error of the pattern recog-
nition SVM have been derived. One of the most popular is the radius–margin bound. It applies
to the hard margin machine, and, by extension, to the 2-norm SVM. In this article, we introduce
the first quadratic loss multi-class SVM: the M-SVM2. It can be seen as a direct extension of the
2-norm SVM to the multi-class case, which we establish by deriving the corresponding generalized
radius–margin bound.

Keywords: multi-class SVMs, model selection, leave-one-out cross-validation error, radius–
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1. Introduction

Using an SVM (Boser et al., 1992; Cortes and Vapnik, 1995) requires to set the values
of two types of hyperparameters: the soft margin parameter C and the parameters of the
kernel. To perform this model selection task, the solution of choice consists in applying
a cross-validation procedure. Among those procedures, the leave-one-out one appears es-
pecially attractive, since it is known to produce an estimator of the generalization error
which is almost unbiased (Luntz and Brailovsky, 1969). The seamy side of things is that
it is highly time consuming. This is the reason why, in recent years, a number of upper
bounds on the leave-one-out error of the pattern recognition SVM have been proposed
(see Chapelle et al., 2002, for a survey). Although the tightest one is the span bound
(Vapnik and Chapelle, 2000), the results of Chapelle et al. (2002) show that when using
the 2-norm SVM (see, for instance, Chapter 7 in Shawe-Taylor and Cristianini, 2004), the
radius–margin bound (Vapnik, 1998) achieves equivalent performance for model selec-
tion while being far simpler to compute. These results are corroborated by those of several
comparative studies, among which the one performed by Duan et al. (2003). As a con-
sequence, this bound, with its variants (Chung et al., 2003), is currently the most popu-
lar one. The first studies dealing with the use of SVMs for multi-category classification
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(Schölkopf et al., 1995; Vapnik, 1995) report results obtained with decomposition meth-
ods involving Vapnik’s machine. A recent implementation of this approach can be found
in Balys and Rudzkis (2010). Multi-class support vector machines (M-SVMs) were in-
troduced later by Weston and Watkins (1998). Over more than a decade, many M-SVMs
have been developed (see, Guermeur, 2007, for a survey), among which three have been
the subject of extensive studies. However, to the best of our knowledge, literature only
proposes a single multi-class extension of the radius–margin bound. Introduced by Wang
et al. (2008), it makes use of the bi-class bound in the framework of the one-versus-one
decomposition method. As such, it does not represent a direct generalization of the initial
result to an M-SVM, and the authors state that “such a theoretical generalization of this
bound is not that straightforward because this bound is rooted in the theoretical basis of
binary SVMs.”

In this article, a new M-SVM is introduced: the M-SVM2. It can be seen either as a
quadratic loss variant of the M-SVM of Lee et al. (2004) (LLW-M-SVM) or as a multi-
class extension of the 2-norm SVM. A generalized radius–margin bound on the leave-
one-out error of the hard margin version of the LLW-M-SVM is then established and
assessed. This provides us with a differentiable objective function to perform model se-
lection for the M-SVM2. A comparative study including all four M-SVMs illustrates the
generalization performance of the new machine.

The organization of this paper is as follows. Section 2 provides a general introduction
to the M-SVMs and characterizes the three main models. Section 3 focuses on the LLW-
M-SVM and Section 4 introduces the M-SVM2. Section 5 is devoted to the multi-class
radius–margin bound. Experimental results are given in Section 6. We draw conclusions
and outline our ongoing research in Section 7.

2. Multi-Class SVMs

Like the (bi-class) SVMs, the M-SVMs are large margin classifiers which are devised in
the framework of Vapnik’s statistical learning theory (Vapnik, 1998).

2.1. Formalization of the Learning Problem

We consider the case of Q-category pattern recognition problems with 3 � Q < ∞.
Each object is represented by its description x ∈ X and the set Y of the categories
y can be identified with the set [[ 1, Q ]]. We assume that the link between descriptions
and categories can be described by an unknown probability measure P on X × Y . The
learning problem then consists in selecting a set G of functions g = (gk)1�k�Q from
X to R

Q, and a function g∗ in that set classifying data in an optimal way. The criterion
which is to be optimized must be specified. The function g assigns x ∈ X to the category
l if and only if gl(x) > maxk �=l gk(x). In case of ex æquo, x is assigned to a dummy
category denoted by ∗. Let f be the decision rule (from X to Y

⋃
{∗}) associated with

g and (X, Y ) a random pair with values in X × Y distributed according to P . Ideally,
the objective function to be minimized over G is P (f(X) �= Y ). In practice, since P is
unknown, other criteria are used and the optimization process, called training, is based on
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empirical data. More precisely, we assume that what we are given to select both G and g∗

is an m-sample Dm = ((Xi, Yi))1�i�m of independent copies of (X, Y ). A realisation
dm of Dm is called a training set. This article focuses on the choice of G, named model
selection, in the particular case when the model considered is an M-SVM.

2.2. Architecture and Training Algorithms

M-SVMs, like all the SVMs, are kernel machines (Shawe-Taylor and Cristianini, 2004;
Norkin and Keyzer, 2009), which means that they operate on a class of functions induced
by a positive type function/kernel. This calls for the formulation of some definitions and
basic results. For the sake of simplicity, we consider real-valued functions only, although
the general form of these definitions and results involves complex-valued functions.

DEFINITION 1 (Positive type (positive semidefinite) function, Definition 2 in Berlinet and
Thomas-Agnan, 2004). A real-valued function κ on X 2 is called a positive type function
(or a positive semidefinite function) if it is symmetric and

∀n ∈ N
∗, ∀(xi)1�i�n ∈ X n, ∀(ai)1�i�n ∈ R

n,

n∑
i=1

n∑
j=1

aiajκ(xi, xj) � 0.

DEFINITION 2 (Reproducing kernel Hilbert space, Definition 1 in Berlinet and Thomas-
Agnan, 2004). Let (H, 〈·, · 〉H) be a Hilbert space of real-valued functions on X . A real-
valued function κ on X 2 is a reproducing kernel of H if and only if

1. ∀x ∈ X , κx = κ(x, ·) ∈ H;
2. ∀x ∈ X , ∀h ∈ H, 〈h, κx〉H = h(x) (reproducing property).

A Hilbert space of real-valued functions which possesses a reproducing kernel is called a
reproducing kernel Hilbert space (RKHS) or a proper Hilbert space.

The connection between positive type functions and RKHSs is provided by the
Moore-Aronszajn theorem.

Theorem 1 (Moore-Aronszajn theorem, Theorem 3 in Berlinet and Thomas-Agnan,
2004). Let κ be a real-valued positive type function on X 2. There exists one and only
one Hilbert space (H, 〈·, · 〉H) of real-valued functions on X with κ as reproducing ker-
nel.

We can now define the classes of vector-valued functions at the basis of the M-SVMs
as follows.

DEFINITION 3 (Classes of functions H̄ and H). Let κ be a real-valued positive type
function on X 2 and let (Hκ, 〈·, · 〉Hκ) be the corresponding RKHS. Then, H̄ is the Hilbert
space of vector-valued functions defined as follows: H̄ = HQ

κ and H̄ is endowed with
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the inner product 〈·, · 〉 H̄ given by:

∀
(
h̄, h̄′) ∈ H̄2, h̄ =

(
h̄k

)
1�k�Q

, h̄′ =
(
h̄′

k

)
1�k�Q

,
〈
h̄, h̄′〉

H̄ =
Q∑

k=1

〈
h̄k, h̄′

k

〉
Hκ

.

Let {1} be the one-dimensional space of real-valued constant functions on X .

H = H̄ ⊕ {1}Q =
(
Hκ ⊕ {1}

)Q
.

For a given kernel κ, let Φ be the map from X into Hκ given by:

∀x ∈ X , Φ(x) = κx.

By analogy with the bi-class case, we call Φ the reproducing kernel map or a feature map
and Hκ a feature space. It springs from Definition 3 and the reproducing property that
the functions h of H can be written as follows:

h(·) = h̄(·) + b =
(
h̄k(·) + bk

)
1�k�Q

=
(〈

h̄k, Φ(·)
〉
Hκ

+ bk

)
1�k�Q

,

where h̄ = (h̄k)1�k�Q ∈ H̄ and b = (bk)1�k�Q ∈ R
Q. With these definitions and

theorems at hand, a definition of the M-SVMs can be formulated as follows.

DEFINITION 4 (M-SVM, Definition 4.1 in Guermeur, 2010). Let dm be a training set and
λ ∈ R

∗
+. A Q-category M-SVM is a classifier obtained by minimizing over the hyperplane∑Q

k=1 hk = 0 of H a functional JM-SVM of the form:

JM-SVM(h) =
m∑

i=1

�M-SVM

(
yi, h(xi)

)
+ λ

∥∥h̄
∥∥2

H̄

where the data fit component involves a loss function �M-SVM which is convex.

The M-SVMs thus differ according to the nature of the function �M-SVM which cor-
responds to a multi-class extension of the hinge loss function.

DEFINITION 5 (Hard and soft margin M-SVM). If an M-SVM is trained subject to the
constraint that

∑m
i=1 �M-SVM(yi, h(xi)) = 0, it is called a hard margin M-SVM. Other-

wise, it is called a soft margin M-SVM.

There are three main models of M-SVMs. The first one in chronological order is the
model of Weston and Watkins (1998). Its loss function �WW is given by:

�WW(y, h(x)) =
∑
k �=y

(
1 − hy(x) + hk(x)

)
+
,
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where (·)+ denotes the function max(0, ·). The second machine is due to Crammer and
Singer (2001) and corresponds to the loss function �CS defined as:

�CS

(
y, h̄(x)

)
=

(
1 − h̄y(x) + max

k �=y
h̄k(x)

)
+
.

The most recent model is the one of Lee et al. (2004). Its loss function �LLW is given by:

�LLW

(
y, h(x)

)
=

∑
k �=y

(
hk(x) +

1
Q − 1

)
+

. (1)

The LLW-M-SVM is the only model whose loss function is Fisher consistent (Lee et al.,
2004; Zhang, 2004; Tewari and Bartlett, 2007).

2.3. Geometrical Margins

Our definition of the M-SVMs locates these machines in the framework of Tikhonov’s
regularization theory (Tikhonov and Arsenin, 1977). This section characterizes them as
large margin classifiers. From now on, we use the standard notation consisting in denoting
w the vectors defining the direction of the linear discriminants in a feature space. For the
sake of simplicity, the inner product of Hκ and its norm are simply denoted 〈 ·, · 〉 and ‖ · ‖
respectively. Thus, h(·) = (〈h̄k, Φ(·)〉Hκ + bk)1�k�Q becomes h(·) = (〈wk, Φ(·)〉 +
bk)1�k�Q.

DEFINITION 6 (Geometrical margins, Definition 7 in Guermeur, 2007). Let n ∈ N
∗ and

let sn = {(xi, yi) ∈ X × Y : 1 � i � n}. If a function h ∈ H classifies these examples
without error, then for any pair of distinct categories (k, l), its margin between k and l

(computed with respect to sn), γkl(h), is defined as the smallest distance of a point of sn

either in k or l to the hyperplane separating those categories. Let us denote

d(h) = min
1�k<l�Q

{
min

i: yi ∈{k,l}

∣∣hk(xi) − hl(xi)
∣∣},

and

∀(k, l): 1 � k < l � Q, dkl(h) =
1

d(h)
min

i: yi ∈{k,l}

∣∣hk(xi) − hl(xi)
∣∣ − 1.

Then we have

∀(k, l): 1 � k < l � Q, γkl(h) = γlk(h) = d(h)
1 + dkl(h)

‖wk − wl‖ .

Since the M-SVMs satisfy the constraint
∑Q

k=1 wk = 0, the connection between their
geometrical margins and their penalizer is given by (2.6) in Guermeur (2007):

∑
k<l

‖wk − wl‖2 = Q

Q∑
k=1

‖wk ‖2. (2)
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3. The M-SVM of Lee, Lin and Wahba

We now give more details regarding the LLW-M-SVM, from which the M-SVM2 is de-
rived. Our motivation is to establish some of the formulas that will be involved in the
presentation of the new machine and the proof of the multi-class radius–margin bound.

3.1. Training Algorithms

The substitution in Definition 4 of �M-SVM with the expression of �LLW given by (1)
provides us with the expressions of the quadratic programming (QP) problems corre-
sponding to the training algorithms of the hard margin and soft margin versions of the
LLW-M-SVM.

Problem 1 (Hard margin LLW-M-SVM, primal formulation).

min
h∈H

JHM(h)

s.t.

{
∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, hk(xi) � − 1

Q−1 ,∑Q
k=1 hk = 0,

where

JHM(h) =
1
2

Q∑
k=1

‖h̄k ‖2 =
1
2

Q∑
k=1

‖wk ‖2.

Problem 2 (Soft margin LLW-M-SVM, primal formulation).

min
h,ξ

JSM(h, ξ)

s.t.

⎧⎨
⎩

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, hk(xi) � − 1
Q−1 + ξik,

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, ξik � 0,∑Q
k=1 hk = 0,

where

JSM(h, ξ) =
1
2

Q∑
k=1

‖wk ‖2 + C
m∑

i=1

∑
k �=yi

ξik.

For convenience of notation, the vector ξ of the slack variables of Problem 2 is
represented as follows: ξ = (ξik)1�i�m,1�k�Q ∈ R

Qm
+ . ξik is its component of in-

dex (i − 1)Q + k and the ξiyi are dummy variables, all equal to 0. Using the nota-
tion en to designate the vector of R

n whose components are equal to e, we have thus
(ξiyi)1�i�m = 0m. The expression of the soft margin parameter C as a function of the
regularization coefficient λ is: C = (2λ)−1. To solve Problems 1 and 2, one usually
solves their dual. We now derive the dual of Problem 2. Let α = (αik) and β = (βik) be
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respectively the vectors of Lagrange multipliers associated with the constraints of good
classification and the constraints of nonnegativity of the slack variables. These vectors
are built according to the same principle as vector ξ. Let γ ∈ Hκ and δ ∈ R be the
Lagrange multipliers associated with the sum-to-0 constraints. The Lagrangian function
of Problem 2 is given by:

L1(h, ξ, α, β, γ, δ)

=
1
2

Q∑
k=1

‖wk ‖2 + C

m∑
i=1

Q∑
k=1

ξik

+
m∑

i=1

Q∑
k=1

αik

(〈
wk, Φ(xi)

〉
+ bk +

1
Q − 1

− ξik

)

−
m∑

i=1

Q∑
k=1

βikξik −
〈

γ,

Q∑
k=1

wk

〉
− δ

Q∑
k=1

bk. (3)

Setting the gradient of L1 with respect to wk equal to the null vector provides us with Q

alternative expressions for the optimal value of vector γ:

∀k ∈ [[ 1, Q ]] , γ∗ = w∗
k +

m∑
i=1

α∗
ikΦ(xi). (4)

Summing over the index k provides us with γ∗ = 1
Q

∑m
i=1

∑Q
k=1 α∗

ikΦ(xi). By substi-
tution into (4), we get the expression of the vectors wk at the optimum:

∀k ∈ [[ 1, Q ]] , w∗
k =

m∑
i=1

Q∑
l=1

(
1
Q

− δk,l

)
α∗

ilΦ(xi), (5)

where δk,l is the Kronecker symbol. Let us now set the gradient of L1 with respect to b

equal to the null vector. We get similarly

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
α∗

il = 0. (6)

Given the constraint
∑Q

k=1 bk = 0,

m∑
i=1

Q∑
k=1

α∗
ikb∗

k =
Q∑

k=1

b∗
k

m∑
i=1

α∗
ik = δ∗

Q∑
k=1

b∗
k = 0. (7)

Setting the gradient of L1 with respect to ξ equal to the null vector gives:

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, α∗
ik + β∗

ik = C. (8)
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By application of (5),

1
2

Q∑
k=1

∥∥∥∥w∗
k

∥∥∥∥
2

+
m∑

i=1

Q∑
k=1

α∗
ik

〈
w∗

k, Φ(xi)
〉

= − 1
2

Q∑
k=1

∥∥∥∥w∗
k

∥∥∥∥
2

= − 1
2

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

(
δk,l − 1

Q

)
α∗

ikα∗
jlκ(xi, xj). (9)

Extending to the case of matrices the double subscript notation used to designate the
general terms of the vectors α, β and ξ, let H ∈ MQm,Qm(R) be the matrix of general
term: hik,jl = (δk,l − 1

Q )κ(xi, xj). Reporting (7), (8), and (9) in (3) provides us with the
following expression for the dual objective function:

JLLW,d(α) = − 1
2
αT Hα +

1
Q − 1

1T
Qmα.

Since the corresponding constraints are derived from (6) and (8), we get:

Problem 3 (Soft margin LLW-M-SVM, dual formulation).

max
α

JLLW,d(α),

s.t.

{ ∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, 0 � αik � C,
∀k ∈ [[ 1, Q − 1 ]] ,

∑m
i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0,

where

JLLW,d(α) = − 1
2
αT Hα +

1
Q − 1

1T
Qmα,

with the general term of the Hessian matrix H being

hik,jl =
(

δk,l − 1
Q

)
κ(xi, xj).

With slight modifications, the derivation above can be adapted to express the dual of
Problem 1. This leads to:

Problem 4 (Hard margin LLW-M-SVM, dual formulation).

max
α

JLLW,d(α),

s.t.

{ ∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, αik � 0,
∀k ∈ [[ 1, Q − 1 ]] ,

∑m
i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0.
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3.2. Geometrical Margins

The geometrical margins of the hard margin Q-category LLW-M-SVM can be character-
ized thanks to three propositions among which the two last will prove useful to establish
the radius–margin bound.

PROPOSITION 1. For a hard margin Q-category LLW-M-SVM,

d(h∗) � Q

Q − 1
.

Proof. If h ∈ H classifies the examples of the set sn without error, then d(h) =
min1�i�n mink �=yi(hyi(xi) − hk(xi)). By application of (1),

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, h∗
k(xi) � − 1

Q − 1
.

To finish the proof, it suffices to use the equation
∑Q

k=1 h∗
k = 0.

PROPOSITION 2. For a hard margin Q-category LLW-M-SVM trained on dm, in the
non-trivial case when α∗ �= 0, there exists a mapping I from [[ 1, Q ]] to [[ 1, m ]] such that

∀k ∈ [[ 1, Q ]] , h∗
k(xI(k)) = − 1

Q − 1
.

Proof. This proposition results readily from the Karush–Kuhn–Tucker (KKT) optimality
conditions and the constraints of Problem 4. Indeed, if α∗ �= 0, then for all k in [[ 1, Q ]],
there exists at least one dual variable α∗

ik which is positive.

PROPOSITION 3. For a hard margin Q-category LLW-M-SVM, we have

d(h∗)2

Q

∑
k<l

(
1 + dkl(h∗)

γkl(h∗)

)2

=
Q∑

k=1

‖w∗
k ‖2 = α∗T Hα∗ =

1
Q − 1

1T
Qmα∗.

Proof.

• dt(h∗)2

Q

∑
k<l(

1+dkl(h
∗)

γkl(h∗) )2 =
∑Q

k=1 ‖w∗
k ‖2.

This equation is a direct consequence of Definition 6 and (2).
•

∑Q
k=1 ‖w∗

k ‖2 = α∗T Hα∗.
This is a direct consequence of (9) and the definition of H .

• α∗T Hα∗ = 1
Q−11T

Qmα∗.
By application of the KKT complementary conditions,

m∑
i=1

Q∑
k=1

α∗
ik

(〈
w∗

k, Φ(xi)
〉

+ b∗
k +

1
Q − 1

)
= 0.
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Since

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi},
〈
w∗

k, Φ(xi)
〉

= −
(
Hα∗)

ik
,

m∑
i=1

Q∑
k=1

α∗
ik

〈
w∗

k, Φ(xi)
〉

= −α∗T Hα∗.

Using (7), this implies that α∗T Hα∗ = 1
Q−11T

Qmα∗.

4. The M-SVM2

Our new machine is a variant of the LLW-M-SVM in which the empirical contribution to
the objective function is a quadratic form.

4.1. Quadratic Loss Multi-Class SVMs: Motive and Principle

Let ξ be the vector of slack variables of any M-SVM. In the case of the M-SVMs of We-
ston and Watkins and Lee, Lin and Wahba, ξ ∈ R

Qm
+ with (ξiyi)1�i�m = 0m, whereas

in the case of the model of Crammer and Singer, ξ ∈ R
m
+ . In both cases, the empiri-

cal contribution to the objective function is ‖ξ‖1. The 2-norm SVM is the variant of the
standard bi-class SVM obtained by replacing ‖ξ‖1 with ‖ξ‖2

2 in the objective function.
Its main advantage is that its training algorithm can be expressed, after an appropriate
change of kernel, as the training algorithm of a hard margin machine. Thus, its leave-
one-out cross-validation error can be upper bounded thanks to the radius–margin bound.
The strategy that we advocate to exhibit interesting multi-class extensions of the 2-norm
SVM consists in studying the class of quadratic loss M-SVMs, i.e., the class of extensions
of the M-SVMs such that the data fit term is ξT Mξ, where the matrix M is such that its
submatrix M ′ obtained by suppressing the rows and columns whose indices are those of
dummy slack variables is symmetric positive definite. The constraints on M correspond
to necessary and sufficient conditions for ξT Mξ to be a norm of ξ.

4.2. The M-SVM2 as a Multi-Class Extension of the 2-Norm SVM

In this section, we establish that the idea introduced above provides us with a so-
lution to the problem of interest when the M-SVM used is the LLW-M-SVM and
M = (mik,jl)1�i,j�m,1�k,l�Q is the block diagonal matrix of general term

mik,jl = (1 − δyi,k)(1 − δyj ,l)δi,j(δk,l + 1).

We first note that the corresponding matrix M ′ is actually symmetric positive definite.
Indeed, it can be rewritten as follows: M ′ = Im ⊗ (δk,l + 1)1�k,l�Q−1, where Im des-
ignates the identity matrix of size m and ⊗ denotes the Kronecker product. Its spectrum
is thus identical to the one of the matrix (δk,l + 1)1�k,l�Q−1, i.e., made up of two pos-
itive eigenvalues: 1 and Q. The corresponding machine is named M-SVM2. Its training
algorithm is given by the following QP problem.
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Problem 5 (M-SVM2, primal formulation).

min
h,ξ

JM−SVM2(h, ξ)

s.t.

{
∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, hk(xi) � − 1

Q−1 + ξik,∑Q
k=1 hk = 0,

where

JM−SVM2(h, ξ) =
1
2

Q∑
k=1

‖wk ‖2 + CξT Mξ.

Keeping the notations of the preceding sections, the expression of the Lagrangian func-
tion associated with this problem is:

L2(h, ξ, α, γ, δ)

=
1
2

Q∑
k=1

‖wk ‖2 + CξT Mξ +
m∑

i=1

Q∑
k=1

αik

(〈
wk, Φ(xi)

〉
+ bk +

1
Q − 1

− ξik

)

−
〈

γ,

Q∑
k=1

wk

〉
− δ

Q∑
k=1

bk. (10)

Setting the gradient of L2 with respect to ξ equal to the null vector gives

2CMξ∗ = α∗. (11)

Indeed, the coefficient (1 − δyi,k)(1 − δyj ,l) appears in mik,jl so that:

∀i ∈ [[ 1, m ]] , 2C(Mξ)iyi = αiyi = 0.

It springs from (11) that

Cξ∗T Mξ∗ − α∗T ξ∗ = −Cξ∗T Mξ∗. (12)

Using the same reasoning that we used to derive the objective function of Problem 3 and
(12), at the optimum, (10) simplifies into

L2

(
h∗, ξ∗, α∗, γ∗, δ∗)

= − 1
2
α∗T Hα∗ − Cξ∗T Mξ∗ +

1
Q − 1

1T
Qmα∗.

Proving that the M-SVM2 exhibits the same property as the 2-norm SVM amounts to
exhibiting a kernel κ′ such that

Cξ∗T Mξ∗ =
1
2
α∗T H ′α∗ (13)
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with the general term of the matrix H ′ being: h′
ik,jl = (δk,l − 1

Q )κ′(xi, xj). Combining
(11) and (13) gives:

1
2
α∗T H ′α∗ = 2C2ξ∗T MT H ′Mξ∗ = Cξ∗T Mξ∗.

After some algebra, we get the general term of the matrix MT H ′M , which is

(1 − δyi,k)(1 − δyj ,l)(δk,l + 1)κ′(xi, xj).

Thus, 2Cξ∗T MT H ′Mξ∗ = ξ∗T Mξ∗ provided that

∀(i, j) ∈ [[ 1, m ]]2 , κ′(xi, xj) =
1

2C
δi,j .

This expression of the second kernel is precisely the one obtained in the case of the
2-norm SVM. With this definition of κ′, we get

JM−SVM2,d(α) = − 1
2
αT H̃α +

1
Q − 1

1T
Qmα,

where H̃ = H + H ′. Since ∇bL2(h, ξ, α, γ, δ) = ∇bL1(h, ξ, α, β, γ, δ), the equality
constraints of the dual are still given by (6). On the contrary, the only inequality con-
straints correspond to the nonnegativity of the Lagrange multipliers αik. Thus, the dual
of Problem 5 is:

Problem 6 (M-SVM2, dual formulation).

max
α

JM−SVM2,d(α),

s.t.

{ ∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, αik � 0,
∀k ∈ [[ 1, Q − 1 ]] ,

∑m
i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0,

where

JM−SVM2,d(α) = − 1
2
αT H̃α +

1
Q − 1

1T
Qmα,

with the general term of the Hessian matrix H̃ being

h̃ik,jl =
(

δk,l − 1
Q

)(
κ(xi, xj) +

1
2C

δi,j

)
.

This problem is Problem 4 with κ + κ′ as kernel, which establishes that for the
M-SVM2, as for the 2-norm SVM, a radius–margin bound can be used to perform model
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selection. By application of Proposition 3 and (13), we can check that

JM−SVM2(h∗, ξ∗) =
1
2

Q∑
k=1

‖w∗
k ‖2 + Cξ∗T Mξ∗

=
1
2
α∗T Hα∗ +

1
2
α∗T H ′α∗

=
1
2
α∗T H̃α∗ = − 1

2
α∗T H̃α∗ +

1
Q − 1

1T
Qmα∗

= JM−SVM2,d

(
α∗)

.

4.3. Properties and Implementation of the M-SVM2

Even though the training algorithm of the 2-norm SVM does not incorporate explicitly
the constraints of nonnegativity of the slack variables, these constraints are satisfied by
the optimal solution, for which we get:

∀i ∈ [[ 1, m ]] , ξ∗
i =

1
2C

α∗
i .

Problem 5 does not incorporate these constraints either. In that case however, this makes
a significant difference since some of these variables can be negative. At the optimum,
their expression can be deduced from (11), by inverting M ′.

M ′ −1 = Im ⊗
(
(δk,l + 1)1�k,l�Q−1

)−1 = Im ⊗
(

δk,l − 1
Q

)
1�k,l�Q−1

.

We then get

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, ξ∗
ik = (H ′α∗)ik. (14)

The optimal values of the slack variables are only positive on average, since applying on
(14) a summation over the index k gives

∀i ∈ [[ 1, m ]] ,
Q∑

k=1

ξ∗
ik =

1
2CQ

Q∑
k=1

α∗
ik.

The relaxation of the constraints of nonnegativity of the slack variables alters the meaning
of the constraints of good classification, although the global connection between a small
value of the norm of ξ and a small training error is preserved. We conjecture that for any
of the three M-SVMs presented in Section 2.2, no choice of the matrix M can give rise
to a machine such that its dual problem is the one of a hard margin machine and its slack
variables are all nonnegative.

Efficient SVM training requires to select an appropriate optimization algorithm
(Bartkutė-Norkūnienė, 2009). To solve Problem 6, we developed two programs. One im-
plements the Frank-Wolfe algorithm (Frank and Wolfe, 1956) and the other one Rosen’s
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gradient projection method (Rosen, 1960). The corresponding pieces of software are
available from the first author’s webpage. The computation of h̄, b, and ξ as a func-
tion of the data and the dual variables calls for some explanations. At any iteration of the
gradient ascent, the expression of the functions h̄k is deduced from (5). Thus, in the case
when x belongs to the training set,

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, h̄k(xi) = −(Hα)ik. (15)

This formula is useful indeed, since the computation of the vector Hα can also appear as
a step in the computation of the dual objective function. The difficulty rests in the compu-
tation of the vectors b and ξ. In the case of the LLW-M-SVM, the KKT complementary
conditions imply that at the optimum:

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi},

α∗
ik ∈ (0, C) =⇒ b∗

k = − ∂

∂αik
JLLW,d(α∗).

This formula can also be used before the optimum is reached, simply to obtain
a “sensible” (but suboptimal) value for b. Let us define the sets Sk as follows:
∀k ∈ [[ 1, Q ]] , Sk = {i ∈ [[ 1, m ]] : α∗

ik ∈ (0, C)}. Setting ∀k ∈ [[ 1, Q ]] ,
b′
k = − 1

|Sk |
∑

i∈Sk

∂
∂αik

JLLW,d(α) and ∀k ∈ [[ 1, Q ]] , bk = b′
k − 1

Q

∑Q
k=1 b′

k provides
us in turn with a value for the vector ξ thanks to the formula

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi}, ξik =
(

∂

∂αik
JLLW,d(α) + bk

)
+

.

Plugging these expressions of vectors b and ξ in the formula giving JSM, one readily
obtains an upper bound on the value of the primal objective function for the current step
t of the gradient ascent, i.e., the current value of vector α, with

lim
t→+∞

JLLW,d(α) = JLLW,d(α∗) = JSM(h∗, ξ∗) = lim
t→+∞

JSM(h, ξ),

which makes it possible to specify a stopping criterion for training based on the value of
the feasibility gap: JSM(h, ξ) − JLLW,d(α). Going back to the M-SVM2, once more, the
KKT complementary conditions provide us with b∗. We get

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi},

α∗
ik > 0 =⇒ b∗

k = − ∂

∂αik
JM−SVM2,d(α∗).

As in the case of the LLW-M-SVM, this formula can be used to derive a value for vector
b before the optimum is reached. However, since there is no analytical expression for the
optimal value of vector ξ as a function of h, deriving a tight upper bound on the current
value of the primal objective function requires some more work. The optimal value of ξ
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is obtained by solving Problem 5 with h fixed. Then, given (14) and (15), the obvious
choice for an initial feasible solution is:

∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi},

ξik = max
{

− (Hα)ik + bk +
1

Q − 1
, (H ′α)ik

}
.

5. Radius–Margin Bound on the Leave-One-Out Cross-Validation Error
of the Hard Margin LLW-M-SVM

Like its bi-class counterpart, our multi-class radius–margin bound is based on a key
lemma.

5.1. Multi-Class Key Lemma

Lemma 1 (Multi-class key lemma). Let us consider a hard margin Q-category LLW-M-
SVM trained on dm. Consider now the same machine trained on dm \ {(xp, yp)}. If it
makes an error on (xp, yp), then

max
1�k�Q

α∗
pk � Q

(Q − 1)3D2
m

,

where Dm is the diameter of the smallest sphere of Hκ enclosing the set {Φ(xi):
1 � i � m}.

Proof. Let hp ∈ H be the optimal solution when the machine is trained on dm \
{(xp, yp)}. Let αp = (αp

ik) ∈ R
Qm
+ be the corresponding vector of dual variables, with

(αp
pk)1�k�Q = 0Q. This representation is used to simplify the simultaneous handling of

both M-SVMs. Let us define two feasible solutions of Problem 4: λp and μp. λp is such
that the vector α∗ − λp is a feasible solution of Problem 4 under the additional constraint
that (α∗

pk − λp
pk)1�k�Q = 0Q, i.e., α∗ − λp satisfies the same constraints as αp. We have

thus:

⎧⎨
⎩

∀k ∈ [[ 1, Q ]] , λp
pk = α∗

pk,

∀i ∈ [[ 1, m ]] \ {p}, ∀k ∈ [[ 1, Q ]] , 0 � λp
ik � α∗

ik,

∀k ∈ [[ 1, Q − 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
λp

il = 0.
(16)

In the sequel, we write J in place of JLLW,d. By definition of μp, for all K1 ∈ R
∗
+,

αp+K1μ
p is a feasible solution of Problem 4. Thus, given the way λp has been specified,

J(α∗ − λp) � J(αp) and J(αp + K1μ
p) � J(α∗). Hence,

J(α∗) − J(α∗ − λp) � J(α∗) − J(αp) � J
(
αp + K1μ

p
)

− J(αp). (17)
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The value of the left-hand side of (17) is

J(α∗) − J(α∗ − λp) =
1
2
λpT Hλp + ∇J(α∗)T λp.

Since α∗ and λp are respectively an optimal and a feasible solution of Problem 4, then
necessarily, ∇J(α∗)T λp � 0. This becomes obvious when one thinks about the principle
of the Frank-Wolfe algorithm. As a consequence,

J(α∗) − J(α∗ − λp) � 1
2
λpT Hλp,

and equivalently, in view of (5) and (9) (where α∗ has been replaced with λp), as well as
the definition of H ,

J(α∗) − J(α∗ − λp) � 1
2

Q∑
k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
λp

ilΦ(xi)
∥∥∥∥

2

. (18)

The line of reasoning used for the left-hand side of (17) gives:

J
(
αp + K1μ

p
)

− J(αp)

= K1∇J(αp)T μp − K2
1

2

Q∑
k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
μp

ilΦ(xi)
∥∥∥∥

2

. (19)

Since the M-SVM trained on dm \ {(xp, yp)} misclassifies xp, there exists n ∈ [[ 1, Q ]] \
{yp} such that hp

n(xp) � 0, and αp is not an optimal solution of Problem 4. Since μp is a
feasible solution of the same problem, it can be built in such a way that ∇J(αp)T μp > 0.
These observations being made, neglecting the case αp = 0 as a degenerate one, we make
use of Proposition 2 to build μp. Thus, let I be a mapping from [[ 1, Q ]] to [[ 1, m ]] \ {p}
such that

∀k ∈ [[ 1, Q ]] , hp
k(xI(k)) = − 1

Q − 1
.

For K2 ∈ R
∗
+, let μp be the vector of R

Qm
+ that only differs from the null vector in the

following way:

{
μp

pn = K2,

∀k ∈ [[ 1, Q ]] \ {n}, μp
I(k)k = K2.

This definition of vector μp satisfies the constraints of Problem 4 and provides us with a
positive lower bound for the inner product of interest.
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∇J(αp)T μp =
m∑

i=1

Q∑
k=1

μp
ik

(〈
wp

k, Φ(xi)
〉

+
1

Q − 1

)

= K2

{〈
wp

n, Φ(xp)
〉

+
1

Q − 1
+

∑
k �=n

(〈
wp

k, Φ(xI(k))
〉

+
1

Q − 1

)}

= K2

{
hp

n(xp) +
1

Q − 1
−

Q∑
k=1

bp
k

}
= K2

{
hp

n(xp) +
1

Q − 1

}
.

As a consequence,

∇J(αp)T μp � K2

Q − 1
.

Making use of this result, the combination of (17), (18), and (19) finally gives

1
2

Q∑
k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
λp

ilΦ(xi)
∥∥∥∥

2

� K1K2

Q − 1
− K2

1

2

Q∑
k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
μp

ilΦ(xi)
∥∥∥∥

2

. (20)

Let νp = K−1
2 μp. The value of K = K1K2 maximizing the right-hand side of (20) is:

K∗ = {(Q − 1)
∑Q

k=1 ‖
∑m

i=1

∑Q
l=1(

1
Q − δk,l)ν

p
ilΦ(xi)‖2} −1. By substitution in (20),

this implies that

(Q − 1)2
Q∑

k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
λp

ilΦ(xi)
∥∥∥∥

2

×
Q∑

k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
νp

ilΦ(xi)
∥∥∥∥

2

� 1.

The quadratic form λpT Hλp can be rewritten as

Q∑
k=1

∥∥∥∥ 1
Q

m∑
i=1

Q∑
l=1

λp
ilΦ(xi) −

m∑
i=1

λp
ikΦ(xi)

∥∥∥∥
2

=
1

Q2

Q∑
k=1

∥∥∥∥
m∑

i=1

Q∑
l=1,l �=k

(
λp

il − λp
ik

)
Φ(xi)

∥∥∥∥
2

=
1

Q2

Q∑
k=1

∥∥∥∥
Q∑

l=1,l �=k

( m∑
i=1

λp
ilΦ

(
xi

)
−

m∑
i=1

λp
ikΦ

(
xi)

)∥∥∥∥
2

.

For η ∈ R
Qm, let S(η) = 1

Q1T
Qmη. By definition of λp,

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik = S

(
λp

)
.
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Since λp ∈ R
Qm
+ , by construction,

Q∑
k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
λp

ilΦ(xi)
∥∥∥∥

2

=
S(λp)2

Q2

×
Q∑

k=1

∥∥∥∥
Q∑

l=1,l �=k

(
convl

{
Φ(xi): 1 � i � m

}
− convk

{
Φ(xi): 1 � i � m

})∥∥∥∥
2

,

where the terms convl{Φ(xi): 1 � i � m} are convex combinations of the Φ(xi). As a
consequence,

∀(k, l) ∈ [[ 1, Q ]]2 ,∥∥convl

{
Φ(xi): 1 � i � m

}
− convk

{
Φ(xi): 1 � i � m

}∥∥ � Dm

and applying the triangular inequality gives

Q∑
k=1

∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q

− δk,l

)
λp

ilΦ(xi)
∥∥∥∥

2

� (Q − 1)2

Q
S(λp)2D2

m.

Since the same reasoning applies to νp, we get:

(Q − 1)6

Q2
S(λp)2S(νp)2D4

m � 1. (21)

By construction, S(νp) = 1. We now construct a vector λp minimizing the objective
function S. Since ∀k ∈ [[ 1, Q ]] , λp

pk = α∗
pk,

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik � α∗

pk.

But since

∀(k, l) ∈ [[ 1, Q ]]2 ,

m∑
i=1

λp
ik =

m∑
i=1

λp
il = S(λp),

we have further

min
λp

S(λp) � max
1�l�Q

α∗
pl.

Obviously, the nature of the function S calls for the choice of minimal values for the
components λp

ik, which is coherent with the box constraints in (16). Thus, there exists a
vector λp∗

which is a minimizer of S subject to the set of constraints (16) such that

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp∗

ik = max
1�l�Q

α∗
pl,
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i.e., S(λp∗
) = max1�l�Q α∗

pl. The substitution of the values of S(νp) and S(λp∗
) in (21)

provides us with

(
max

1�k�Q
α∗

pk

)2

� Q2

(Q − 1)6D4
m

.

Taking the square root of both sides concludes the proof of the lemma.

5.2. Multi-Class Radius–Margin Bound

The multi-class radius–margin bound is a direct consequence of Lemma 1.

Theorem 2 (Multi-class radius–margin bound). Let us consider a hard margin Q-category
LLW-M-SVM trained on dm. Let Lm be the number of errors resulting from applying a
leave-one-out cross-validation procedure to this machine and Dm the diameter of the
smallest sphere of Hκ enclosing the set {Φ(xi): 1 � i � m}. Then, using the notations
of Definition 6, we have:

Lm � (Q − 1)4

Q2
D2

md(h∗)2
∑
k<l

(
1 + dkl(h∗)

γkl(h∗)

)2

. (22)

Proof. Let M(dm) be the subset of dm made up of the examples misclassified by the
cross-validation procedure (| M(dm)| = Lm). Lemma 1 exhibits a non-trivial lower
bound on max1�k�Q α∗

pk when (xp, yp) belongs to M(dm). As a consequence,

1T
Qmα∗ �

m∑
i=1

max
1�k�Q

α∗
ik �

∑
i: (xi,yi)∈M(dm)

max
1�k�Q

α∗
ik � QLm

(Q − 1)3D2
m

. (23)

To finish the proof, it suffices to make use of Proposition 3.

5.3. Discussion

When Q = 2, (1) implies that d(h∗) = 1 + 1
Q−1 = Q

Q−1 = 2. Thus, (Q−1)4

Q2 d(h∗)2 = 1.

Furthermore, since d12(h∗) = 0, the sum
∑

k<l(
1+dkl(h

∗)
γkl(h∗) )2 simplifies into 1

γ2 . This
means that the expression of the multi-class radius–margin bound simplifies into the one
of the standard bi-class radius–margin bound: Lm � ( Dm

γ )2. The formulation of Theo-
rem 2 is the one involving the radius (diameter) and the geometrical margins, so that it
appears clearly as a multi-class extension of the bi-class radius–margin bound. However,
(23) provides us with a sharper bound, namely

Lm � (Q − 1)3

Q
D2

m

m∑
i=1

max
1�k�Q

α∗
ik. (24)
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If (24) is a tighter bound, (22) could be preferable for model selection, if it can be de-
rived simply with respect to the hyperparameters, in the same way as in the bi-class case
(Chapelle et al., 2002).

The comparison with the radius–margin bound introduced in Wang et al. (2008) is
also enlightening. This bound is dedicated to the one-versus-one decomposition strategy
under the rule of max wins (Hsu and Lin, 2002). It appears as a direct consequence of the
application of the bi-class radius–margin bound in this framework. However, it applies to
all the multi-class discriminant models based on SVMs and for which the bi-class radii
and margins can be computed.

Theorem 3 (Model selection criterion I in Wang et al., 2008). Let us consider a Q-
category one-versus-one decomposition method involving

(
Q
2

)
hard margin bi-class

SVMs. For 1 � k < l � Q, let κkl, Φkl, and γkl be respectively the kernel, the re-
producing kernel map, and the geometrical margin of the machine discriminating cate-
gories k and l. Let Dkl be the diameter of the smallest sphere of Hκkl

enclosing the set
{Φkl(xi): yi ∈ {k, l} }. Then, the following upper bound holds true:

Lm �
∑
k<l

(
Dkl

γkl

)2

. (25)

Formulas (22) and (25) share the same structure in terms of radii and margins. An argu-
ment in favour of the use of the one-versus-one decomposition method and the second
bound is that if all the machines use the same kernel κ, then

∀(k, l): 1 � k < l � Q,
Dkl

γkl
� Dm

γkl(h∗)
.

However, it is no longer valid if (24) replaces (22). An argument backing the use of the
M-SVM with (24) is that it requires less computational time. All in all, the most useful
bound could simply correspond to the most efficient strategy to tackle the multi-class
problem at hand. In that respect, it is currently admitted that no multi-class discriminant
model based on SVMs is uniformly superior to the others (Hsu and Lin, 2002; Fürnkranz,
2002; Rifkin and Klautau, 2004).

6. Experimental Results

The four M-SVMs are compared on three multi-class data sets from the UCI Ma-
chine Learning Repository (http://archive.ics.uci.edu/ml/) and a real-
world problem: protein secondary structure prediction. In each case, a multi-layer percep-
tron (MLP) (Anthony and Bartlett, 1999) is used to provide a performance of reference.

The three benchmarks from the UCI repository are those named “Image Segmenta-
tion”, “Landsat Satellite” and “Waveform Database Generator (Version 2)”. These bases
have been devided by their authors into a training and a test set, making the reproductibil-
ity of the experiments as easy as possible. The kernel of the M-SVMs is a radial basis
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Table 1

Relative prediction accuracy of the four M-SVMs on three data sets from the UCI repository

MLP WW CS LLW M-SVM2

Image segmentation 83.6 89.7 90.3 89.5 90.2

Landsat satellite 86.3 92.1 92.0 91.9 92.1

Waveform 85.8 86.7 86.7 86.4 86.5

function (RBF). Thus, their hyperparameters are the parameter C and the bandwidth of
the kernel. As for the MLP, the capacity control is based on the choice of the size of
the hidden layer. To set the values of all the hyperparameters, a cross-validation proce-
dure was implemented on the training set. The experimental results obtained are gathered
in Table 1.

Two main comments can be made regarding these initial results. First, the M-SVMs
appear uniformly superior to the MLP. For the two first data sets, the gain in prediction
accuracy is always statistically significant with confidence exceeding 0.95. Second, the
M-SVM2 systematically obtains slightly better results than the LLW-M-SVM. However,
the difference is too small to be significant, as was confirmed by additional experiments
performed on different data sets (data not shown).

Protein secondary structure prediction is an open problem of central importance in
predictive structural biology. It consists in assigning to each residue (amino acid) of a
protein sequence its conformational state. We consider here a three-state description of
this structure (Q = 3), with the categories being: α-helix, β-strand and aperiodic/coil.
To assess our classifiers on this problem, we used the CB513 data set of Cuff and Barton
(1999). The 513 sequences of this set are made up of 84119 residues. Each sequence
is represented by a position-specific scoring matrix (PSSM) produced by PSI-BLAST
(Altschul et al., 1997). The initial secondary structure assignment was performed by the
DSSP program of Kabsch and Sander (1983), with the reduction from 8 to 3 conforma-
tional states following the CASP method, i.e., H+G →H (α-helix), E+B →E (β-strand),
and all the other states in C (coil). To predict the conformational state of the residue of
index n in a given sequence, a sliding window of size 15 is used. The vector of predic-
tors processed by the classifiers is obtained by appending the rows of the corresponding
PSSM whose indices range from n − 7 to n + 7. Since a PSSM has 20 columns, one per
amino acid, this corresponds to 300 predictors. Once more, the four M-SVMs used a RBF
kernel. The results obtained with the data sets from the UCI repository had highlighted
a superiority of the M-SVMs over the MLP. We decided to investigate further this phe-
nomenon by implementing two variants of the MLP. The first one combines a quadratic
(Q) loss with output units using a sigmoid activation function. The second one combines
a cross-entropy (CE) loss with output units using a softmax activation function. In order
to perform model selection and assess the quality of the predictions, a two-level cross-
validation procedure called stacked generalization (Wolpert, 1992) was implemented. In
that way, the estimates of the prediction accuracy were unbiased. A secondary structure
prediction method must fulfill different requirements in order to be useful for the biol-
ogist. Thus, several standard measures giving complementary indications must be used
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Table 2

Relative prediction accuracy of the four M-SVMs on the 513 protein sequences (84119 residues) of the CB513
data set

MLP (Q) MLP (CE) WW CS LLW M-SVM2

Q3 72.2 72.1 76.2 76.4 75.6 76.5
Cα 0.63 0.63 0.71 0.70 0.69 0.71
Cβ 0.55 0.55 0.62 0.62 0.60 0.62
Ccoil 0.52 0.52 0.57 0.58 0.57 0.58
Sov 61.5 60.5 70.5 71.5 69.8 71.3

to assess the prediction accuracy (Baldi et al., 2000). We used the three most popular
ones: the recognition rate Q3, Pearson-Matthews correlation coefficients Cα/β/coil, and
the segment overlap measure (Sov) in its most recent version (Sov’99). Table 2 provides
the values taken by these measures for the different classifiers.

Once more, the M-SVMs appear uniformly superior to the MLP (irrespective of the
choice of its loss function). Furthermore, the difference in recognition rate between the
M-SVM2 and the LLW-M-SVM is now statistically significant with confidence exceed-
ing 0.95. Finding the reason for this noticeable improvement could tell us more about the
benefits that one can expect from using a quadratic loss M-SVM (apart from the possibil-
ity to use a radius–margin bound).

7. Conclusions and Ongoing Research

A new M-SVM has been introduced: the M-SVM2. This quadratic loss extension of the
LLW-M-SVM is the first M-SVM exhibiting the main property of the 2-norm SVM: its
training algorithm can be expressed, after an appropriate change of kernel, as the training
algorithm of a hard margin machine. As in the bi-class case, one can take advantage
of this property by making use of a radius–margin bound as objective function for the
model selection procedure. The derivation of the corresponding bound is the second main
contribution of the article. At last, initial experimental results highlight the potential of the
new machine, whose prediction accuracy is similar to those of the three main M-SVMs,
and compares favourably with the one of the MLP. This study has highlighted different
features of the M-SVMs which make their study intrinsically more difficult than the one
of bi-class SVMs, like the complexity of the formula expressing the geometrical margins
as a function of the vector of dual variables α∗ (Proposition 3). Coming after our study of
the sample complexity of classifiers taking values in R

Q (Guermeur, 2010), it provides
us with new arguments backing our thesis that the study of multi-category classification
should be tackled independently of the one of dichotomy computation.

The evaluation of the M-SVM2 and its bound is still to be carried out in a system-
atic way. The aim of this study is to find a satisfactory trade-off between the prediction
accuracy and the computational complexity. In that respect, the time needed to set the
value of the soft margin parameter of the M-SVMs should be kept reasonable thanks to
the implementation of algorithms devised to fit the entire regularization path at a cost
exceeding only slightly the one of one training of the corresponding machine. The first
algorithm of this kind dedicated to an M-SVM, the LLW-M-SVM, was proposed by Lee
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and Cui (2006). The derivation of an algorithm dedicated to the M-SVM2 is the subject
of an ongoing research.
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Spindulio rėžio ribos taikymas kvadratinio nuostolio
daugiaklasiam SVM
Yann GUERMEUR, Emmanuel MONFRINI

Atramini ↪u vektori ↪u klasifikavimo (SVM) metodo taikymas yra susij ↪es su dviej ↪u šio metodo
hiperparametr ↪u (silpno skirtumo (soft margin) C ir branduolio parametr ↪u) nustatymu. Paramet-
rams ↪ivertinti taikomas kryžminio ↪iverčio metodas. Žinoma, kad šio metodo „palikti vien ↪a“ varian-
tas sukuria apibendrint ↪a paklaidos ↪ivert↪i, kuris yra beveik visada nepaslinktas. Pagrindinis jo
trūkumas – dideli skaičiavimo laiko ištekliai. Norint išvengti šios problemos pasiūlyti keli paklaidos
„palikti vien ↪a“ viršutiniai rėžiai sprendžiant SVM vaizd ↪u atpažinimo uždavinius. Populiariausias iš
j ↪u yra spindulinio skirtumo rėžis (radius margin bound). Jis taikomas maksimalaus atstumo SVM
metodui ir išplečiamas kvadratinės normos SVM metodui. Šiame straipsnyje nagrinėjamas Lee,
Lin ir Wahb daugiaklasis SVM – tai M-SVM. Šiam metodui ↪ivedamas apibendrintas spindulinio
skirtumo rėžis.


