
INFORMATICA, 2011, Vol. 22, No. 3, 371–381 371
© 2011 Vilnius University

Expected Bayes Error Rate in Supervised
Classification of Spatial Gaussian Data
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Abstract. In the usual statistical approach of spatial classification, it is assumed that the feature
observations are independent conditionally on class labels (conditional independence). Discarding
this popular assumption, we consider the problem of statistical classification by using multivariate
stationary Gaussian Random Field (GRF) for modeling the conditional distribution given class la-
bels of feature observations. The classes are specified by multivariate regression model for means
and by common factorized covariance function. In the two-class case and for the class labels mod-
eled by Random Field (RF) based on 0–1 divergence, the formula of the Expected Bayes Error Rate
(EBER) is derived. The effect of training sample size on the EBER and the influence of statistical
parameters to the values of EBER are numerically evaluated in the case when the spatial framework
of data is the subset of the 2-dimensional rectangular lattice with unit spacing.
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1. Introduction, Main Concepts

Spatial supervised classification is a problem of classifying locations (sites, pixels) into
several categories by learning the feature observations and the adjacency relationships
with training sample. The classification of pixel into one of the classes is fundamental
problem in image pattern analysis (see, e.g., Mardia, 1988). Switzer (1980) was the first
to treat classification of spatial data. Mardia (1984) extended this research by includ-
ing spatial discrimination methods in forming the classification maps. The application
of spatial contextual (or supervised) classification methods in geospatial data mining is
considered by Shekhar et al. (2004). It should be noted, that widely applicable methods
of exemplar-based image completion (see, e.g., Wu et al., 2010) are also closely tied with
the methods of spatial discrimination.

It is usually assumed that feature observations are conditionally independent given
class labels (conditional independence) (see, e.g., Cressie, Section 7.4). This approach
with normally distributed features and the labels following the Markov RF model is
widely used for remote sensing image classification (see, e.g., Nishii, 2003).

Computer-intensive methods, including simulated annealing and MCMC methods,
can be used for the solving of spatial classification problems, but the implementation
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is often difficult because of computational complexity. So the derivation closed form
expressions of error rates as performance measures of the classification procedures are of
great importance.

The exact error rates due to Bayes classification rule are derived by Nishii and Eguchi
(2006), under the assumptions of conditional independence. Problems of spatial classifi-
cation of Gaussian feature observations by discarding the assumption of conditional inde-
pendence were considered for fixed (nonrandom) class labels in training sample (Dučin-
skas, 2009) and for class labels following Markov RF model (Stabingienė and Dučinskas,
2009).

In the present paper we performed the generalization of the aforementioned paper re-
sults to the multivariate feature case and different approach to modeling of class labels.
The stationary multivariate Gaussian Random Fields (GRF) model for features and logis-
tic type discrete RF model based on 0–1 divergence are considered. Conditional Bayes
error rate (CBER) and EBER are derived for the two-class case. Numerical analysis of
derived expected error rate is carried out in the case of spatial framework of data being
the subset of 2-dimensional rectangular lattice with unit spacing and anisotropic expo-
nential spatial correlation model for feature observations. Free software system R is used
for calculations.

In the following we will give a brief descriptions of feature and label models.
Suppose that spatial data consist of observed values of feature variable which is mod-

eled by p-variate RF

{
Z(s): s ∈ D ⊂ R2

}
.

Each location in area D is assumed to belong to one of two classes Ω1, Ω2. A class
label or simply the label for location s ∈ D is denoted by Y (s), and is treated as random
variable over a label set L = {1, 2}.

Let the model of feature observation Z(s) in class Ωl (i.e., Y (s) = l) be

Z(s) = B′
lx(s) + ε(s), (1)

where x(s) is a q × 1 vector of non random regressors and Bl is a q × p matrix of
parameters, l = 1, 2. It is required that B1 �= B2. The error term in (1) is generated by
p-variate zero-mean stationary GRF {ε(s): s ∈ D} with covariance function defined by
the following model for all s, u ∈ D

cov
{
ε(s), ε(u)

}
= r(s − u)Σ, (2)

where r(s − u) is the spatial correlation function and Σ is feature variance – covariance
matrix.

Set Y = (Y (s1), . . . , Y (sn))′ and Z = (Z(s1), . . . , Z(sn))′ and call them train-
ing label vector and training feature matrix, respectively. Thus, the n × (p + 1) matrix
T = (Y, Z) constitutes the training sample.
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Denote by Sn = {si ∈ D; i = 1, . . . , n} the set of locations where training sample
T is taken, and call it the Set of Training Locations (STL). It is also referred to as spatial
framework for training sample (see Shekhar et al., 2002).

Suppose that the realizations of random training variables Y = y and Z = z corre-
spond to the realization of training sample T = t. Then the distribution of training feature
matrix Z for given Y = y is matrix-variate normal distribution, i.e.,

Z | Y = y ∼ Nn×p(XyB, R ⊗ Σ), (3)

where Xy is the n × 2q design matrix, B′ = (B′
1, B

′
2) is the p × 2q matrix of mean

parameters.
Here R denotes the spatial correlation matrix for feature observations at Sn with ele-

ments equal to the corresponding values of spatial correlation function r specified in (2).
The n × 2q design matrix Xy is formed in the following way: the first q columns

contain regressors for feature observations from Ω1, and the second q columns contain
regressors for feature observations from Ω2. In the following we specify the classification
problem.

2. Bayes Discriminant Function and Associated Error Rates

In the present paper, we consider the problem of the classification of the feature obser-
vation Z0 = Z(s0), s0 ∈ D with an unobserved class label in the case of given training
sample. The label for location s0 is denoted by Y0.

Denote by r0 the vector of spatial correlations between Z0 and Z and set

Z+ =
(

Z

Z0

)
, R+ =

(
R r0

r′
0 1

)
, x0 = x(s0), α0 = R−1r0.

It follows from (1)–(3), that for l = 1, 2.

Z+ | Y = y, Y0 = l ∼ V(n+1)×p(X l
yB, R+ ⊗ Σ), (4)

where

X l
y =

(
Xy

xl
0

)
, xl

0 =
(
δ1lIq ⊗ δ2lIq

)
x0.

Here δij is the Kronecker delta symbol, and Iq is the identity matrix of order q. Then
from (4) it follows that the conditional distribution of Z0 given T = t is Gaussian, i.e.,

Z0 | T = t, Y0 = l ∼ Np

(
μ0

lt, Σot

)
. (5)

Here the conditional means μ0
lt are

μ0
lt = E(Z0 | T = t; Y0 = l) = B′

lx0 + (z − XyB)′α0, l = 1, 2. (6)
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Conditional covariance matrix Σ0t is specified as follows

Σ0t = Var(Z0 | T = t; Y0 = l) = kΣ, (7)

with k = 1 − r′
0α0.

The marginal squared Mahalanobis distance between populations for feature observa-
tion taken at location s = s0 is

Δ2
0 =

(
μ0

1 − μ0
2

)′Σ−1
(
μ0

1 − μ0
2

)
, (8)

where μ0
l = B′

lx0, l = 1, 2.
The squared Mahalanobis distance between conditional distributions of Z0 for given

T = t is specified by

Δ2
0n =

(
μ0

1t − μ0
2t

)′Σ−1
0t

(
μ0

1t − μ0
2t

)
. (9)

Then using (6), (7) in (8), (9) yields

Δ2
0n = Δ2

0/k.

It is obvious, that Δ0n depends on training sample only through Sn.
Throughout the present paper we suppose that STL Sn is fixed, but the labels are

distributed randomly on it.
So Sn is partitioned into union of two disjoint subsets, i.e.,

Sn = S(1) ∪ S(2),

where S(l) is the random subset of Sn that contains Nl locations with labels equal l,
l = 1, 2. Since N1 + N2 = n, it is sufficient to consider only N1 distribution.

Denote the distribution of discrete random variable N1 by

{
πj = P (N1 = j), j = 0, 1, . . . , n

}
. (10)

These probabilities are sometimes called prior probabilities for labels.
We call ξ(y) = {S(1), S(2)} the Spatial Labels Design (SLD) corresponding to the

training labels vector realization Y = y. It is obvious, that there is in one-to-one corre-
spondence between ξ(Y ) and Y . Suppose that if Y = y, then Ni = ni, i = 1, 2, where
n1 + n2 = n.

Let J(l, k) be a nonnegative divergence between two classes Ωl and Ωk, for k, l =
1, 2, satisfying J(l, l) = 0.

Denote the conditional distribution of Y0 given Y = y by

πl(y) = P (Y0 = l | Y = y), l = 1, 2.



Expected Bayes Error Rate in Supervised Classification of Spatial Gaussian Data 375

In the present paper, we extend the approach used by Nishii and Eguchi (2006) for
modeling the label distribution on Sn ∪ s0.

We assume that the distribution of label Y0 conditionally by on Y = y is specified by
labels in Sn (not only by labels in some neighborhood of s0) and by divergence.

With an insignificant loss of generality, we will consider the case when the conditional
distribution of label Y0 does not directly depend on Sn and s0.

Let Δ(l) denote the average of divergences between location s0 with label l and labels
of locations in Sn as Δ(l) =

∑2
k=1 nlJ(l, k)/n.

ASSUMPTION 1. The conditional distribution of Y0 given Y = y (with N1 = n1) is
specified by the following equation

πl(y) = exp

{
− ρΔ(l)

}/ 2∑
k=1

exp
{

− ρΔ(k)

}
, l = 1, 2, (11)

where ρ is a non-negative constant called a clustering parameter.

Note that ρ gives the degree of spatial dependency of the RF. If ρ = 0, then the classes
are spatially independent.

Under the assumption, that the classes are completely specified the Bayes Discrimi-
nant Function (BDF; Fukunaga, 1990) minimizing the probability of misclassification, is
formed by the logarithm of ratio of conditional densities described above. We shall call
that situation the case of complete parametric certainty.

Then BDF for classification of Z0 given T = t is

Wt(Z0) =
(

Z0 − 1
2
(
μ0

1t + μ0
2t

))′
Σ−1

0t

(
μ0

1t − μ0
2t

)
+ γ(y),

where γ(y) = ln(π1(y)/π2(y)).

DEFINITION 1. The Conditional Bayes Error Rate (CBER) is defined as the probability,
conditional on T = t, that random observation Z0 is misclassified by BDF Wt(Z0) and
is denoted by P0(t).

Let Φ(·) be the standard normal distribution function.

Lemma 1. Suppose that conditional distribution of Z0 is specified in (5)–(7) and con-
ditional distribution of Y0 satisfies Assumption 1. Then conditional Bayes error rate of
classifying Z0 by BDF Wt(Z0) is

P0(t) =
2∑

l=1

πl(y)Φ
(
Ql(t)

)
, (12)

where Ql(t) = −Δ0n/2 + (−1)lγ(y)/Δ0n.
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Proof of Lemma 1 follows directly from Definition 1 and from properties of multi-
variate Gaussian distribution.

DEFINITION 2. The Expected Bayes Error Rate (EBER) for Wt(Z0) is defined as
P0n = ET (P0(T )), where ET denotes the expectation with respect to the distribution
of T .

Without essential loss of generality, but for greater interpretability, we restrict our
considerations to the special type of quasi-distance.

ASSUMPTION 2. Quasi-distance J(l, k) is the 0–1 distance defined by J(l, k) = 1 − δlk,
where δlk stands for Kronecker’s delta.

Note that spatial models with assumed type of divergence is frequently used in image
segmentation (Besag, 1986).

Then applying the Assumption 2 to the (11), we have

π1(y) = 1/
(
1 + exp

{
− ρ(n1 − n2)/n

})
,

π2(y) = 1/
(
1 + exp

{
ρ(n1 − n2)/n

})
. (13)

Note that for fixed n, above probabilities depend on y only through n1. So we can
introduce the new notations

π∗
l (n1) = πl(y), γ∗(n1) = γ(y). (14)

Since the random variable N1 is a function of Y , thus (10) and (14) imply that the
joint distribution {P (Y = y, Y0 = l)} = {P (Y0 = l | Y = y)P (Y = y)} have the
following form

{
P (N1 = n1, Y0 = l) = π∗

l (n1) · πn1 , n1 = 0, . . . , n; l = 1, 2
}
. (15)

Lemma 2. Under the conditions of Lemma 1 and Assumption 2 and for given prior prob-
abilities {πj }, the EBER for Wt(Z0) is

Pon =
n∑

j=0

2∑
l=1

πjΦ
(

− Δ0n/2 + (−1)lρ(2j/n − 1)/Δ0n

)
/(

1 + exp
{
(−1)lρ(2j/n − 1)

})
.

Proof. Applying Assumption 2, formula (15) and notations (14) to (12) we have the
following expression for the CBER

P0(t) =
2∑

l=1

π∗
l (n1)Φ

(
− Δ0n/2 + (−1)lγ∗(n1)/Δ0n

)
. (16)
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From (15) we see that CBER depends on T = t only through N1 = n1. So we can
replace the averaging of P0(T ) with respect to the distribution of T by the averaging it
with respect to the distribution of N1 specified in (10). Then the assertion of Lemma 2 is
obtained by using (13)–(15) in (16).

The derived closed form expression can be effectively used as performance measure
for BDF and as optimality criterion for spatial sampling design.

3. Numerical Examples and Conclusions

Here we shall evaluate the effect of training sample size on the EBER and shall analyze
numerically the dependence of EBER on some statistical parameters of classes.

For the numerical illustration we consider the univariate case of model (1)–(4) with
constant means and isotropic exponential covariance function given by

C(h) = σ2 exp{−|h|/α},

where σ2 is a variance and α is a range parameter.
Suppose that D is 2-dimensional rectangular lattice with unit spacing and S0 = (0, 0).

Without essential loss of generality, we consider the case with n = 2M , where M is a
fixed natural number. Then, EBER Pon is given by

Pon =
2M∑
j=0

2∑
l=1

πjΦ
(

− Δ0n/2 + (−1)lρ(j/M − 1)/Δ0n

)
/(

1 + exp
{
(−1)lρ(j/M − 1)

})
(17)

EXAMPLE 1. In the first example, we consider how the training sample size affects the
values of EBER. The effect of the sample size to EBER is explored using first-order
(M = 2), second-order (M = 4) and third-order neighborhoods (M = 6) to s0. For
greater interpretability we set πM = 1. In this case the number of locations in Sn with
label 1 is equal to the number of locations in Sn that are labeled 2 with probability one.
Then EBER is expressed by

P0n = Φ(−Δ0n/2).

Note that in considered case, EBER does not depend on the clustering parameter ρ.
The cases of the SLD satisfying the conditions of the example1 are illustrated in

Fig. 1.
Denote by BE(I) the EBER for the STL forming the l-st order neighborhood of s0,

for l = 1, 2, 3. The comparison of two STL with different sizes is done by the efficiency
index defined by the ratio E(ij) = BE(i)/BE(j).
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Fig. 1. Different spatial labels designs with points of S(1) and S(2) signed as • and *, respectively. Cases (a),
(b) and (c) indicate first-order, second-order and third-order neighborhoods of s0, respectively.

Table 1

Values of EBER and values of efficiency indexes for three neighborhoods and various values of range parame-
ter α

α

0.5 1 1.5 2 2.5 3

BE(1) 0.30260 0.27007 0.23612 0.20707 0.18255 0.16170

BE(2) 0.30237 0.26946 0.23562 0.20671 0.18229 0.16151

BE(3) 0.30236 0.26930 0.23512 0.20588 0.18120 0.16021

E(21) 0.99924 0.99774 0.99788 0.99826 0.99858 0.99882

E(13) 0.99921 0.99715 0.99576 0.99425 0.99260 0.99079

E(23) 0.99997 0.99941 0.99788 0.99599 0.99402 0.99195

The values of EBER specified in (17) and the values of efficiency indexes are calcu-
lated for different values of range parameter α but for fixed Δ0 = 1. They are presented
in Table 1.

Figures in Table 1 confirm quite logical conclusion that EBER decreases with the in-
creasing of sample size. Analyzing the rows of Table1 with values of efficiency indexes,
we can conclude that decreasing rate of EBER is higher for larger values of range param-
eter α.

EXAMPLE 2. In the second example we explore the influence of statistical parameters to
the values of EBER. Here we restrict our attention on the STL forming the second-order
neighborhood of s0 (i.e., n = 8).

Note that the second-order neighborhood to s0 = (0, 0) is the set

S8 =
{
(0, 1), (1, 1), (1, 0), (1, −1), (0, −1), (−1, −1), (−1, 0), (−1, 1)

}
.

Assume that prior probabilities are

π2 = π6 = 0.05, π3 = π5 = 0.15, π4 = 0.6 and πj = 0

for j = 0, 1, 7, 8.

Then only SLD corresponding to N1 = 2, 3, . . . , 6 are admissible.
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Fig. 2. Three different SLD with S(1) and S(2) points • and *, signed as respectively.

Table 2

Values of P0n for Δ0 = 0.2 and various α and ρ

ρ α

0.5 1 1.5 2 2.5 3

0 0.45877 0.45110 0.44271 0.43503 0.42805 0.42166

0.4 0.44698 0.44095 0.43394 0.42725 0.42100 0.41518

0.8 0.42014 0.41655 0.41191 0.40712 0.40240 0.39783

1.2 0.38851 0.38656 0.38372 0.38055 0.37725 0.37392

1.6 0.35633 0.35537 0.35374 0.35173 0.34950 0.34715

2 0.32529 0.32490 0.32405 0.32285 0.32140 0.31979

The following three SLD

ξ1 =
{
S(1) =

{
(0, 1), (1, 1), (1, 0), (1, −1)

}
,

S(2) =
{
(0, −1), (−1, −1), (−1, 0), (−1, 1)

}}
,

ξ2 =
{
S(1) =

{
(0, 1), (1, 1), (1, 0)

}
,

S(2) =
{
(1, −1), (0, −1), (−1, −1), (−1, 0), (−1, 1

}}
,

ξ3 =
{
S(1) =

{
(−1, 1), (0, 1)

}
,

S(2) =
{
(1, 1), (1, 0), (1, −1), (0, −1), (−1, −1), (−1, 0)

}}
,

can be considered as examples of admissible SLD, because SLD ξ1 corresponds the sit-
uation N1 = 4, SLD ξ2 corresponds the situation N1 = 3, and SLD ξ3 corresponds the
situation N1 = 2. These SLD are illustrated in Fig. 2.

For the conditions described in the beginning of Example 2, the values of EBER for
various clustering parameters and range parameters are calculated. Figures for the case
with Δ0 = 0.2 are presented in Table 2 and figures for the case with Δ0 = 1 are presented
in Table 3.

Table 2 shows that exact error rate for weakly separated classes (Δ0 = 0.2) is mono-
tonically decreasing in α for fixed values of ρ. Also we can deduce that observations of
the features with “stronger” spatial dependence can be classified more correctly.

The similar trends in dependence of the EBER on range parameter α and clustering
parameter ρ for strongly separated classes (Δ0 = 1.0) can be seen in Table 3.
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Table 3

Values of P0n for Δ0 = 1 and various α and ρ

ρ α

0.5 1 1.5 2 2.5 3

0 0.30237 0.26946 0.23562 0.20671 0.18229 0.16151

0.4 0.30178 0.26900 0.23525 0.20641 0.18204 0.16129

0.8 0.30005 0.26761 0.23415 0.20551 0.18129 0.16065

1.2 0.29728 0.26539 0.23237 0.20405 0.18006 0.15961

1.6 0.29362 0.26242 0.22999 0.20209 0.17842 0.15822

2 0.28923 0.25884 0.22711 0.19971 0.17642 0.15651

Numerical analysis, performed for small training samples, shows that the greater de-
pendency of class labels and stronger spatial correlation between feature observations
ensures the smaller EBER. This conclusion can be verified directly by differentiation
EBER given in formula (17). So we can expect the similar dependencies for other spatial
correlation models for features and more complicated label distribution.
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Vidutinė Bajeso klaidos tikimybė klasifikuojant erdvinius Gauso
duomenis

K ↪estutis DUČINSKAS, Lijana STABINGIENĖ

Straipsnyje sprendžiamas stacionaraus Gauso atsitiktinio lauko stebinio klasifikavimo už-
davinys, esant statistiškai priklausomai mokymo imčiai. Mokymo imties klasi ↪u žymės tenk-
ina atsitiktinio lauko model↪i. Išvesta originali vidutinės Bajeso klaidos tikimybės formulė, at-
sisakant s ↪alyginės nepriklausomybės prielaidos. Skaitinė gaut ↪u formuli ↪u analizė atlikta su erdvini-
ais Gausiniais duomenimis, stebimais taisyklingoje dvimatėje gardelėje. Gauti rezultatai atskleidžia
klasifikavimo klaid ↪u priklausomybės pobūd↪i nuo statistini ↪u parametr ↪u ir mokymo imties didumo.


