
INFORMATICA, 2011, Vol. 22, No. 2, 289–317 289
© 2011 Vilnius University

Software Engineering Paradigm Independent
Design Problems, GoF 23 Design Patterns,
and Aspect Design

Žilvinas VAIRA, Albertas ČAPLINSKAS
Vilnius University Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: albertas.caplinskas@mii.vu.lt

Received: October 2010; accepted: May 2011

Abstract. The aim of the paper is to investigate applicability of object-oriented software design
patterns in the context of aspect-oriented design. The paper analyses which of the GoF 23 patterns
have a meaning in this context and how they are affected by it. The main assumption is that there
exist design patterns that solve software engineering paradigm independent design problems and
that such patterns, in the contrast to the patterns solving paradigm-specific design problems, can
be expressed in terms of any software engineering paradigm. However, the paper deals only with
two paradigms: aspect-oriented (AO) paradigm and object-oriented (OO) paradigm. It proposes a
classification of design problems based on this assumption and a technique for redesigning object-
oriented patterns into pure aspect-oriented ones. It presents a number of examples how to apply
this technique and discusses the results obtained. The results show that 20 of the GoF 23 design
patterns solve such design problems that are common at least for both mentioned paradigms and
demonstrate in which way these patterns can be adapted for the needs of aspect-oriented design.

Keywords: aspect-oriented programming, object-oriented programming, design patterns, paradigm-
independent and paradigm-specific design problems, aspect-oriented patterns and idioms.

1. Introduction

A number of software engineering paradigms, methodologies and approaches exist to-
day. Although the object-oriented (OO) paradigm still remains one of most popular, it is
gradually replaced by the aspect-oriented (AO) one (Kiczales et al., 1997; Lopes, 2005).
Mainly, it is because of the concern crosscutting problem. An object-oriented system may
have and often has such properties that must be implemented by more than one functional
component. It means that the implementation of such a property crosscuts the static and
dynamic structure of the program. The AO paradigm solves this problem by the sepa-
ration of concerns. However, the concern separation itself is not enough to develop a
new mature software engineering paradigm. It is also necessary to provide some solu-
tions that allow us to cope with other important software engineering issues, including
software reuse.

290 Ž. Vaira, A. Čaplinskas

There are many different approaches to reuse, including the code, design and concept
reuse. The latest is supported by design patterns (Gamma et al., 1994). According to
Martin (2000):

“At the highest level, there are the architecture patterns that define the overall
shape and structure of software applications. Down a level is the architecture
that is specifically related to the purpose of the software application. Yet another
level down resides the architecture of the modules and their interconnections.
This is the domain of design patterns.”

A design pattern is a way of reusing abstract knowledge about a design problem and
its solution. To be more exact, the design pattern in an abstract way describes a set of
solutions to a family of similar design problems (MacDonald et al., 2002). It describes the
idea of a design decision in the form that is sufficiently abstract to be reused in different
settings. It can be said that a design pattern is a guideline how to design some element of a
system. Design patterns do not influence the overall system architecture. They define the
architecture of lower level constituents of a system, namely, subsystems and components.
It should be noted that design patterns are not the lowest level patterns. The lowest level
patterns are called idioms. They are language specific reoccurring solutions to common
programming problems. According to Laddad (2003):

“The difference between design pattern and idioms involves the scope at which
they solve problems and their language specificity. From the scope point of
view, idioms are just smaller patterns. From the language point of view, id-
ioms apply to specific language whereas the design patterns apply to multiple
languages using the same methodology.”

An example is the Java idiom for ending a program when the window is closed
(Example 1).

1 addWindowListener(
2 new WindowAdapter() {
3 public void windowClosing(WindowEvent e) {
4 System.exit(0);
5 }
6 }
7);

Example 1. Java idiom for ending a program.

Mainly, the patterns define relationships between the entities in the implementation
domain (Shalloway and Trott, 2001) or, in other words, some parameterised collabora-
tions. However, it is difficult to develop a single body of code or even a framework that
adequately solves each problem in the family because most design patterns represent
families of solutions the structures of which cannot be adequately represented by a static
framework (MacDonald et al., 2002). According to Tešanović (2004):

Software Engineering Paradigm Independent Design Problems 291

“. . . a pattern is not an implementation, although it may provide hints about
potential implementation issues. The pattern only describes when, why, and
how one could create an implementation.”

In other words, in any particular case the pattern should be adapted to the particular
context.

Some software system design problems are paradigm-independent. For example, the
problem how to decouple the resource and its consumer does not depend on any particular
software engineering paradigm. The proposed solution is the Façade pattern that suggests
inserting of an abstract interface between the consumer and the resource (Martin, 2000).
This idea is very abstract and also paradigm-independent. Originally, the Gang of Four
(GoF) defined the intent of the Façade pattern as more narrow, only for subsystems but
not for any resource:

“Provide a unified interface to a set of interfaces in a subsystem. Façade defines
a higher-level interface that makes the subsystem easier to use” (Gamma et al.,
1994).

This idea is still paradigm-independent. However, it should be implemented in a
paradigm-dependent way. It means that, first of all, it should be expressed in terms
of a particular paradigm and can be implemented only afterwards. In other words, for
each paradigm the patterns solving paradigm-independent design problems should be ex-
pressed in terms of this paradigm and it should be done in a compact way. For example,
in OO paradigm the idea of the Façade pattern can be described as follows: define a
new class that hide the interfaces of several other classes under the new unified interface.
Since the description of the idea of pattern should be as compact as possible, the question
which concepts should be used to describe this idea must be investigated for any particu-
lar pattern. Though often the concepts describing a design pattern in one paradigm (e.g.,
OO paradigm) can be expressed directly by concepts of some other paradigm (e.g., AO
paradigm), it is questionable whether such translation is the best way to transform the
design patterns from one paradigm to another.

Patterns that solve the paradigm-dependent design problems are not idioms. They are
language-independent and still very abstract. Such patterns describe a set of solutions to
a family of similar design problems and should be effectively expressed in the vocabu-
lary of any programming language that is based on this paradigm. The OO patterns, AO
patterns and patterns for other paradigms eventually must be described in a paradigm-
dependent way. We suggest that, despite the fact that in software engineering the patterns
are often identified only with the object-oriented paradigm, some of them can be con-
sidered at a more abstract paradigm-independent level and specialized for any particular
paradigm. Consequently, the patterns solving paradigm-independent design problems can
be defined for a new paradigm in two different ways: by rewriting the patterns already
defined for some paradigm (e.g., OO paradigm) in terms of a new paradigm (e.g., AO
paradigm) or by generalising the patterns already defined for some paradigm, defining
them in a paradigm-independent way and then specialising such paradigm-independent
definitions for new paradigms. It seems that the latter way is more promising. How-

292 Ž. Vaira, A. Čaplinskas

ever, currently it is still unknown even, which of the GoF 23 patterns solve paradigm-
independent design problems and can be adapted to other paradigms. The paper inves-
tigates this question in the context of two paradigms, namely, OO and AO paradigms.
Of course, the fact that some OO design patterns can be adapted to solve aspect design
problems does not mean that they really solve paradigm-independent design problems.
However they can be considered as candidates to do this.

In the object-oriented programming (OOP), each design pattern defines some param-
eterized object-oriented collaboration, that is, a parameterized “relationships between
classes and objects with defined responsibilities that act in concert to carry out the solu-
tion” (Maioriello, 2002). The OOP design patterns have already been used for some time
and became even “part of the cutting edge of object-oriented technology” (Shalloway and
Trott, 2001). Many such patterns, for example, the Visitor, Decorator or Observer, are al-
ready well researched and the techniques of their application are elaborated in detail. The
aspect-oriented programming (AOP) has grown out directly from OOP, but, together with
objects, it provides a new kind of entities, namely, aspects. Due to this fact, two new pat-
tern related problems arise: how to use aspects in order to improve the object-oriented
design patterns (aspect-oriented implementation of OO design patterns) and how the de-
sign patterns can help to design aspects (AO patterns).

The problem of the aspect-oriented implementation of OO design patterns is one far
from simple. A detailed analysis should be made in order to understand the implemen-
tation of which OO design patterns is affected by the usage of aspects and how. All OO
design patterns must be analyzed and redefined from the perspective of AO. The com-
positional properties of patterns also should be investigated. When implementing several
design patterns in a system, they “crosscut each other in multiple heterogeneous ways so
that their separation and composition are far from being trivial” (Cacho et al., 2005).
The compositional properties of aspect-oriented implementation of OO design patterns
have been investigated in Hannemann and Kiczales (2002), Garcia et al. (2002), Cacho
et al. (2005) and other publications. Other aspects of the aspect-oriented implementa-
tion of OO design patterns have been investigated in Hirschfeld et al. (2003), Hachani
and Bardou (2002), Noda and Kishi (2001), Nordberg (2001, 2001a), Arnout and Meyer
(2006), Bernardi and DiLucca (2005), Piveta and Zancanella (2003), and Cunha et al.,
(2006). However, the following questions still have no final answers: How to implement
better OO patterns in the aspect-oriented manner? Is the aspect-oriented implementation
better in some way than the object-oriented one? How to measure this? It is the program
for further research.

In parallel with design patterns meant for design objects and classes, in the AO
paradigm we also need design patterns purported to design aspects. The problem of
the development of AO patterns is even more complicated than the problem of aspect-
oriented implementation of OO patterns. At first sight it seems, that patterns for aspects
can be defined by analogy to the patterns for objects. However, some OO patterns be-
come trivial for aspects because they are directly supported by AOP. For example, no-
body needs the Singleton pattern for aspects because the aspects itself may be used as
singletons. Some other patterns are not affected in any way by change of objects to as-
pects. For example, the Façade pattern is implemented in an analogous way for both,

Software Engineering Paradigm Independent Design Problems 293

objects and aspects. It also seems that some OO patterns, for example, the Prototype,
solve paradigm-dependent design problems and are senseless for aspects. Finally, we
should discover some useful specific paradigm-dependent AO patterns, if they exist. Al-
though several researches have been pursued on this topic (Lorenz, 1998; Noble, 2007;
Bynens and Joosen, 2009), the problem of the development of AO patterns is still far
less thoroughly investigated than the problem of the aspect-oriented implementation of
OO patterns. A number of important questions are still open, for example: Does the AO
paradigm generate any new patterns that are specific only to this paradigm? Which and
how OO patterns can be adapted to the AO paradigm?

The remaining part of this paper is organized as follows. Section 2 analyses related
works, Section 3 describes the proposed classification of design problems and Section
4 proposes an approach for rewriting paradigm-independent GoF23 design patterns in
terms of aspects and demonstrates the applicability of this approach. Finally, Section 5
concludes the paper.

2. Related Works

2.1. Aspectization of OO Design Patterns

Specifications, design and implementations of software systems in the OO paradigm suf-
fer from tangling and scattering of concerns. Deficiencies of OO design patterns and
their actual implementations have been observed in Cacho et al. (2005), Hannemann and
Kiczales (2002), Piveta and Zancanella (2003) and others.

AOP that originates from the work Kiczales et al. (1997) attempts to solve the prob-
lem of tangling and scattering of concerns by concern separation. The first programming
language, which was labelled as the “aspect-oriented” one, was AspectJ (Kiczales et al.,
2001). The most important goal of aspect-oriented languages is to localize concern cross-
cutting. However, as suggested by Filman and Friedman (2001), AOP can be thought of
in a more general sense:

“AOP can be understood as the desires to make quantified statements about the
behaviour of programs and to have these quantifications hold over programs
written by oblivious programmers.”

Many techniques for separating individual concerns were developed long before the
AspectJ (Lopes, 2005). Later, techniques not related to one particular concern were
suggested: composition filters (Aksit, 1992), meta-level-programming (Kiczales et al.,
1991), adaptive programming (Lieberherr et al., 1994), subject-oriented programming
(Harrison and Ossher, 1993), etc. Although all these techniques have been proposed
for separation of concerns, they are different in their nature and, according to Meslati
(2009), at least the concepts of composition filters approach cannot be directly mapped
to concepts of AOP. Design patterns have also been introduced as a way to achieve a
better separation of concerns. AOP can be implemented in many different (not neces-
sarily object-oriented) ways, including rule-based systems, event-based systems (Filman

294 Ž. Vaira, A. Čaplinskas

and Friedman, 2001), intentional programming, meta-programming, generative program-
ming (Czarnecki and Eisenecker, 2000) and others. All these approaches provide some
means to express and to implement quantified statements. However, they differ by the
implementation issues they address to. For example, the rule-based systems allow a di-
rect implementation of quantified statements while meta-programming lets programmer
to manipulate the fragments of a program code in a base language using meta-level lan-
guage elements. Nevertheless, only the aspect-oriented programming languages intro-
duce special concepts used to describe such quantifications. AspectJ has unified a wide
spectrum of concern separation ideas using relatively few and simple concepts as well as
in a more attractive way than the previous approaches (Lopes, 2005). The new constructs
introduced by aspect-oriented languages (concerns, aspects of concerns, pointcuts and
advices, intertype declarations, etc.) allow a programmer to capture the tangled and scat-
tered concern parts and to keep them in separate localized aspects (Laddad, 2003; Czar-
necki and Eisenecker, 2000). They extend traditional software engineering paradigms
and allow implementing a new kind of architectural patterns. The main idea is to spec-
ify, analyze and implement a software system as a collection of separate concerns. To
this end, many paradigm-independent as well as paradigm-dependent design problems
must be solved. Appropriate design patterns are required to solve these problems. Al-
though aspects have grown up from OOP, they are also used today together with other
paradigms. For example it is possible to speak about aspects in functional programming
languages (Dantas et al., 2008) or even in logic programming languages (Filman and
Friedman, 2001). It means that the AO paradigm is not an independent paradigm like the
OO paradigm, but a paradigm that is built by “aspectization” of some other paradigm that
remains beyond it. However in this paper we consider only the case where the aspect-
oriented paradigm is built over the object-oriented paradigm. In this case, all OO design
patterns can be redefined for the AO paradigm. It can be done in two different ways:

• Implementation of the OO design pattern in some OO language, for example in
Java, is directly replaced by the analogous code written in some AO language, for
example, in AspectJ (Hannemann and Kiczales 2002);

• A native AO solution is introduced to the same problems that are addressed by the
OO design pattern (Hachani and Bardou, 2002; Hirschfeld et al., 2003).

A number of metrics have been proposed to measure the effectiveness of the imple-
mentation. Hannemann and Kichales (2002) demonstrate that in terms of code locality,
reusability, composability, and (un)pluggability even for 17 out of GoF23 patterns the
implementation was improved by rewriting from Java to AspectJ. The quantitative as-
sessment of Java and AspectJ implementations for the GoF 23 patterns has also been
done in Garcia et al. (2005) and Cacho et al. (2005). To this end, the authors use the
metrics suite, defined in Sant’Anna et al. (2003), Garcia (2004). This suite is constituted
of metrics, based on separation of concerns, coupling, cohesion, and code size. Garcia
et al. demonstrate that aspect-oriented implementations of most of the GoF23 patterns
improve these patterns regarding the metrics for separation of concerns. However, taking
into account the whole suite of metrics, the implementations of only 4 patterns exhibit
significant improvements. Thus, despite the fact that many patterns like Observer, Visi-
tor, Adapter, Composite and Decorator are confirmed to be better when implemented in

Software Engineering Paradigm Independent Design Problems 295

AO languages, there are patterns that have less improvements or can become even more
complicated. Cacho et al. (2005) presented an empirical study that investigated whether
aspect-oriented implementations support the improved composability of design patterns.
Since in the context of a software system the design patterns are composed in many dif-
ferent ways and crosscut each other in multiple heterogeneous ways, it is natural to expect
that aspectization of patterns can significantly improve the implementations of such com-
positions. However, the study has showed that the results depend on the patterns involved,
composition intricacies, and other particular circumstances (Cacho et al., 2005).

A number of researchers (Lorenz, 1998; Noda and Kishi, 2001; Hachani and Bardou,
2002; Hachani and Bardou, 2003; Schmidmeier et al., 2003) investigated the benefits of
implementing GoF23 patterns in AspectJ by direct rewriting their implementation from
Java to AspectJ. The research in Hachani and Bardou (2002), Hachani and Bardou (2003)
focuses on the confusion, indirection, encapsulation breaching, and inheritance related
problems raised by the use of OOP design patterns. These problems are mainly induced
by code scattering and code tangling. So, it is reasonable to expect that implementations
in AO languages at least partly will solve these problems. The research has demonstrated
that, for most of GoF23 patterns, such implementations indeed improve a separate reuse
of both the pattern and the main application code and solve the confusion, indirection, and
encapsulation breaching problems. Inheritance related problems have also been solved
for some patterns and lowered for others. Similar results were also obtained in Hirschfeld
et al. (2003).

It is likely that the idea of direct rewriting from one language to another has arisen
because some researchers assumed that any design pattern in both paradigms should be
implemented in analogous ways. However, as stated in Vaira and Čaplinskas (2009), the
rewriting of particular cases from one programming language to another can be consid-
ered only as samples, but not as the general solution how the design patterns should be
redefined for AOP. In addition, the idea behind the pattern usually can be implemented in
several different ways, and it is not so simple to say that the solution obtained by rewriting
is really the best one.

So, it seems that a better way to implement design patterns, which solve paradigm-
independent (to respect of OO and AO paradigms) design problems, in AOP is not to
emulate OOP patterns but to express the idea behind the pattern directly in AOP terms.
Despite the fact that such a way is more difficult than the “aspectization” of OO im-
plementations, we can expect that patterns will be implemented in more effective way.
Particularly, Noble et al. (2007) demonstrated that using the native approach a number of
design patterns (Spectator, Regulator, Patch, Extension, Heterarchical design) can be im-
plemented in the AOP in a simple and elegant way. Although these patterns do not belong
to the GoF 23, they describe a set of solutions to a family of similar design problems. In
fact, most of them should be considered as degenerate collaborations because they, like
the Singleton pattern, include only one role. Besides, it is questionable if the Heterarchi-
cal design pattern is really a design pattern. We prefer to see it rather as an architectural
pattern. Nevertheless, the research carried out by Nobel et al. demonstrates that the native
approach is really promising.

296 Ž. Vaira, A. Čaplinskas

The native approach how to implement some of the GoF23 patterns (Template
method, Creational patterns, Factory method) has also been proposed in Hanenberg and
Schmidmeier (2003). In addition, Hanenberg et al. (2003) has demonstrated that Con-
tainer introduction pattern, which is difficult to implement in OOP, can be elegantly im-
plemented in the AOP.

Both approaches consider AO design patterns as patterns that describe the interactions
among objects and aspects. In other words, aspectization of patterns as well as the native
approach both aim to improve the implementation of mixed objects and aspects collabo-
rations. The question of how to apply the patterns to design the collaborations of aspects
still remains open.

2.2. Development of AO-Specific Design Patterns

Let us discuss now the question of the development of the patterns solving AO-specific
design problems or AOP-specific design patterns. This question has been investigated by
Hanenberg and Costanza (2002), Hanenberg and Schmidmeier (2003), Laddad (2003),
Schmidmeier (2004), Miles (2004), Griswold et al. (2006), Lagaisse and Joosen (2006),
Bynens et al. (2007), Bynens and Joosen (2009), Menkyna et al. (2010). However, the
research is still at its early phase. Mainly it is based on the occasional experience gained
by developing of the industrial software systems.

According to Menkyna et al. (2010), the prevailing part of AOP-specific design pat-
terns can be divided into the following categories: pointcut patterns, advice patterns, and
intertype declaration patterns.

As far as we know, Hanenberg and Costanza (2002) was one of the first works on
AOP-specific design patterns. In this paper, a number of so called AO strategies have been
proposed. However, the authors had different opinions on how these strategies should be
treated. According to Hanenberg and Costanza (2002):

“. . . these strategies are no patterns. The main purpose of identifying these
strategies was to find out what language features of AspectJ are usually used
in what situations. . . .The strategies have directly arisen from the usage of As-
pectJ, so they are the result of observing AspectJ code.”

Hanenberg suggested that at the time it was impossible to develop some AOP -specific
patterns because the aspect-oriented community has still not developed any common un-
derstanding of aspect-oriented programming or had any commonly accepted design nota-
tion. According to Costanza, the proposed strategies are a first step towards AOP-specific
design patterns and even can be regarded as proto-patterns.

Hanenberg and Schmidmeier (2003) are going one step ahead. In addition to the pro-
posal how to implement some GoF 23 patterns using the native approach, they have pro-
posed the so-called Pointcut method, which “is used, whenever a certain advice is needed
whose execution depends on runtime specific elements” (Hanenberg and Costanza, 2002).
The authors considered the Pointcut method as an AspectJ idiom, rather than as a pattern
because it was not presented in the pattern format. According to Hanenberg and Schmid-
meier (2003):

Software Engineering Paradigm Independent Design Problems 297

“. . . we still neglect to put the idioms in such a format because of two reasons.
First, we feel that it is still more important to discuss typical design decisions
in aspect-oriented languages than to claim that a number of good patterns are
found. And second, it is still not yet clearly determined what language features
an aspect-oriented language will provide in the future: the provided language
features still evolve from version to version. Hence, a collection of good design
decisions might be no longer valid in the future because of language changes
in AspectJ.”

Nevertheless, it seems today that the Pointcut method is expressed in a language in-
dependent AOP vocabulary and can be considered as belonging to the advice category of
AOP-specific design patterns rather than as an idiom of AspectJ.

Up to date, a number of AOP -specific design patterns have been proposed by various
authors. Some of them are:

• Wormhole: “transport context information throughout a method call chain without
the need for parameters” (Laddad, 2003; Bynens and Joosen, 2009; belongs to the
category of the pointcut patterns);

• Participant: “connect an abstract pointcut for each subsystem separately and
within that subsystem” (Laddad, 2003; Bynens and Joosen, 2009; belongs to the
category of the pointcut patterns);

• Director (Default Interface Implementation): “abstract aspect with multiple
roles as nested interfaces” (Laddad, 2003; Miles, 2004; Bynens and Joosen, 2009;
Menkyna et al., 2010; belongs to the category of the inter-type declaration pat-
terns);

• Border Control: “set of pointcuts that delimit certain regions in the base appli-
cation” (Miles, 2004; Bynens and Joosen, 2009; belongs to the category of the
pointcut patterns);

• Cuckoo’s Egg: “put another object instead of the one that the creator expected to
receive” (Miles, 2004; Menkyna et al., 2010; belongs to the category of the advice
patterns);

• Worker Object Creation: “captures the original method execution into a runnable
object” (Laddad, 2003; Schmidmeier, 2004; Menkyna et al., 2010; belongs to the
category of the advice patterns);

• Exception introduction: “solves the problem of the exception handling in the ad-
vice, by catching a checked exception and wrapping it into a new concern-specific
runtime exceptions” (Laddad, 2003; Menkyna et al., 2010; belongs to the category
of the advice patterns); and

• Policy: “defines some policy or rules within the application. A breaking of such
a rule or policy involves issuing a compiler warning or error” (Miles, 2004;
Menkyna et al., 2010; belongs to the category of the inter-type declaration pat-
terns).

Not one of the patterns presented above is elaborated in detail. Mostly they define
individual roles but not collaborations and, consequently, still should be regarded as frag-
ments of patterns rather than real design patterns. Nevertheless they are valuable because

298 Ž. Vaira, A. Čaplinskas

Table 1

The classification of OO and AO design problem solutions.

Problems Solutions

OO solution AO solution Mixed AO and OO solution

Paradigm independent
problems (e.g., commu-
nication of the entities
with different interfaces;
solved by the Adapter
pattern)

Use a pattern compo-
sed of pattern-
oriented objects only
(Gamma et al., 1994)

Use a pattern compo-
sed of pattern-orien-
ted aspects only

Use a pattern composed
of pattern-oriented aspects
and objects (Hannemann
and Kiczales, 2002)

OO specific problems
(e.g., making clones of
an existing object;
solved by the Prototype
pattern)

Use a pattern com-
posed of pattern-ori-
ented objects only
(Gamma et al., 1994)

Use a pattern com-
posed of pattern-
oriented aspects that
are bonded with base
OO program (Laddad,
2003, Miles, 2004)

Use a pattern composed
of pattern-oriented aspects
that are bonded with the
base OO program, and
pattern-oriented objects
(Hannemann and Kiczales,
2002; Laddad, 2003; Miles,
2004; Hanenberg et al.,
2003)

AO specific problems
(e.g., invoking a chain
of advices when a pointcut
matches; solved by the
Chained Advice
pattern)

Use a pattern that
is implemented by
an aspect-aware base
OO program (Gris-
wold et al., 2006;
Bynens and Joosen,
2009)

Use a pattern com-
posed of pattern-
oriented aspects
only (Miles, 2004;
Hanenberg; Unland,
2003; Bynens et al.,
2007)

Use a pattern composed
of pattern-oriented aspects
and an aspect-aware base
OO program (Laddad,
2003; Hanenberg and
Unland, 2003)

they are significant milestones towards the AOP design pattern development and prob-
ably will stimulate the development of more complex aspect-oriented design structures.
However, there is “still a lot of work” (Bynens and Joosen, 2009) to be done.

3. Classification of OO and AO Design Problem Solutions

Let us consider the following classification of the ways of solving OO and AO design
problems using design patterns (Table 1)1.

This classification can be illustrated by a simple graphical diagram. Figure 1 shows
two crosscutting concerns. The boundaries of concerns are represented by a straight line2.
Applications of patterns in the program are represented by large ovals, aspects – by small
stroked ovals. Dashed ovals represent the application of patterns that solve the problems
using mixed solutions. Rectangular shapes represent classes. Solid lines between classes
and aspects represent associations (including inheritances), dashed lines connect join-
points in the classes and pointcuts in the aspects, respectively. The connected classes and

1We do not consider such problems that are solved by the composition of several patterns.
2In the models of real-world programs, usually, it is impossible to separate concerns by the straight line.

Software Engineering Paradigm Independent Design Problems 299

Fig. 1. A graphical diagram illustrating the classification presented in Table 1.

aspects are filled with upward diagonal patterns. Design patterns that solve OO or AO
paradigm-specific problems and are implemented using the constructs of an appropriate
paradigm only are placed at the top of the diagram. Design patterns that solve the AO
problem and are implemented using OO constructs or, vice versa, design patterns that
solve the OO problem and are implemented using AO constructs are placed in the mid-
dle of the diagram. Design patterns solving paradigm-independent design problems are
placed at the bottom of the diagram. The structure of the solution used by such patterns
is the same in both AO and OO paradigms, but the elements that constitute the patterns
are different.

Figure 1 demonstrates all ways that can be used to solve design problems using dif-
ferent implementations of design patterns. Like in Bynens and Joosen (2009), this classi-
fication is based on the nature of problems that patterns intend to solve. We consider the
problems that can be formulated in a paradigm independent way, problems that can be
formulated only in terms of the OO paradigm, and problems that can be formulated only
in terms of the AO paradigm. We suppose that a problem of belonging to any of these
groups can be solved in three different ways: using only OO mechanisms, using only AO
mechanisms, and using both OO and AO mechanisms. Although from the first view it

300 Ž. Vaira, A. Čaplinskas

may look a little confusing that specific OO design problems can be solved using pure
AO patterns or vice versa, we will demonstrate later that it is not only possible, but, in
some cases, even reasonable.

In the proposed classification, OO specific patterns (e.g., Prototype, Singleton, and
Composite) belong to the OO solution column, while AO specific patterns (e.g., Border
Control, Abstract Pointcut, Pointcut Method, Template Advice, Chained Advice, Elemen-
tary pointcuts, Pointcut Method) – to the AO solution column. Using the AO solution to
solve OO specific problems, the pattern is composed of aspects only, but these aspects are
bonded with the base OO program. Examples of such patterns are the Wormhole, Worker
Object Creation, Cuckoo’s Egg and Policy patterns. For example, the Wormhole pattern
solves a problem how to pass context information from a caller object to some object
deep in the call graph. The traditional OO solution is to add a context parameter to all the
intermediate methods that is not needed, but only passed along the object that calls it. The
Wormhole pattern proposes a more economic of solution. It provides a pattern-oriented
aspect that uses a pointcut to capture the information when it is available, and advice to
re-introduce it when it is needed (Laddad, 2003).

Mixed solutions depend on the kind of problem to be solved. For example, all aspecti-
zations of paradigm-independent GoF23 patterns belong to this class. Such aspectizations
are composed of pattern-oriented aspects and objects (Hannemann and Kiczales, 2002).
A mixed solution of OO specific GoF23 patterns (Prototype, Singleton, and Composite)
together with pattern-oriented objects uses pattern-oriented aspects that are bonded with
the base OO program (Hannemann and Kiczales, 2002). The Director (Miles, 2004),
Container introduction (Hanenberg and Unland, 2003) and Participant (Laddad, 2003)
patterns are implemented in such a way. Finally, the mixed solution of AO specific prob-
lems is implemented by a pattern that is composed of pattern-oriented aspects and by an
aspect-aware base OO program. The Exception introduction (Laddad, 2003) and Marker
interface (Hanenberg and Unland, 2003) patterns belong to this class.

An interesting class is the class of OO solutions that solves specific AO design prob-
lems. In this case, any solution is related to naming and annotation conventions in the
base program (Griswold et al., 2006). For example, having aspects with complex and
hard to understand pointcut definitions, it is necessary to modify the base program in or-
der to make it more pointcut friendly. To solve that, it is necessary to design appropriate
naming and annotation conventions for the base program.

Paradigm-independent design patterns can be used to solve problems that reoccur in
the systems implemented using different paradigms. In this paper, we deal only with two
paradigms: AO paradigm and OO paradigm. In addition, we suppose that aspects are built
over the OO base program. In this context, aspects and classes differ in two main points.
The first one is the ability of classes to be instantiated, whereas aspects are singletons by
their nature. The second point is that an aspect is a collection of pointcuts and advice,
whereas a class does not provide such kinds of constructions at all. Thus, most of the
researchers sought to combine both paradigms and proposed various mixed AO and OO
solutions to solve paradigm-independent design problems. As far as we know, there are no
publications that aim to investigate the class of pure AO solutions solving such problems.

Software Engineering Paradigm Independent Design Problems 301

However, Hanenberg and Unland (2003) use de facto pure AO implementation of the
Template Method pattern in the Template Advice pattern, although they do not state this
fact explicitly.

Since the class of pure AO patterns that solve paradigm independent design problems
was not investigated at all to date, the remaining part of this paper is devoted namely to
this question. We investigate the GoF 23 patterns, demonstrate that only 20 out of this
class of patterns solve paradigm-independent design problems and propose how these
patterns can be implemented using AOP constructs only.

4. AO Solutions of Paradigm Independent Design Problems

If some GoF23 pattern can be implemented in AspectJ by using AO constructs only,
it can be considered as a pattern that, at least to respect of OO and AOP paradigms,
solves a paradigm-independent design problem. Despite the fact that, in such a case, both
OO and AO patterns solve the same design problem, their applicability differs. The OO
pattern solves this problem for objects, whereas the AO pattern solves it for aspects. Let
us briefly consider the proposed methodology, to rewrite paradigm-independent GoF23
design patterns for aspects.

Despite the fact that aspects and classes are different concepts, they have some sim-
ilarities. Since crosscutting concerns can have and maintain states, the aspects, similarly
as classes, can define data members and behaviours for crosscutting concerns (Laddad,
2003), be abstract, and implement interfaces. It is also possible to built inheritance hier-
archies for abstract aspects. However, other than classes, aspects cannot be directly in-
stantiated. Although it is possible to have several instances of aspects in entire program,
only one instance of the aspect can be created for any particular object or control flow in
a program related to predefined pointcut. So, in the context of this paper, we treat them
as singletons. Thus we can use the same or slightly changed structure of GoF23 design
patterns to build the AO ones. All we need is to replace OO language constructs by the
appropriate AO language – AspectJ in this paper – constructs. It can be done in 3 steps:

• If a GoF23 pattern, possibly, with a reduced applicability, can be implemented
using only singletons, this pattern is regarded as a candidate to be a paradigm in-
dependent pattern for rewriting in AspectJ.

• All the classes in the candidate pattern should be replaced with aspects and all ob-
ject constructors should be replaced by the AspectJ static method aspectOf, which
allows us to access the instance of the aspect. A constructor with arguments can
be modelled by an appropriate aspect method or often even replaced simply by the
assignment of appropriate default values to the data members in the aspect. Data
members, behaviours, and inheritance relations in aspects mainly imitate that of
the classes. The pointcuts and advices that trigger aspects should be modelled de-
pending on the OO base program. For this reason, in each pattern we need at least
one class as a placeholder for a joinpoint that initiates the pattern.

• The candidate pattern should be analyzed in order to discover and remove irrelevant
data members and methods. Some data members and methods can become irrele-

302 Ž. Vaira, A. Čaplinskas

vant because the aspects which replaced the classes are singletons and because of
transformation of some pattern members to fit the pointcut model in the pattern.
It may happen, that afterwards some design patterns (e.g., Singleton) “disappear”,
because they become so simple that cannot be regarded further as proper design
patterns.

The next section provides some examples of the application of this approach.

4.1. Investigation of the Applicability of GoF23 Patterns to Design the Aspects

First of all, let us discuss these GoF23 patterns – Singleton, Prototype, and Composite –
that are senseless in the aspect-oriented paradigm. The Singleton pattern becomes trivial
after rewriting it in AspectJ and “disappears”. The essence of Prototype pattern is the
ability of objects to clone its instances (i.e., create several instances of the same class
based on already existing instance). However, in AOP no one needs to clone the aspects.
Even if it is possible to use several instances of aspects per object or per control flow, it
is not possible to control instantiation in the way to support cloning. Thus, Singleton and
Prototype design patterns are senseless in AO paradigm. Senseless is also the Composite
pattern because, in the case of OO paradigm, its implementation requires to hold the
references from one to another instance of Composite object. In the case of AO paradigm,
the solution results in an eternal loop when only one container aspect is defined and this
aspect is referenced in a tree at least two times. Despite the fact that, theoretically, it is
possible to create the AO implementation, in which the container aspect refers to only one
instance of leaf aspect or in which all container instances are defined in a tree as separate
aspects, such implementation is purposeless because the context to which it could be
applied remains unclear and it is questionable whether this context still corresponds to
the Composite design pattern.

The remaining 20 out of GoF23 patterns can be adopted to solve the aspect design
problems. They have been rewritten in AspectJ using only pure AOP constructs. How-
ever, the AO implementation of 5 design patterns – Chain of Responsibility, Proxy, Inter-
preter, Memento, and Visitor – is in some way more constrained than OO implementation
because it is impossible to work with several instances of an aspect at the same time. For
example, it is impossible to have several instantiation of the same Proxy aspect simulta-
neously.

Let us now consider, using the above described approach, examples of the AOP im-
plementation of those out of GoF23 design patterns, which can be adopted to solve the
aspect design problems... Although we had investigated in detail the implementation of
all such patterns, due to the limited space of this paper, we describe the 4 representative
examples only: the simple Adapter design pattern, more complex Bridge design pattern,
Factory Method design pattern and Chain of Responsibility design pattern. The Factory
Method pattern is chosen as an example of creational design pattern. The Chain of Re-
sponsibility pattern is chosen as a most representative example for the above mentioned
group of the design patterns (Proxy, Interpreter, Memento, Visitor, Handler, and Chain of
Responsibility). This pattern includes constraints on references as well as constraints on
instantiation of aspects, which manifest itself also in other patterns of this group.

Software Engineering Paradigm Independent Design Problems 303

Fig. 2. Adapter design pattern (OO solution).

We use UML class diagrams to model both OO and AO patterns. To represent aspects
in UML models we use stereotypes: Aspect, Advice, Pointcut, and Joinpoint. The latter
one represents the relation between the pointcut, described in the aspect, and its actual
joinpoints in classes. While modelling the AO patterns by UML, we use the traditional
UML relations such as inheritance, association, and dependency. For a better understand-
ing of the diagrams, we describe additionally the AO patterns in AspectJ.

Let us consider now GoF 23 Adapter design pattern (Fig. 2). The essential elements
of this pattern are:

• Client, the class containing clientVoid method,
• Target, the abstract class containing an abstract request operation,
• Adapter, a subclass of the Target class that overwrites the request operation with

the request method, and
• Adaptee, the class containing the specificRequest method that is adapted by the

request method in the Adapter class.

In order to rewrite the Adapter design pattern for aspects, we apply the proposed

Fig. 3. Adapter design pattern (AO solution).

304 Ž. Vaira, A. Čaplinskas

Fig. 4. The idea behind Aspect adapter.

1 public abstract aspect Target {
2 void request() ;
3 after(): applyAdapter () {
4 request();
5 }
6 }
7
8 public aspect Adaptee {
9 public void specificRequest() {

10 System.out.printLn(“Executing specific request..”)
11 }
12 }
13
14 public aspect Adapter extends Target {
15 Adaptee adaptee = Adaptee.aspectof();
16 void request(){
17 System.out.println(“Executing inherited request..”);
18 adaptee.specificRequest();
19 }
20
21 pointcut applyAdapter()
22 :execution(public static void

main())&&target(ClientClass);
23 }

Example 2. AspectJ code of the Adapter design pattern.

methodology. In the AO solution (Fig. 3) the classes Target, Adapter and Adaptee are
replaced with the aspects Target, Adapter and Adaptee. The class Client remains. How-
ever, it is not a real object class and serves as a placeholder for a joinpoint that triggers
the Adapter aspect. In other words, the Client class is a technical class that should not
be regarded as a first order citizen. Therefore, we have a solution that consists only of
aspects (Fig. 4).

Example 2 presents the AspectJ code for this solution.
Abstract aspect Target contains an abstract operation request and an advice body for

pointcut ApplyAdapter. The aspect Adaptee contains the specificRequest method that
must be adapted by the Adapter aspect. The Adapter aspect contains the concrete re-

Software Engineering Paradigm Independent Design Problems 305

quest method body and the concrete applyAdapter pointcut. The Adapter aspect uses the
specificRequest method defined in the Adaptee aspect inside the request method.

This example demonstrates how to rewrite the Adapter and other simple object-
oriented GoF23 patterns in terms of the AO paradigm or, in other words, it demonstrates
that it is possible to apply these patterns to solve aspect design problems. However the
question arises as to how useful and for which purposes pure AO patterns are. In order
to answer this question, we demonstrate below some practical usage of the Adapter AO
design pattern.

The main intent of Adapter is to convert the programming interface of one entity into
that of another (Fig. 4). In our case (Example 3), entities are aspects. Let us consider
complex Logger concern consisting of several aspects (Fig. 5).

In order to demonstrate a more complex situation, let us consider the GoF23 Bridge
pattern. The main intent of Bridge is to separate the abstract elements of a class from the
implementation details. The essential elements of this pattern are:

• Abstraction defines the interface that the client uses for interaction with this ab-
straction. It is the only an interface that is known to the client and he makes re-
quests directly to the Abstraction object. This object maintains a reference to an
Implementor object. Through this reference the client’s requests are forwarded by
the Abstraction to the Implementor.

• Implementor defines the interface for any and all the implementations of the
Abstraction. The Abstraction interface and the Implementor interface can differ

We have different kinds of things – events and resources – that must be logged by a Log-

ger. Logging of these different kinds of things requires different behaviour. So, it is not

reasonable to implement such a Logger as one aspect, because this aspect will have many

unrelated pointcuts and a repeating code. To avoid that, we can use different aspects for

each kind of things to be logged. Thus, we create two aspects responsible for logging

events and resources (Fig. 5). However, the resources also may be different. For this rea-

son the ResourceLogger aspect must be an abstract aspect that could be inherited by con-

crete resource loggers: Resource1Logger and Resource2Logger. In ResourceLogger we

have an abstract operation displayLogInfo and an abstract pointcut concreteResource that

we overwrite in concrete resource loggers. The pointcut concreteResource is part of all

the other pointcuts and helps us specialize them without rewriting each pointcut. In the

Resource2Logger we should use operations defined in the EventLogger, namely, print and

getTime. In order to adapt these operations to Resource2Logger, we apply the Adapter de-

sign pattern presented in Fig. 3. In a similar way this problem may be also solved using

the Template Method design pattern. In this case, an abstract aspect should be created and

the needed methods could be inherited by all the other aspects. However, it is not always

desirable for all aspects to inherit these methods (e.g., some of particular loggers do not

need to adapt them at all). Thus such a solution is applicable only in some cases.

Example 3. AO design pattern Adapter.

306 Ž. Vaira, A. Čaplinskas

Fig. 5. Application of the AO design pattern Adapter.

Fig. 6. Bridge design pattern (OO solution).

and this is an additional source of flexibility provided by this pattern. According
to Gamma, ”Typically the Implementor interface provides only primitive opera-
tions, and Abstraction defines higher-level operations based on these primitives”
(Gamma et al., 1994).

• RefinedAbstraction is any and all the extensions to the Abstraction class, and
• Any ConcreteImplementor implements the interface defined by the Implementor

class or, in other words, defines a concrete implementation of the Abstraction.

Software Engineering Paradigm Independent Design Problems 307

Fig. 7. Bridge design pattern (AO solution).

Fig. 8. The idea behind Aspect Bridge.

Similarly as in the Adapter pattern, in the Bridge pattern (Fig. 7) classes are also
replaced by aspects. However, some other changes have been made, too. It is because the
situation, when the Client class sends request to the Abstraction class and asks to execute
the abstract operation operation, cannot be modelled directly in the AO pattern. In our
solution, the abstract operation operation of the aspect Abstraction is triggered by the
pointcut applyBridge and the aspect Abstraction forwards to the aspect Implementor the
reference to the required implementor as a parameter of the AspectOf method. As a result
we have the solution that consists only of aspects (Fig. 8).

Example 4 presents the AspectJ code for this solution.
It is possible to see in this program (lines 12, 13) that the required implementor is

invoked in a similar way as in the OO solution.
As far as we are dealing in the AO paradigm with the singletons only, it may seem

that AO solutions for the creational design patterns have no sense. Nevertheless, the fact

308 Ž. Vaira, A. Čaplinskas

1 public abstract aspect Abstraction {
2 String x;
3
4 public void operation(Implementor implementor) {
5 implementor.implement(x);
6 }
7
8 after(String x): applyBridge(x) {
9

10 this.x = x;
11 operation(Implementor1.aspectof());
12 operation(Implementor2.aspectof());
13 }
14 }
15
16 public aspect RefinedAbstraction extends Abstraction {
17
18 public void operation(Implementor implementor) {
19
20 //refinement
21 x = “-”+x+“-”;
22
23 implementor.implement(x);
24 }
25
26 pointcut applyBridge(String x) :
27 call(public void clientVoid(String))&&args(x);
28
29 }

Example 4. AspectJ code of the Bridge design pattern.

that aspects cannot be created or, be more precise, can only be created as one instance
at a time, does not mean that AO analogues of Abstract Factory or Factory Method are
senseless. Although in the AO world we have no factories, we still need to obtain refer-
ences to aspects for many times and the creational patterns are still very useful for this
purpose. We will demonstrate bellow what the AO solutions of creational patterns look
like and when we can apply such patterns.

The main purpose of the Factory Method design pattern is to define the interface for
creating objects that belong to different classes. Usually the pattern defines an abstract
method for creating the objects, which can then be overridden in subclasses with a view
to specify the derived type of object that should be created. However, we use another vari-
ation of the pattern – the parameterized factory method (Fig. 9), in which the parameter
that defines the type of object is passed to the factory method (Gamma et al., 1994). The
essential elements of the Factory Method pattern are:

• Factory, a class that contains the operation factoryMethod which returns the object
of type Product depending on the requested parameter type,

Software Engineering Paradigm Independent Design Problems 309

Fig. 9. Factory Method design pattern (OO solution).

Fig. 10. Factory Method design pattern (AO solution).

• Product, an abstract class that contains the abstract operation getName and defines
the interface of Product type objects,

• ConcreteProduct1 and ConcreteProduct2, concrete Product classes that implement
the getName operation using some concrete method, and

• Client, the class that invokes the factoryMethod of the Factory object.

310 Ž. Vaira, A. Čaplinskas

Fig. 11. The idea behind Aspect Factory Method.

1 public aspect Factory {
2
3 static public Product factoryMethod(String type){
4 if(type == ”product1”){
5 return ConcreteProduct1.aspectOf();
6 }else if(type == ”product2”){
7 return ConcreteProduct2.aspectOf();
8 }else{
9 return null;

10 }
11 }
13 private void print(Product product){
14 System.out.printf(product.getName()+”\ n”);
15 }
16
17 pointcut applyRequest(String x) :
18 call(public void clientVoid(String))&&args(x);
21 after(String x): applyRequest(x) {
22 print(factoryMethod(x));
23 }
24 }

Example 5. AspectJ code of the Factory method design pattern.

In the AO solution (Fig. 10) the pattern helps to get a reference to the needed aspect
that is defined by the given parameter. We get an analogous result as in the OO version
of this design pattern. The difference is that instances of the classes are created each
time we execute the main factory method, while in the AO pattern, the instance of an
aspect is created only once. In Fig. 10, this method is named factoryMethod and is re-
sponsible for handling different references to aspects. The product aspects are defined as

Software Engineering Paradigm Independent Design Problems 311

Fig. 12. Application of the AO Factory Method design pattern.

In this case, the abstract aspect Logger represents product interface, the aspects Re-

sourceLogger and EventLogger represent concrete products, and the aspect LoggerFac-

tory represents a factory. The Factory operation createLogger represents a parameterised

factory method and is responsible for referencing calls for the needed aspect. The point-

cuts and advices in the factory LoggerFactory decide which logger should be handled by

the print method. The pointcuts and advices are now separated from their behaviours that

are defined in concrete logger methods named displayInfo. Such a structure of aspects is

reasonable in the cases where we also need concrete loggers to have pointcuts and advices

responsible for handling behaviours uncommon to other concrete loggers and defined di-

rectly in the concrete logger aspects as it is in the ResourceLogger aspect.

Example 6. AO Factory Method design pattern.

ConcreteProduct1 and ConcreteProduct2 that extend the abstract aspect Product and we
have a solution that consists only of aspects (Fig. 11).

The AspectJ code for this solution is presented in Example 5.
The cardinality of Product association in Fig. 10 is set to one, because only one aspect

at a moment could be used by Factory as defined in the code of the Factory aspect (Ex-
ample 5). This code demonstrates that despite the fact that aspects are singletons, the AO
pattern preserves all essential elements of the OO pattern. An example of the application
of the AO Factory Method pattern is given in Fig. 12. In this example we deal again with
the complex Logger concern consisting of several aspects (Fig. 5).

Finally, let us consider the Chain of Responsibility design pattern as the most repre-
sentative example of the AO design patterns with the reduced applicability.

312 Ž. Vaira, A. Čaplinskas

Fig. 13. Chain of Responsibility design pattern (OO solution).

Fig. 14. Chain of Responsibility design pattern (AO solution).

The intent of the Chain of Responsibility design pattern is to “chain the receiving
objects and pass the request along the chain until an object handles it” (Gamma et al.,
1994). The essential elements of this pattern are (Fig. 13):

• Handler, an abstract class that contains the handleRequest operation and defines an
interface of Handler type objects;

Software Engineering Paradigm Independent Design Problems 313

Fig. 15. The idea behind Aspect Chain of Responsibility.

The example bellow (Fig. 16) demonstrates the applicability of the AO Chain of Respon-
sibility pattern. In this example we deal again with a complex Logger concern consisting
of several aspects (Fig. 5). The problem is changed slightly to be suitable to apply to the
Chain of Responsibility design pattern.
Thus, we still have two different loggers – ResourceLogger and EventLogger, but we need
to log at some of joinpoints using both of them, and only one of them at some other join-
points. The rule when and how it should be done is defined by overwriting displayLogInfo
in concrete loggers. Concrete loggers can also have other defined pointcuts and advices
that are specific only to concrete loggers ResourceLogger or EventLogger.

Example 7. AO Chain of Responsibility design pattern.

Fig. 16. Application of the AO Chain of Responsibility design pattern.

314 Ž. Vaira, A. Čaplinskas

• ConcreteHandler1 and ConcreteHandler2, concrete Handler classes that overwrite
the handleRequest operation with a concrete method, that handles an appropriate
request and forwards other requests to its successor in the chain; and

• Client, the class that invokes the handleRequest.

In the AO solution (Fig. 14) of the Chain of Responsibility design pattern all classes
are replaced by aspects as it is required by the proposed methodology. In this solution,
differently than in the OO solution, it is impossible to use several instances of the same,
concrete handlers (Fig. 14), because each concrete handler has one and only one instance.
In the general case, the number of the concrete handlers is not limited. However, for the
reasons of simplicity, Figure 14 shows two concrete handlers only. One more restriction
caused by the fact that aspects behave like singletons is impossibility to include the same
aspect into the chain for several times, because in such a case the recursion created by the
cyclic nature of the successor association (Fig. 14) falls into an eternal loop. Figure 15
presents the problem solved by the Chain of Responsibility pattern consisting only of
aspects.

5. Conclusions and Future Work

The paper investigates the nature of software design patterns and demonstrates that some
software system design problems do not depend from a software engineering paradigm
that is applied. However, it investigates in detail two paradigms only: aspect-oriented
and object-oriented. The paper proposes a classification of the ways of solving design
problems using OO and AO design patterns. The proposed classification contributes to
the better understanding of relations among the design problems and the design patterns.
The paper proposes also a technique for redesigning object-oriented patterns into pure
aspect-oriented ones and demonstrates application of this technique for the GoF 23 de-
sign patterns. To our knowledge, the issues of the development of pure AO design patterns
on the basis of the GoF 23 patterns up to time were not investigated. Although originally
the GoF 23 design patterns have been proposed in the context of object-oriented systems,
only two of these patterns – Prototype and Composite – solve specific object-oriented
design problems. Design problems solved by other GoF 23 patterns arise also in other
paradigms including the aspect-oriented one. So, most of these patterns can be useful
also in other paradigms. In the AO programming languages such design patterns can be
implemented using only AOP constructs. It follows that aspects can be used as collabo-
rative entities, i.e., that it is possible to establish dependencies and associations among
aspects and to create their hierarchies. However, in some cases, it can result in the cross-
cutting among aspects. It can be expected that the crosscutting can be eliminated by using
higher level aspects or that it is possible to avoid such crosscutting by using some anti-
patterns. However, this problem should be investigated in detail. It is the intent of our
future research.

Software Engineering Paradigm Independent Design Problems 315

References

Aksit, M., Bergmans, L., Vural, S. (1992). An object-oriented language-database integration model: the
composition-filters approach. In: Lehrman Madsen, O. (Ed.), Proceedings of European Conference on
Object-Oriented Programming (ECOOP), Utrecht, The Netherlands. Lecture Notes in Computer Science,
Vol. 615, Springer, Berlin. pp. 72–396.

Arnout, K., Meyer, B. (2006). Pattern componentization: the factory example. Innovations in Systems and Soft-
ware Engineering, 2, 65–79.

Bernardi, M.L., Di Lucca, G.A. (2005). Improving design pattern quality using aspect orientation. In: Proceed-
ings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP’05),
IEEE Computer Society, Los Alamitos. pp. 206–218.

Bynens, M., Joosen, W. (2009).Towards a pattern language for aspect-based design. In: Proceedings of the 1st
Workshop on Linking Aspect Technology and Evolution (PLATE ’09), Charlottesville, Virginia, USA, New
York, ACM, pp. 13–15.

Bynens, M., Lagaisse, B., Joosen, W., Truyen, E. (2007). The elementary pointcut pattern. In: Proceedings of
the 2nd Workshop on Best Practices in Applying Aspect-Oriented Software Development, New York, NY,
USA, 2007. ACM, New York, Article No. 2.

Cacho, N., Figueiredo, E., Sant´Anna, C., Garcia, A., Batista, T., Lucena, C. (2005). Aspect-Oriented Compo-
sition of Design Patterns: A Quantitative Assessment. Monografias em Ciência da Computação – No. 34/05.
Pontifícia Universidade Católica do Rio de Janeiro, Brasil.

Cunha, C.A., Sobral, J.L., Monteiro, M.P. (2006). Reusable aspect-oriented implementations of concurrency
patterns and mechanisms. In: Filman, R.E. (Ed.), Proceedings of the 5th International Conference on Aspect-
Oriented Software Development, AOSD, Bonn, Germany. ACM, New York, pp. 134–145.

Czarnecki, K., Eisenecker, U.W. (2000). Generative Programming: Methods, Tools, and Applications. Addison
Wesley, Reading.

Dantas, D.S., Walker, D., Washburn, G., Weirich, S. (2008). AspectML: a polymorphic aspect-oriented func-
tional programming language. ACM Transactions on Programming Languages and Systems, 30(3), 71–130.

Filman, R.E., Friedman, D.P. (2001). Aspect-Oriented Programming is Quantification and Obliviousness. Re-
search Institute for Advanced Computer Science, RIACS Technical Report 01.12.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading.

Garcia, A. (2004). From Objects to Agents: An Aspect-Oriented Approach. Doctoral thesis, Rio de Janeiro,
Brazil, PUC-Rio.

Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U. (2005). Modularizing design patterns with aspects:
a quantitative study. In: Proceedings of the International Conference on Aspect-Oriented Software Develop-
ment (AOSD’05), Chicago, USA, pp. 14–18. ACM, pp. 3–14.

Griswold, W.G., Sullivan, K., Song, Y., Shonle, M. Tewari, N., Cai, Y., Rajan. H. (2006). Modular software
design with crosscutting interfaces. IEEE Software, 23(1), 51–60.

Hachani, O., Bardou, D. (2002). Using aspect-oriented programming for design patterns implementation. In:
Proceedings of 8th International Conference on OOIS, Position paper at the Workshop on Reuse in Object-
Oriented Information Systems Design, Montpellier, France.

Hachani, O., Bardou, D. (2003). On aspect-oriented technology and object-oriented design patterns. In: Pro-
ceedings of European Conference on Object Oriented Programming ECOOP, Position paper at the Workshop
on Analysis of Aspect-Oriended Software, Darmstadt, Germany.

Hanenberg, S., Costanza, P. (2002). Connecting aspects in AspectJ: strategies vs. atterns. In: Coady, Y (Ed.),
First Workshop on Aspects, Components, and Patterns for Infrastructure Software, AOSD, Enschede,
The Netherlands. TR-2002-12. The Department of Computer Science, University of British Columbia, Van-
couver, BC, pp. 40–45.

Hanenberg, S., Schmidmeier, A. (2003). Idioms for building software frameworks in AspectJ. In: Coady, Y.,
Eide, E., Lorenz, D.H. (Eds.) Proceedings of the 2nd AOSD Workshop on Aspects, Components, and Patterns
for Infrastructure Software (ACP4IS), Boston, MAs. NU-CCIS-03-03. College of Computer and Information
Science, Northeastern University, Boston, MAs, pp. 55–60.

Hanenberg, S., Unland, R., Schmidmeier, A. (2003). AspectJ idioms for aspect-oriented software construction.
In: The Proceedings of 8th European Conference on Pattern Languages of Programs (EuroPLoP), Irsee,
Germany, pp. 617–644.

316 Ž. Vaira, A. Čaplinskas

Hannemann, J., Kiczales, G. (2002). Design pattern implementation in Java and AspectJ. In: Proceedings of the
17th Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA ’02),
ACM, New York, pp. 161–173.

Harrison, W., Ossher, H. (1993). Subject-oriented programming (a critique of pure objects). In: Proccedings of
Object-Oriented Programming Systems Languages and Applications (OOPSLA), pp. 411– 428.

Hirschfeld, R., Lämmel, R., Wagner, M. (2003). Design patterns and aspects – modular designs with seamless
run-time integration. In: Proceedings of the 3rd German Workshop on Aspect-Oriented Software Develop-
ment (AOSD-GI 2003), pp. 25–32.

Kiczales, G., des Rivieres, J., Bobrow, D.G. (1991). The Art of the Metaobject Protocol. MIT Press, Cambridge.
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin, J, (1997). Aspect ori-

ented programming. In: Proceedings of European Conference on Object Oriented Programming (ECOOP),
Vol. 1241, pp. 220–242.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G. (2001). Getting started with
AspectJ. CACM, 44(10), 59–65.

Laddad, R. (2003). AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publications, Green-
wich.

Lagaisse, B., Joosen, W. (2006). Decomposition into elementary pointcuts: a design principle for improved
aspect reusability. In: Proceedings of the Workshop on Software Engineering Properties of Languages and
Aspect Technologies (SPLAT). Affiliated with AOSD 2006. Bonn, Germany, pp. 64–69.

Lieberherr, K.J., Silva-Lepe, I., Xiao, C. (1994). Adaptive object-oriented programming using graph-based
customization. CACM, 37(5), 94–101.

Lopes, C.V. (2005). Aspect-oriented programming: a historical perspective (what’s in a name?). In: Aspect-
Oriented Software Development. Addison-Wesley, Reading, pp. 97–122.

Lorenz, D.H. (1998). Visitor beans: an aspect-oriented pattern. In: Proceedings of the ECOOP’98 Workshop on
Aspect-Oriented Programming, pp. 431–432.

MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., Bromling, S., Tan, K. (2002). Generative design patterns.
In: Proceedings of the 17th IEEE International Conference on Automated Software Engineering (ASE),
Edinburgh, Scotland, UK. IEEE Computer Society, Los Alamitos, pp. 23–34.

Maioriello, J. (2002). What Are Design Patterns and Do I Need Them? Online publication, developer.com,
QuinStreet Inc. Accessible at
http://www.developer.com/design/article.php/1474561/What-Are-Design-
Patterns-and-Do-I-Need-Them.htm

Martin, R. (2000). Design Principles and Design Patterns. Online publication. Accessible at
http://www.objectmentor.com/resources/articles/Principles-and-Patterns

Menkyna, R., Vranić, V., Polášek, I. (2010). Composition and categorization of aspect-oriented design patterns.
In: Proceedings of 8th International Symposium on Applied Machine Intelligence and Informatics, SAMI,
HerǏany, Slovakia, IEEE Press, New York, pp. 129–134.

Meslati, D. (2009). On ASPECTJ and composition filters: a mapping of concepts. Informatica, 20(4), 555–578.
Miles, R. (2004). AspectJ Cookbook. O’Reilly, Sebastopol.
Noble, J., Schmidmeier, A., Pearce, D.J., Black, A.P. (2007). Patterns of aspect-oriented design. In: Proceedings

of the European Conference on Pattern Languages of Programs (EuroPLOP), Hillside Publishers, London,
pp. 769–796.

Noda, N., Kishi, T. (2001). Implementing design patterns using advanced separation of concerns. In: Proceed-
ings of OOPSLA 2001 Workshop on Advanced Separation of Concerns in Object-Oriented Systems, Tampa
Bay, FL, USA.

Nordberg, M.E. (2001a). Aspect-oriented dependency inversion. In: Proceedings of OOPSLA 2001 Workshop
on Advanced Separation of Concerns in Object-Oriented Systems, Tampa Bay, FL, USA.

Nordberg, M.E. (2001b). Aspect-oriented indirection – beyond object-oriented design patterns. In: Proceedings
of OOPSLA 2001 (Position paper at workshop “Beyond Design: Patterns (mis)used”).

Piveta, E.K., Zancanella, L.C. (2003). Observer pattern using aspect-oriented programming. In: Proceedings of
the 3rd Latin American Conference on Pattern Languages of Programming, Porto de Galinhas, PE, Brazil.

Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., Staa, A. (2003). On the reuse and maintenance of aspect-
oriented software: an assessment framework. In: Proceedings of Brazilian Symposium on Software Engi-
neering (SBES’03), Manaus, Brazil, pp. 19–34.

Software Engineering Paradigm Independent Design Problems 317

Shalloway, A., J.R. Trott, J.R. (2001). Design Patterns Explained: A New Perspective on Object-Oriented De-
sign. Software Patterns Series. Addison-Wesley, Reading.

Schmidmeier, A. (2004). Patterns and an antiidiom for aspect oriented programming. In: Proceedings of 9th
European Conference on Pattern Languages of Programs (EuroPLoP 2004), Irsee, Germany.

Schmidmeier, A., Hanenberg, S., Unland, R. (2003). Implementing known concepts in AspectJ. In: Bachmendo,
B., Hanenberg, S., Herrmann, S., Kniesel, G. (Eds.), Proceedings of the Third German Workshop on Aspect-
Oriented Software Development. University of Duisburg-Essen, Institute for Computer Science and Business
Information Systems (ICB), pp. 65–70.

Tešanović, A, (2004). What is a Pattern? Course note, at Linköping University, Sweden. Accessible at
http://www.idi.ntnu.no/emner/dt8100/papers2005/P-a10-tesanovic04.pdf

Vaira, Ž., Čaplinskas, A. (2009). Compositional aspect-oriented design pattern properties. In: Proceedings of
50th Conference of Lithuanian Mathematicians Society. pp. 123–453.

Ž. Vaira is a doctoral student at the Institute of Informatics and Mathematics of Vilnius
University. His research interests are aspect-oriented programming and design patterns.

A. Čaplinskas is a professor, principal researcher and the head of the Software Engineer-
ing Department at the Institute of Informatics and Mathematics of Vilnius University. His
main research interests include software engineering, information system engineering,
legislative engineering, and knowledge-based systems.

Nuo konkrečios program ↪u sistem ↪u inžinerijos paradigmos
nepriklausančios projektavimo problemos, GoF 23 projektavimo
šablonai ir aspekt ↪u projektavimas

Žilvinas VAIRA, Albertas ČAPLINSKAS

Straipsnyje siūloma kaip tipinius objektinio projektavimo sprendimus, vadinamuosius GoF 23
projektavimo šablonus, pritaikyti aspektinio projektavimo poreikiams. Analizuojama, kurie iš ši ↪u
šablon ↪u apskritai yra prasmingi aspektinio projektavimo kontekste ir kaip juos paveikia perėjimas
nuo objektinio prie aspektinio projektavimo. Straipsnis remiasi prielaida, jog kai kurie tipiniai
sprendimai sprendžia tokias program ↪u projektavimo problemas, kurios nepriklauso nuo konkrečios
program ↪u sistem ↪u inžinerijos paradigmos ir kurias tenka spr ↪esti tiek objektinio, tiek ir aspektinio
projektavimo kontekste. Jame siūloma, kaip klasifikuoti tipinius projektavimo sprendimus pagal
j ↪u sprendžiam ↪u problem ↪u pobūd↪i ir kaip transformuoti nuo objektinės paradigmos nepriklausomas
projektavimo problemas sprendžiančius GoF 23 projektavimo šablonus ↪i aspektinio projektavimo
tipinius sprendimus.

