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Abstract. It is well known that in situations involving the study of large datasets where influential
observations or outliers maybe present, regression models based on the Maximum Likelihood cri-
terion are likely to be unstable. In this paper we investigate the use of the Minimum Density Power
Divergence criterion as a practical tool for parametric regression models building. More precisely,
we suggest a procedure relying on an index of similarity between estimated regression models and
on a Monte Carlo Significance test of hypothesis that allows to check the existence of outliers in
the data and therefore to choose the best tuning constant for the Minimum Density Power Diver-
gence estimators. Theory is outlined, numerical examples featuring several experimental scenarios
are provided and main results of a simulation study aiming to verify the goodness of the procedure
are supplied.

Keywords: minimum density power divergence estimators, Monte Carlo significance test, outliers
detection, robust regression, similarity between functions.

1. Introduction

In applied statistics regression is certainly one of the widespread tool in establishing
the relationship between a set of predictors and a response variable. However, in many
circumstances a careful data preparation is not feasible and data may hence be heavily
contaminated by a substantial number of outliers. In these situations, the estimates of the
parameters of the regression model according to the Maximum Likelihood criterion are
fairly unstable. Since outliers can play havoc with standard statistical methods (Daniel
and Woods, 1968; Rousseeuw and Leroy, 1987; Davies, 1993), many robust estimators
have been proposed since 1960 to be less sensitive to outliers. The development of ro-
bust methods is underlined by the appearance of a wide number of papers and books
on the topic including the more recent (Huber, 1981; Hampel et al., 1987; Staudte and
Sheather, 1990; Dodge and Jurečkova, 2000; Seber and Lee, 2003; Rousseeuw et al.,
2004; Maronna et al., 2006). In parametric estimation, the estimators with good robust-
ness proprieties relative to maximum likelihood are those based on a minimum divergence
methods. The minimum divergence estimators are M-estimators and their proprieties are
strictly linked on the distance used as measure the divergence.
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In the following we investigate the use of the Minimum Density Power Divergence
criterion as a valuable tool for useful parametric regression models building. Our work
can be seen as an attempt to explore the practical utility of robust estimators based on
this minimun distance method that are in literature proposed from a theoretical point of
view by Basu et al. (1998). One of the main critical issue in the use of a robust family
estimators is the tuning parameters selection. The MDPD estimators family is indexed by
a single parameter which controls the trade-off between robustness and asymptotic effi-
ciency of the estimator. In the work of Warwick and Jones (2005) the best value for the
parameter of the Basu family estimators is selected minimizing an asymptotic estimation
of the mean squared error. In the paper of Fujisawa and Eguchi (2006) is proposed an
adaptive methods for selecting the tuning parameter based on an empirical approxima-
tions of the Cramer-von Mises divergence. We propose a data-driven way to choose the
tuning parameter based on a Monte Carlo Significance test on the similarity between a
robust and a classical estimators. More precisely, we introduce and discuss an intuitive
procedure which relies on an index of similarity between estimated regression models
and on a Monte Carlo Significance test of statistical hypothesis. The procedure we sug-
gest allows (a) to verify the presence of outliers in the data and, if they are present, (b) to
select the best tuning constant for the Minimum Density Power Divergence estimators.
We propose a data-driven way to choose the tuning parameter relevant issue are solved in
a data-driven way

Theory is outlined and numerical examples featuring several scenarios are provided
and for each of them main results of a simulation study, aiming to verify the goodness of
the whole procedure, are supplied and commented.

2. The Methods and the Proposed Procedure

In this section we first introduce, for a parametric regression problem, the Minimum Den-
sity Power Divergence Estimators (MDPDE), originally proposed by Basu et al. (1998).
The procedure to choose the tuning parameter is illustrated in the second subsection in
which we also describe the similarity index between two estimators and the simplified
Monte Carlo Significance Test.

2.1. The Regression Model and the Estimators

Let {(xi1, . . . , xip, yi)}i=1,...,n be the observed dataset, where each observation stems
from a random sample drawn from the p + 1 random variable (X1, . . . , Xp, Y ). The re-
gression model for the observed data set we study is yi = mβ(xi)+εi, with i = 1, . . . , n,
and the object of our interest is the regression mean

mβ(xi) = E[Y |xi] = β0 +
p∑

j=1

βjxij ,

where the errors {εi}i=1,...,n are assumed to be independent random variables with zero
mean and unknown finite variances. If we furthermore assume that the errors are i.i.d.
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N (0, σ0), then the estimate of the vector of the parameters according to the Maximum
Likelihood (ML) criterion is

β̂ML = argmax
β

[
1

(2πσ2
0)n/2

exp
(∑n

i=1(yi − mβ(xi))2

2σ2
0

)]
, (1)

and in this case the solutions of (1) are equivalent to the ones given by the ordinary least-
squares method; as an alternative we consider the family (MDPDE).

Given the r.v. X of dimension d � 1 with density ϕ(x|θ0), where θ0 ∈ S ⊆ R
p

and p � 1, for which we introduce the model f(x|θ), with θ ∈ S , the density power
divergence between f and ϕ is defined, for α > 0, as

dα(f, ϕ) =
∫
Rd

{
f1+α(x|θ) −

(
1 +

1
α

)
ϕ(x|θ0)fα(x|θ) +

1
α

ϕ1+α(x|θ0)
}

dx,

while for α = 0 it is defined as the Kullback–Leibler divergence.
Let X1, . . . ,Xn be a random sample of size n � 2 from X, the Minimum Density

Power Divergence Estimator for θ0 corresponds to the vector θ̂α minimizing the diver-
gence dα(f, ϕ) between the probability mass function ϕ̂n associated with the empirical
distribution of the sample and f , that is for α > 0

θ̂α = argmin
θ∈S

[ ∫
Rd

f1+α(x|θ)dx −
(

1 +
1
α

)
1
n

n∑
i=1

fα(Xi|θ)

]
. (2)

In general, it can be shown that as the tuning parameter α increases the robustness
of the Minimum Density Power Divergence estimator increases while its efficiency de-
creases (Basu et al., 1998). For α = 0 the MDPDE becomes the Maximum Likelihood
estimator, while for α = 1 the divergence d1(f, ϕ) yields the L2 metric and the estima-
tor minimizes the L2 distance between the densities, e.g., Scott (2001), Durio and Isaia
(2003).

The Minimum Density Power Divergence criterion can easily be applied to parametric
regression problems. In fact if we assume that the random variables Y |x are distributed
as a N (mβ(x), σ0) random variable with density function φ, then, according to (2), the
estimate of the vector θα = [β0, . . . , βp, σ0], is given by

θ̂α = argmin
β,σ

[
1

σα
√

(2π)α(1 + α)
− α + 1

α

1
n

n∑
i=1

φα(yi|mβ(xi), σ)

]
, (3)

as the integral of (2) becomes

∫
R

φ1+α
(
y|mβ(x), σ

)
dy =

1√
1 + α

φα
(
0|mβ(x), σ

)
.
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The vector θ̂α obtained by (3) contains the estimates of the p + 1 parameters of the
model and the estimate of the standard deviation of the errors, i.e., θ̂α = [β̂MD,α, σ̂MD,α].
In the following we unambiguously indicate with β̂MD,α the estimate of the vector β in
accord with the Minimum Density Power Divergence criterion and therefore we denote
by m̂MD,α(x) the corresponding estimated regression model.

We remark that (3) is a feasible computationally closed-form expression so that
MDPD criteria can be performed by any standard non linear optimization code, for in-
stance the nlm routine of the R library, although, whatever the algorithm, its convergence
to optimal solutions strongly depends on its initial configurations.

2.2. The Choice of the Best α Tuning Parameter

As stated above, our purpose is to check the presence of outliers in the data set and, if they
are present, to choose in the family of the Minimum Density Power Divergence estimators
the best one, that is to select the tuning α parameter such that we obtain concurrently the
most robust and the most efficient estimator.

Since we already pointed out that the robustness of the Minimum Density Power
Divergence estimator increases as α increases, when outliers are present the vectors of
the estimates β̂ML, and β̂MD,α, for some 0 < α � 1, will be not equal and hence the
estimated regression models tend to be dissimilar.

In order to compare the performance of MDPDE with respect to MLE or, more gener-
ally, the performance between any two estimators in the family of the Minimum Density
Power Divergence Estimators, we resort to the normalized index of similarity between
regression models originally proposed by Durio and Isaia (2010).

Letting T0 and T1 be two regression estimators and β̂T0 , β̂T1 the corresponding vec-
tors of the estimated parameters, the similarity index takes into account the space region
between m̂T0(x) and m̂T1(x) with respect to the space region where data points locate.
If we introduce the sets

Ip =
[
min(xi1); max(xi1)

]
× · · · ×

[
min(xip); max(xip)

]
,

I =
[
min(yi); max(yi)

]
,

the similarity index is defined as

sim (T0, T1)
def=

∫
Dp+1 dt∫
Cp+1 dt

,

Cp+1 = Ip × I, (4)

Dp+1 =
{
(x, y) ∈ R

p+1 : ζ(x) � y � ξ(x),x ∈ Ip
}

∩ Cp+1,

where ζ(x) = min(m̂T0(x), m̂T1(x)), ξ(x) = max(m̂T0(x), m̂T1(x)) and clearly
0 � sim (T0, T1) � 1.

If the vectors β̂T0 and β̂T1 are close to each other, then sim (T0, T1) will be close to
zero On the other hand, if the estimated models m̂T0(x) and m̂T1(x) are dissimilar we
are likely to observe a value of sim (T0, T1) tending to unit.
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We therefore suggest to use the sim (T0, T1) statistic given by (4) to verify the follow-
ing system of hypothesis

{
H0: β = β0,

H1: β �= β0,
(5)

where β0 is the value of β̂T0 computed on the observed data.
Since it is not realistic to look for a closed-form of the sim (T0, T1) distribution, in

order to check the above system of hypothesis we resort to the simplified Monte Carlo
Significance Test (Barnard, 1963; Hope, 1968).

Denoting with simT0T1 the value of the sim (T0, T1) statistic computed on the ob-
served data, the simplified Monte Carlo Significance test (MCS test) consists in rejecting
the null hypothesis of system (5) if simT0T1 is the m α-th most extreme statistic rela-
tive to the corresponding quantities sim∗

T0T1
computed on each of the random samples

of the reference set. The reference set consists in m − 1 random samples of size n each
generated under the null hypothesis, that is drawn at random from the regression model
m̂T0(x) with σ = σ̂T0 . We remark that if we set the type-I error probability equal to
0.001 (0.002, 0.01, 0.05) then the size of the reference set will be 999 (499, 99, 19).

In order to meet our target, we introduce a procedure consisting in three steps. For
a given dataset, we start verifying the presence of outliers checking, with the aid of the
MCS test, the similarity between MLE and the less efficient but more robust MDPDE
with α = 1.

If outliers are present, i.e., if the MCS test leads us to reject the null hypothesis of sys-
tem (5), we look for the best MDPD estimator checking the similarity between MDPDE
with α = 1 and MDPDE with α < 1, increasing α until the MCS test allows us to accept
for the first time the null hypothesis of system (5).

The whole 3 steps procedure can be summarized as follows:

Step 1. Considering the Maximum Likelihood estimator and the Minimum Density Power
Divergence estimator with α = 1, i.e., we set T0 = ML and T1 = MDα=1, we check for
outliers testing sim (ML, MDα=1).

Step 2. If the MCS test of Step 1 leads us to accept H0, then we can state that outliers
are absent and the best model is the one corresponding, for its inherent properties, to the
Maximum Likelihood criterion.

Step 3. If from Step 1 we reject H0, in order to choose the best Minimum Density Power
Divergence estimator we check the similarity between the regression models estimated
by MDα=1 and MDα<1. We perform the MCS test increasing α until for the first time it
allows us to accept the null hypothesis. The corresponding value of the tuning parameter
α = α� gives the best Minimum Density Power Divergence estimator for the given
dataset.
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3. Numerical Examples and Simulation

In this section we provide and comment some numerical examples featuring several ex-
perimental situations in order to show how the 3 steps procedure we propose works in
practice.

Furthermore, with the aim to verify the goodness of the whole procedure, we intro-
duce and comment a simulation study that we apply to each experimental scenario.

3.1. Numerical Examples

The first example considers a situation where no outliers are present, while the next two
scenarios involve a substantial number of outliers (20%) affecting the data. A last numer-
ical example investigates the behaviour of the procedure and consequentially the perfor-
mance the Minimum Density Power Divergence estimators when the number of outliers
increases (from 2.4% up to 20%).

Example I. As a first example, we consider a simulated dataset of n = 600 points gener-
ated according to the model

Y = 0.5X1 + 0.5X2 + ε, (6)

where X1, X2 ∼ U (0, 1) and ε ∼ N (0, 0.1).
Since in this situation no outliers are present, we expect that the regression models

estimated according to the Maximum Likelihood and to the Minimum Density Power
Divergence criteria can be considered similar and this for any 0 < α � 1. This example is
provided to show that the procedure do not falls in select a less efficient MPDP estimators
when its robust proprieties are not necessary.

We start considering the ML estimator and the MDPD estimator with α = 1
(i.e., we set T0 = ML and T1 = MDα=1) and we obtain the following esti-
mates β̂ML = [−0.0053, 0.5095, 0.5073] with σ̂ML = 0.0927 and β̂MD,α=1 =
[−0.0086, 0.5106, 0.5152] with σ̂MD,α=1 = 0.0974, while according to (4) the simi-
larity index is simML,MDα=1 = 0.00176. If we apply the MCS test (level of signifi-
cance 99.8%), it leads us to accept H0, as we obtain max(sim∗

ML,MDα=1
) = 0.00651 >

simML,MDα=1 = 0.00176.
Clearly for this scenario, where outliers are absent and the two estimated models

m̂ML(x) and m̂MD,α=1(x) can be considered similar, we state that the best model is
the one given, for its inherent properties, by the Maximum Likelihood criterion, i.e.,
m̂ML(x) = −0.0053 + 0.5095x1 + 0.5073x2.

Even if it is not necessary, but just for spirit of inquiry, we perform Step 3 of our
procedure. This means setting T0 = MDα=1 and T1 = MDα<1 and repeatedly applying
the MCS test. The results of Table 1 show that the pairs of MDPD estimators can be
considered similar for any value of α < 1 and this confirms the goodness of the strategy
we suggest even in simple case where outliers are absent.
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Table 1

Main results of the MCS test of Step 3 applied to sim (MDα=1, MDα<1) for the simulated dataset of Exam-
ple I where outliers are absent

α β̂0 β̂1 β̂2 σ̂ simMDα=1,MDα<1 H0

0.10 −0.0061 0.5094 0.5093 0.0930 0.00139 Acc.

0.30 −0.0071 0.5094 0.5118 0.0941 0.00076 Acc.

0.60 −0.0079 0.5097 0.5138 0.0960 0.00027 Acc.

0.90 −0.0084 0.5103 0.5149 0.0973 0.00041 Acc.

Example II. We consider now a variant of the situation of Example I. This new scenario
involves a simulated dataset of n1 = 480 points generated according to the model

Y = 0.5X1 + 0.5X2 + ε, (7)

and n2 = 120 points, that we consider as outliers, drawn from the model

Y = 0.7X1 + 0.7X2 + ε, (8)

where X1, X2 ∼ U (0, 1) and ε ∼ N (0, 0.1).
In this case too we start estimating the parameters of the regression model resort-

ing to MLE and MDPDE with α = 1 and we obtain the following vectors of the
estimates β̂ML = [0.0074, 0.5817, 0.5714] with σ̂ML = 0.1876 and β̂MD,α=1 =
[0.0126, 0.4922, 0.5035] with σ̂MD,α=1 = 0.1130. If we compute the similarity index
between the two estimated regression models we have simML,MDα=1

= 0.04226 and
the MCS test (level of significance 99.8%) leads us to reject the null hypothesis as
max(sim∗

ML,MDα=1
) = 0.00868.

The two estimated regression models can thus be considered dissimilar. This result is
quite obvious since we are in presence of a substantial cluster of outliers (20%) and the
estimator based upon the L2 norm tends to estimate the heaviest cluster of data (Durio
and Isaia, 2004).

In order to look for the the best estimator in the family of the Minimum Density Power
Divergence estimators, we move to Step 3 of our procedure, i.e., we set T0 = MDα=1

and T1 = MDα<1 and we repeatedly apply the MCS test. The results displayed in Table 2
show that the best value of the tuning parameter corresponds to α� = 0.75, while for any
α > 0.75 we always accept H0. It follows that the optimal estimate of the regression
model is m̂MD,α=0.75(x) = 0.0170 + 0.4897x1 + 0.5032x2 with σ̂MD,α=0.75 = 0.1150.

Example III. As a third example we examine a situation where the response is explained
by four predictors. To this end we consider a simulated dataset of n1 = 480 points
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Table 2

Main results of the MCS test of Step 3 applied to sim (MDα=1, MDα<1) for the simulated dataset of Exam-
ple II where outliers are present

α β̂0 β̂1 β̂2 σ̂ simMDα=1,MDα<1 H0

0.10 0.0185 0.5521 0.5491 0.1810 0.03413 Rej.

0.15 0.0185 0.5521 0.5491 0.1810 0.03215 Rej.

0.20 0.0227 0.5407 0.5409 0.1770 0.03093 Rej.

0.25 0.0269 0.5287 0.5323 0.1718 0.02711 Rej.

. . . . . . . . . . . . . . . . . . . . .

0.65 0.0205 0.4880 0.5028 0.1180 0.00321 Rej.

0.70 0.0186 0.4889 0.5030 0.1162 0.00233 Rej.

0 .75 0 .0170 0 .4897 0 .5032 0 .1150 0 .00146 Acc.

0.80 0.0157 0.4904 0.5033 0.1142 0.00087 Acc.

0.85 0.0146 0.4910 0.5034 0.1136 0.00058 Acc.

0.90 0.0138 0.4915 0.5035 0.1133 0.00022 Acc.

generated according to the model

Y =
4∑

i=1

0.25Xi + ε, (9)

and n2 = 120 points, that we consider as outliers, drawn from the model

Y =
4∑

i=1

0.35Xi + ε, (10)

where Xi ∼ U (0, 1) and ε ∼ N (0, 0.1).
Considering Step 1 of our procedure we set T0 = ML and T1 = MDα=1 and from

(1) and (3) we obtain the following vectors of the estimate

β̂ML = [−0.0299, 0.2977, 0.2837, 0.2871, 0.2725],

β̂MD,α=1 = [0.0097, 0.3060, 0.2616, 0.2070, 0.2483],

with σ̂ML = 0.1351 and σ̂MD,α=1 = 0.1179.
If we calculate the similarity index between the two estimated models we have

simML,MDα=1
= 0.01997 and the MCS test (significance level 99.8%) leads us to re-

ject the null hypothesis, as max(sim∗
ML,MDα=1

) = 0.01059.
Since the two estimated regression models m̂ML and m̂MD,α=1 can be judged dissim-

ilar, we move to Step 3 of the procedure and, setting T0 = MDα=1 and T1 = MDα<1,
we repeatedly apply the MCS test. Doing so, we find that the best value of the tuning
parameter is α� = 0.65, while for any α > 0.65 we always accept H0. It follows that
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the best estimate of the regression model is m̂MD,α=0.65(x) = 0.0057 + 0.2982x1 +
0.2662x2 + 0.2233x3 + 0.2499x4 with σ̂MD,α=0.65 = 0.1209.

Example IV. In this last example we examine the behaviour of the Minimum Density
Power Divergence estimators as the number of outliers increases. To this end, we consider
a sample of n1 + n2 = 200 points generated according to the one predictor model

Y = Xni + ε, (11)

where Xn1=180 ∼ U (0, 0.5), Xn2=20 ∼ U (0.5, 1) and ε ∼ N (0, 0.1),
Furthermore we generate m = 5 (10, 20, 30, 40, 50) points, that we consider as out-

liers, from the model

Y = 0.5X + ε, (12)

where X ∼ U (0.7, 1) and ε ∼ N (0, 0.05).
According to this specific layout, Step 1 leads us invariably to reject the null hypoth-

esis of similarity between he estimated models m̂ML and m̂MD,α=1, that is the MCS test
always detects the presence of outliers infecting the data and this for any value of m.

Moving to Step 3, which implies setting T0 = MDα=1 and T1 = MDα<1 and re-
peatedly applying the MCS test, we obtain for m = 5, 10, 20, 30, 40, 50 the following
best values α� = 0.065, 0.200, 0.370, 0.425, 0.515, 0.655 (see first row of Table 3 and
left panel of Fig. 2).

These results indicate that the α� values increase as the number of outliers grows up.
This behaviour is not surprising and it is fully justified if we think that increasing the
number of the outliers the optimal tuning parameter tends to unit, which is to say that it
tends to the estimator based on the L2 norm and this for the intrinsic properties of the
estimators based on the Minimum Density Power Divergence criterion.

Table 3

The α� values for the sample data of Example IV and summary statistics of the distributions of the α�s obtained
from simulation

α� Number of outliers

m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

0.075 0.200 0.370 0.425 0.515 0.655

Min 0.055 0.125 0.300 0.385 0.475 0.600

Mean 0.078 0.194 0.366 0.430 0.512 0.653

St.Dev. 0.011 0.035 0.029 0.019 0.023 0.024

5% Qu. 0.060 0.150 0.325 0.412 0.475 0.612

25% Qu. 0.070 0.175 0.350 0.412 0.500 0.644

50% Qu. 0.075 0.200 0.375 0.425 0.512 0.653

75% Qu. 0.085 0.225 0.400 0.450 0.525 0.675

95% Qu. 0.095 0.250 0.400 0.465 0.550 0.688

Max 0.105 0.275 0.425 0.465 0.563 0.700
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3.2. The Simulation

We turn now our attention to investigate the goodness of the 3 steps procedure, that is
to verify if the α� values we obtained on the datasets of Examples I through IV remain
somewhat constant if we resample form each generating model. To this end we decide to
set up a simulation study where:

1. We generate h = 1000 samples from the given generating models.
2. On each sample we perform Steps 1, 2 and 3 of our procedure. With regard to

Step 3, we let the tuning constant varying from α = 0.01 up to α = 0.90 with
increments of 0.005.

3. For each sample we record the best value α�s of the tuning constant.

Example I. For this simple scenario, where the 600 points are generated from model
(6) and hence no outliers infect the samples, the results of the simulation corroborate
the solution we obtained on our original sample. This in the sense that we always ac-
cept the hypothesis of similarity between the regression models estimated by ML and by
MDPDα=1 and also between MDPDα=1 and any MDPDα<1.

Example II. In this situation we generate data points from models (7) and (8) and we
always reject the null hypothesis on Step 1, i.e., without fail we recognize the presence
of outliers.

With regard to Step 3, the results of the simulation are quite encouraging and this
in the sense that all the 1000α�s values range from 0.520 up to 0.875 with a mean of
0.719 (recall that for our original sample we found α� = 0.75), a median equal to 0.70
and a standard deviation of 0.072. Furthermore, see Fig. 1 panel (a), we can state that
90% of the α�s fall in the range [0.60; 0.85] while the 50% of them belong to the interval
[0.70; 0.75].

Example III. In this context we generate data points according to models (9) and (10)
and we systematically reject the null hypothesis on Step 1, that is we always detect the
presence of outliers.

Moving to Step 3, the outcomes of the simulation are promising and this in the sense
that all the α�s obtained from simulation range from 0.510 up to 0.890 with a mean of
0.686 (remember that for our original sample we had α� = 0.65), a median equal to 0.70
and a standard deviation of 0.063. Furthermore, see Fig. 1 panel (a), we can assert that
90% of the α�s values fall in the range [0.575; 0.825] while the 50% of them belong to
the interval [0.650; 0.725].

Example IV. In this situation, fixed the number m of the outliers, and we generate data
points from models (11) and (12) and thus we consider six sub-scenarios.

Applying Step 1 of our procedure to each sub-scenario, we always reject the hypoth-
esis of similarity between m̂ML and m̂MD,α=1. This means that the estimator based on
the L2 norm detects the presence of outiliers even when m = 5, although this behaviour
is essentially due to the specific expression of the generating model (11).
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Fig. 1. Panel (a) histograms of the best values of the tuning constant obtained from simulation for Example II
and panel (b) histograms of the best values of the tuning constant for Example III.

Table 3 shows, for each sub-scenario, some summaries of the distribution of the
α�s values obtained from simulation along with the α� values computed on the origi-
nal datasets (first row).

In this case too the results of the simulation are quite promising and this in the sense
that all the α� values computed on the original samples are very close to the mean values
of the distributions of the α�s obtained from simulation. Furthermore all the observed α�

values lay in the intervals [25% Qu.; 75% Qu.] of the distribution of the α�s and in some
cases they coincide with the median.

We remark (see Fig. 2, panel (b)) that the six 90% intervals for α�s, that is
[5% Qu.; 95% Qu.], are not overlapping as m increases and, since all the notches of
the plots do not overlap, we may affirm that there is a strong evidence that the m medians
differ among them (Chambers et al., 1983).

4. Conclusions and Future Works

Given that “. . . all models are wrong, but some are useful” (Box, 1979), exploiting the
inherent properties of the estimates based on the Maximum Likelihood and the Minimum
Density Power Divergence criteria, we introduce and outline a procedure which can be
helpful in parametric regression models building especially in those situations involving
the study of large datasets where a substantial number of outliers or clustered data maybe
present and data cleaning is impractical and statistical efficiency is a secondary concern.

The procedure we suggest allows simultaneously to detect the presence of outliers in
the data and, if they are present, to select the best tuning constant for the Minimum Den-
sity Power Divergence estimators, for which computationally closed-form expressions
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Fig. 2. Panel (a) displays data points of Example IV (m = 10) and the estimated regression models m̂ML,
m̂MD,α=1 and m̂MD,α�=0.20. The panel (b) shows the boxplots of the distributions of the α�s obtained from
simulation for the six different values of m.

are available so that solutions can be obtained applying any standard non linear opti-
mization code. We also pointed out that, despite feasible computationally closed-forms
expressions are available for the estimators, particular care must be taken in choosing
the initial guesses of the minimizing routine, we suggest a random generations of initial
guesses and eventually some Monte-Carlo methods to statistically testing the results of
the routine (Sakalauskas, 2000; Misevicius, 2000).

The core of the procedure relies on the concept of similarity between estimated regres-
sion models, for which a normalized index is introduced and a Monte Carlo significance
test of statistical hypothesis is provided. From a computational point of view, the similar-
ity index given by equation can easily be evaluated resorting to the algorithm suggested
by Durio and Isaia (2010), advantageous in terms of parsimony of computing time, no-
tably in high dimensional problems.

The procedure we advise seems to behave very well in all the experimental situa-
tions we explored and the results of a simulation, applied to several scenarios, validate
this impression. We compute our simulations on various scenarios, in other to match
some typical situations that frequently arise in scientific areas (e.g., engineering, chemi-
cal, pharmaceutical) and a future work would be its applications on real datasets.

A more deeply study on the procedure performance would be a comparison about the
results in terms of best tuning parameter given by our algorithm with respect to those
obtained by other methods.

Further features on the topic would be test our procedure for classical robust estima-
tors such as regression quantile, regression rank scores or the density-based minimum
divergence estimators proposed by Basu et al. (2001) that are based on those introduced
by Windam (1995).
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Minimalios tankio galios divergavimo būdas sudarant robastinius
regresijos medžius

Alessandra DURIO, Ennio Davide ISAIA

Gerai žinoma, kad tiriant dideles duomen ↪u bazes, regresiniai medžiai, gauti didžiausio
tikėtinumo metodu, gali būti nestabilūs, jei duomenyse yra išsiskirianči ↪u stebėjim ↪u arba išskirči ↪u.
Darbe tiriamas minimalios tankio galios divergavimo kriterijus kaip praktinė priemonė parametri-
niams regresijos modeliams sudaryti. Yra pasiūlyta procedūra panašumo indeksui tarp sudaryto
regresijos modelio ir Monte-Karlo reikšmingumo testo, kuri leidžia patikrinti hipotez ↪e apie
išskirči ↪u egzistavim ↪a duomenyse. Be to, ši procedūra leidžia nustatyti geriausi ↪a derinimo kon-
stant ↪a minimalios tankio galios divergavimo ↪iverčiams. Pateikti teorinis pagrindimas, keli praktiniai
pavyzdžiai bei kompiuterinio modeliavimo rezultatai patvirtina sukurto testo praktin↪i tinkamum ↪a.


