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Abstract. We present a new method for solving the change-point detection 
problem for ARMA systems which are assumed to have a slow and non-decaying 
drift after the change occurs. The proposed technique is inspired by the stochas­
tic complexity theory, which gives a basis of comparison of different models with 
different change-point .imes. Some partial results on the analysis of the estima­
tor are stated. A simulation is included which shows that the approach exhibits 
surprisingly good detection capabilities. 
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1. Introduction. Any process which presents quantitative 
and/or qualit~tive changes along its evolution and in which we 
would .like to determine the location in time of these changes, can 
be said to fall into the cat~gory of change-point detection proble~s. 
Change-point detection finds its use in a variety scientific activities 

. ranging from mathematics to econor.lics, and certainly including 
I . engmeenng. 

Traditionally, change-point detection prcblems emerged as 
part of. the need to anticipate "catastrophic" failures of a physi­
cal system. Typical examples are in sensors and actuators, fatigue 
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of structures, failures in nuclear plants, earthquakes, etc. These 
earlier applications have evolved somehow to also include change­
point detection as one of the basic feature of the modelling process 
of a physical system. Good illustrations are spf'ech and ECG sig­
nals. More recently, change-point detection has entered the area of 
adaptive control. By making the control law also a function of the 
change-point estimator, the adaptation algorithm can be applied to 
more general systems, those which present abrupt or slowly time 
variant changes. 

In the last two decades numerous methods have been available 
for tackling change-point problems. For a recent survey see Bas­
seville (1988). Other useful references are the books of Basseville 
and Benveniste (1986), and Telksnys (1986). To the best of our 
knowledge, no change-point method for dynamical systems is given 
in terms of on-line, recursive, "easily" computable, and theoreti­
cally tractable algorithms. Moreover, very little ha.s been done ~n 
the case of a change-point problem leaving the realm of time invari­
ant systems. However, these. are precisE:ly the characteristics that 
any method sh~ld have if it intend to successfully solve the above 
applications, especially those in the area of adaptive control. 

I 
In this paper we present a general method for solving the 

change-point detection problem which could be applied to time 
variant dynami'ca:l systems. Moreover, we show that the approach 
is amenable for theoretical analysis and we give some partial results. 
We restrict our attention to the ARMA ~a.se. but the method is not 
confined to this particular situation. 

The basis of ourchange-po;nt detection method lies in the use 
of the stochastic complexity theory. The main idea of this theory is 
that we estimate the shortest code length for the entire obsen'atlOT 
sequence relative t.o a model class. :For somr ea.rly de\.'eloprr!en ;;, 
we refer to Rissanen (1978), Schwarz (1978) a.nd Shibata (1980). A 
recent survey of the history of the evolution of the history oLthe 
evolution of the relevant ideas is given in Rissanen (1987, 1989Yand 
Gerencsser (1991b). A major innovation in the theory of stochastic 
complexity has been the introduction of the conc~pt of predictive 
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stochastic complexity in Rissanen (1986). The predictive stochas­
tic complexity is defined in terms of predictive encoding, which can 
'also be considered as universal coding procedur'c. It is a particu­
larly useful concept in the context of dynamical syst~ms since it is 
inherently "on-line" unlike other criteria such as AIC or BIC, (c.f. 
Akaike, 1970 and 1974) which are inherently off-line. 

What the stochastic complexity theory actually allows us, to 
reduce the change-point detection problem to a model selection 
problem. By using the predictive stochastic complexity we are able 
to arrive at an overa:; fairly simple on-line recursive algorithm for 
the computation of the alarm signal. We shall illustrate all of the 
important aspects of our change-point detection method by means 
of simulations. 

2. The mathematical model. We shall first desrribe the 
dynamics before the change. Let r'" denote the location of the 
change-point, and (Yn) with 0 ~ n < r*, be the output of an ARM A 
system generated by 

A"y = C*e, (1) 

where (en) is the input process. The values for en and Yn for n ~ 0 
are assumed to be o. 

CONDITION 1. A", C" are polynomials of the shift operator z-l 

with coefficients at, cj and deg A* = p deg C" = q. We assume that 
the constant terms are 1 in both A* and C" and that A* and C" are 
stable and relative prime. 

To describe the noise process let us assume that we are given 
a probability space (0, F, P) and a pair of families of O'-algebras 
(Fn,F;[), n ~ 0 such that Fn C F is increasing and Ft C F lS 

decreasing, and Fn and Ft are independent for all n. 

CONDITION 2. The driving noise process e = (en) is a sec­
ond order stationary martingale difference process with respect to 

Fn, E(e;IFn_d = 0'2 = const a.s., and moreover e is L-mixing with 
respect to (Fn, .r-;t). (c.f. Appendix). The process (en) bounded, 
say lenl < b a.s. for all n. (The last part of the condition is needed 
in the analysis of time varying systems). 



6 Change-point detection 

We shall now describe the dynamics after the change. Let (Yn) 
with T* ~ n :::;; N be the output of a.n ARMA system generated by 

(2) 

The notation in equation (2) is read as follows: thE' difference oper­
ator A~ acts on the process (y) and the evaluation is done at time 
n to get Yn' The right hand side is interpreted similarly. 

CONDITION 3. A~ c;, are polynomials of the shift operator z-l 
with coefficients ai,n' cj,n and deg A~ = p, deg C~, = q. We assume 
that the constant terms are 1 in both A;, and C~ and that A~ and 
C~ are stable and relative prime. 

Let O~ denote the k = p+q-dimensional vector composed of the 

coefficients of A~ and C~, that is let e~ = (a~,l"'" a~,p. C~,l"'" C~,qf'. 

CONDITION 4. We have sUPn~T.IT~+l-T~ 1= S < cx:., where S is an 
upper bound for the rate of change of the time varying ARMA(p, q) 
system, and 1·1 denotes the Euclidean norm. 

We denote the model class described so for by MT.' 

3. The encoding procedure_ To compute the stochastic 
complexity for /he model class M T " w~ use a predictive encoding 
procedure. Foif this purpose, we shall make use of the prediction 
error algorithci.s. (For surveys see Ljung and Soderstrom (1984), 
Caines (1988) 'and Soderstrom and Stoica, (1989)). We first state 
the off-line procedure. 

Let D C Rk be a compact domain which contains 0- in its 
interior and such that for any BED the corresponding polynomial 
A and C are stable. Then for any e E D compute the estimated 
noise process f'( 0,0') by 

f(B, 8*) = (AIC)y = (AIC)(C* lA· )e, (3) 

where A and C correspond to 0, and the initial conditions, i.e., the 
values En and Yn for n :::;; 0, are assumed to be O. 

The time invariant off-line prediction error estimator of e*, 
denoted by OCj.., is obtained as the solution of the equation 

:0 ltjS(e,o*) = V .. o"..,(B, eO) =~, (4) 
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where 
N 

VO ((I 0*) = ~ ~ -2 «(I 0*) N, 2 L-t (n' , 
n=l 

and where differentiation is taken both in the almost sure and in 
the M -sence. For the definition of the latter to the Appendix. More 
precisely, 0,']..; are random variables such that 0,']..; E D for all wand if 
the equation has a unique solution in D then it coincides with {jrj.. 
Such a random variable exists by the measurable selection theorem. 

For the time variant off-line case, we use the prediction error al­
gorithms with forgetting given in Gerencser (1989a), which "weighs 
down" past data with geometric rate. In this case the cost-function 
associated with this estimation method is given by 

N 

V~(O,O*) = L(1- ).)N-m ).(~(e, (I"), 
n=l 

where 0 < ). < 1 is the forgetting factor. Then the so-called small 
gain prediction error estimator '8>;. of eN is given as the solution of 

:e V"o(B,B*) = Vl'N(B, B*) = O. (5) 

More precisely, if a unique solution of (.5) exists in D,' then 0,;" is 
the .J-valued random variable representing such solution. Unfortu­
nately, the probability of the "exceptional sets" of n, for which (5) 
has no' solution, does not tend to 0 as N ~ 00. But this difficulty 
can be easily handled (Gerencser, 1991d). 

Let us now describe the encoding procedure. Let YN(e, B*) de­
note the one-step ahead prediction of YN assuming that the system 
parameter vector is O. Then it is easily seen that the prediction 
error is (N(O,O*). This prediction is "honest" in the terminology of 
Rissanen (1986), i.e .. to predict YN we only use data preceding the 
moment N. Now, let T, with 0 < T::;; N, represent the possible loca­
tion of t~e change-point. Then in order to get "good" prediction it 
is clear that we should use the estimates O,~, for 0 ~ n < T, and ~, 
for T ::;; n ~ N. Therefore we associate to the observation Yn either 
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the codelength (~(~_1,8·) or (~(~_1,8') according to the value of 
T chosen. 

Let us define the cumulative predict.ion error 

(6) 

which in the Gaussian caSe (i.e., when ( is a Gatlssian white noj~(') 
is identical to what Rissanen defined as the predictin:' stochastic 
complexity. 5N(T) is the associat.ed total codelength for each 1l1"de] 

class lvt.,.. 

A weak point in t.he present expression for 5,,(7) is that it is 
still hard to compute. \Vhat we really need is a recursive com­
putable criterion. This Can be obtaibned by u:;ing recursive predic­
tion error methods. 

\Vhite the recursive estimation of time invariant systems ha,s 
attracted much attention (c.f. Ljung and Soderstrom and Stoiea" 
1989), the recursive estimation of time var~'ing systems has been al­
most completely neglected. However, a simple method for getting 
recursive estin~ators for the paramete!'s of a time variant system 
has been knO\'in for some time. \Vhile simulation results show rea­
sonable perfo~m a.llce (c.f., e.g., Ljung and Soderstrom, 1984), the 
lack of theoretical analysis has apparently discouraged many prac­
titioners ill the field from its use. However, this drawback has been 
eliminatt'd ::,inn~ many of the importl'lnt theoretical aspects d the 
problem have bE>en recent Iy solved. An off-line estimation method 
has bf>cn de"E'loped and analyzed in G!'frIlC,.,:r (1'l':>9a), and a gen­
eral time varying Ljung's scheme was presented and analyzed in 
Gerencser (1988b). 

The recursive prediction error algorit llm is summarized as fol-
~>. 

iows. Let us a,<;sume t hat an initial guess eo E D is known. As-
~;;. 

suming that the processes (en) and ([~) have been generated for 
n ~ N - 1 we define [~ by the equat.ion 

~).- \ 

(CN_1e>-)N = (_4N_ 1Y)N. (7)' 
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-A AA 
W >. ~ " . ,e set Yn = En = 0 for n ~ 0, and AN_I' CN _ J denote the poly no-

~>. 

mials corresponding to ON_I' Similarly we define (8/80)£7-. by 

~A 8 >. . 
(CN-lO(l )N = -q>N-l, (8) 

where 

<PN-l = (-YN -1> ... - YN -p, ,"1-1'" . c"1_q)T. 

Let us define 

->. 
which is called the asymptotic cost function. Now, let RA<_l be an 
estimation of the Hessian (82/d()2) W(8, 0*) with initial guess, say 
-). ~->. 

Ro. Then e~, RN are computed by the following rec-ursion 

(9) 

(10) 

These tentative values will have to be adjusted if they violate a 
boundedness condition, which is beyond the scope of the present pa­
per to be presented here. We refer the reader to Geren<;ser (1988a) 
for a complete and rigorous description of the present algorithm. 
In (9) and (10) the choise of l/N + A for the forgetting fa(..;or is 
chosen. so as to reduce the uncertainty due to initial conditions at 
the start of the recursive algorithm, and to track the time varying 
parameters afterwards. 

For. >. = 0, denote (c~) the resulting prediction error preces~. 
which correspo'lds to the time invariant recursive prediction error 
algorithm. Then, we express the total codelength for each model 
class M.,. as 

.,.-1 .v 
SN(r) = L(C~)2 + 2)E;~)2. (11) 

which is not computation ally intensive as opposed to S,V(T). Note 
that the P!ediction error sequences do not depend on r since the two 
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recursive algorithms are run in parallel for the whole time interval 
[l,N]. 

4. Change-point detection as model selection. Let us 
assume we are given N observations of the process (Vn), and that 
a change-point occurs at some unknown time r* ~ N. For each 
possible 1 ::;; r ::;;N we have a model class MT with the help of 
which the sequence (Yn) will be encoded. Each model class M,.. has 
an associated stochastic complexity SN(r), which serves as a basis 
for comparision between different model classes, i.e., different r's. 

Let us define 
(12) 

Then, the estimator of r* is, defined' by 

(13) 

Now let N represent the present time. The increments of SN( r) 
with respect to r will be denoted by 

(14) 

It is straightf+rw!l-rd to see that 

UT = (c;)2 _ (c;)2, 

and hence the increments of SN(r) are independent of N. Let us 
now rewrite SN(r) as 

1'-1 1'-1 

SN(r) = SN(1) + 2: SN(k + 1) - SN(k) = SN(1) + 2: 1lk, 

k=l 

and the minimization of SN(r) with respect to r is equivalent to 
the minimization of 

'7"-1 

S~v(r) = 2: Uk· (15) 
k=l 

With this observation, a formal correspondence between c"timula..r 
tive sum method and our stochastic complexity based method is 
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~tablished. For the on-line detection of the minimum of SN( T)" we 
use the so-called Page-Hinkley test (c.f. Hinkley, 1971). Let 

mN = min SH(r), 
1EOT"EON 

(16) 

and consider the stopping time, -or alarm time, 

T= min{N > 0: SH(N)-mN > h > O}, (17) 

where h is some constant level. Then the on-line change-point 
detection estimate is defined as 

(18) 

Clearly we have that T = ? Note that at present time N, only two 
prediction errors have to be computed in order to know whether or 
not we have an alarm. This is an improvement with respect to the 
recent available method applicable to unknown dynamics, the two 
model method (Basseville, 1988), where the sequential estimation 
)f the dynamics,depends on an assumed value of the change-point. 

S. Analysis of the change-point detection method. Whi­
:e a complete analysis of our change-point detec~ion. method still 
needs further research, we nevertheless have "Some very enco'lrag­
:nb results. As a first step for the analysis we need to replace 
;he recursive prediction error process (e~) with its off-line version 
(In(~_1' 8*»). 

We begin by considering the problem of false alarms. Define 
;he increments of SN(T) with respect to r by 

(19) 

;hen clearly UT" = l~(~_l' O*)-l~(~_1' 9*), and hence the increments 
)f SN(r) are independent of N. Similarly as with the one-line case, 
,.re get that the minimiza,tion ofSN(T) is equivalent to minimizing 

1" 

SN(r) = L Ul:- (20) 
1;=1 
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for the analysis of SN(T) we have the following theorem (Gerencser, 
1991d). 

Theorem 1. Under Conditions 1 and 2 and for any A > 0 the 
process UT is an L-mixing process, and moreover 

(21) 

for all T such that T ~ T* , and with some 0 < c < 1. 
Hence if we neglect the effect of "nonstationary initial condi­

tions" and .>t is small enough, we have 

E (ur ) < -a < 0 for T < T*. (22) 

Let us rewrite the stopping time T, for the off-line case, in a form 
more amenable for analysis as 

if = min {N > 0; max f Ui: ~ h > o}. (23) 
1 ~ k ~ N /:";;:., 

Now, letting Ui: = Ui: - E(ui:), we can certainly write 

N N 
mu .~ Ui:~ ma...lC \.'"'Ui:-a~u;.,.(a). 

l"nl~N;L,j l"m~N L....i 
I ·k=m i:=m 
j . . 

The momentsi of the process u;,,(a) can be estimated and it can 
even be shown that certain exponential moments exists under some 
additional conidi.tions (c.f. Gerencser, 1990a). 

Theorem 2. Assume that Un is a zero-mean L-mixing process 
such that Moo(U) < 00 and foo(U) < 0<:. Set p = a2 /8Moo (U)roo (U), 
then the process U N( a) is L-mixing process (in a certain restricted 
since), and we have for {J ~ plo 

(24) 

The frequency of false alarms is majorated by the frequency of 
the event {1l;.r(a) > h}, say 

N 

Fi = ~ E lz>b. (ll;v(a)Y, 
n=l 

(25)-" 
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where I{z>h} is the indicator function ofthe set {z > h}. Since ~(a) 
i; an L-mixing process in a restricted since, we have by the law of 
large numbers 

N . 

lim ~ 1: lz>h(lfN(~)) ~ Ml(Iz>h(lf(a»)). (26) 
n=l . 

Now, applying Markov's inequality we get 

~l ~ E(exp(,810v(a))/exp(,Bh)). (27) 

The present form of the analysis so far is not very practical 
since the process e~(e;_l'O*) is not computable in real time. A sim­
ilar deficiency was overcome in Uerencser (1988a) by using a strong 
approximation result which relates off-line and on-line estimators. 
It is conjectured that a similar result holds for fixed gain estima­
tors. For the time being, however, we must be satisfied with the 
above results. -: 

The next aspect to be analyzed is the performance of our 
change-point detection method as measured by the so called de­
tection dela.y. That is, the time elapsed between the change-point 
and the alarm time. More precisely, we would like to analyze the 
probability 

F2 = P{T - r* > 8t > O}. (28) 

For this matter, we need to understand the nature of the stochastic 
process T - T*, or equivalently the nature of the process 2:r=TO Ut· 

Using the results of Gerencser (1991c) we have the following theo­
rem. 

Theorem 3. Under suitable conditions we have for sufficiently 
large N 

(29) 

where (OlN) is an L-mixing process such that 'OlN = OM(.~1/2), and 
(02N) is a deterministic process such that OlN = OM(8/>.). . 

Choosing.>. = 82/ 3 we get 

(30) 
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With this choise of A the order of magnitude of the upper bound of 
the tracking error in (29) is minimized. Let us denote this choise 
of A by Aopt, 

What we actually need is a lower bound for the tracking error 
(c~)2 - c}v, in terms of S, Unfortunately this seems to be a, quite 
difficult problem. Let us illustrate this point by the following ex­
ample. Suppose we have a continuous-time process modelled by a 
parametric model whose true parameter is given by 

0; = 0* + ( Sill(wt), (31) 

where (w is large but e is small. Then S = eW is large, but there is 
no reason to expect that the time variant estiIl\ation method will 
track 0;. This example indicates that S is not the best measure of 
the rate of change. However, we are unaware of any appropriate 
substitute. 

6. The simulation. What follows is a simulation to illustrate 
all of the major aspects of the stochastic complexity approach for 
solving the change-point detection problem. The data used to check 
our algorithm is generated by a computer program that simulates a 

t 
time invarianttARMA(2,1) system until a chosen change-point, and 

I 

by a slowly time varying ARMA(2,1) system after and including 
the change-P9int. Both ARMA-systems are driven by a Gaussian 
white noise iIlPut process with mean 0 and variance 1. Only a 
computer realization of this process, plus the order of the ARMA 
systems, are assumed to be given in order to detect the time of 
change of the data process (Yn). 

The simulation is run for a time span corresponding to 4500 
observations of the process (Yn). The change-point is chosen to be 
r* = 4000. In Fig. 1 the realization of the process (Yn), used for the 
simulation, is shown. Note that the change in the dynamics of the 
data process (Yn) is hardly noticeable. 

The time invariant ARMA(2,1) system, generating the data 
process (Yn) for n = 1, ... ,3999 is given by the following equation 

y(N) + aiy(N - 1) + a;y(N - 2) = c(N) + ci{(N - 1) (32~' 
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Fig. 1. The data process (Yn) with 'j$ = 4000. 

with ai = -.7, a:;; = .8, ci = -.2. 
The slowly time varying ARMA(2,1) system, which generates 

the data process for (Yn) n = 4000, ... ,4500 is 'given by 

. y(N) + a'N,ly(N - 1) + a'N,2y(N - 2) = t(N) + CN,l f.(N - 1) 

where the time variant parameters a~,l' a~,2 and C~,l are obtained 
by linearly moving from the time inv<triant parameters to the pa­
rameters at final time NJ = 4500 set at 

In other words, the poles of the ARMA system linearly move from 
an initial location at .35 ± .82i to a final location at .35 ± .28i. . 

The forgetting factor of the time varying prediction error al­
gorithm was set to the Aopt value given by Aopt = 52/ 3 = .0113. 
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'. Since the recursive prediction error algorithms need some time to 
settle down due to the unknown initial conditions, a "dead" time, 
set to Ni = 3000, is used for the on-line and the off-line detectors. 
The estimates of the change-point were obtained using a threshold 
h=5. 

Fig. 2 illustrates how the re('ursive prediction error algorithms, 
and the off-line and on-line detectors behave. The true and es­
timated AR and MA parameters are plotted using the following 
conventions: 

i) Solid line, ( __ ), for the true parameters. 

ii) Dotted line, ( ...... ), for the estimates from the time invariant 
algorithm. 

iii) Broken line, (- - - ), for the estimates from the time varying 
algorithm. 

AR eten 0 

'"' 
0.5 

0 ~.4~ 
'().5 .... ~·L I 

.1 -0.8 
3000 3500 4000 4500 3000 3500 4000 4500 

TIlDe D TJmeD 

Codelen far eKb model class 

1410 ... _-_ ...... _.+. __ ........... + ............. . 

3500 4000 4500 

. :l __ ~~~---:rl-~ 
1O~---T-----.i·7 ................. Ji 
5~""" ........... ? ..... _ ................ , ........ " ...... . 

olA " ! !.lll.&; I 
3000 3500 4000 4500 

M~clus T1IIIe D 

Fig. 2. Simulation with forgetting factor Aopt = 0.011.3. 
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Choosing h = 5 we get no false alarms, and the alarm is ~ven 
• at T = 4186, and the estimate of the change-point is ~:= 4126. 

Table 1 shows how the estimate of the change-point ~ and the 
stopping time T are affected by moving away from the optimal for­
getting factor in both directions. No major change in the estimate 
of the change-point T* and the stopping time T is obtained. Note 
that mo'difications from the optimal forgetting factor of up to 400 % 
a!e considered. This shows the robustness of the method with re­
spect to the parameter .A. Increasing .A may decrease the detection 
time, but the probability of false alarms increases. For.A = .0452 a 
false alarm actually occurred at T = 3018. 

Table 1. How the estimate of the change-point ~ and the stop­
ping time T are affected by moving away from the op­
timal forgetting factor in both directions 

SIMULATION RESULTS 
Forgetting rate ,~ , Change-point estimate T I Stopping time T 

.0028 I 4126 I 4247 ! 

.0056 4126 ! 4')13 1 I _ I 

.0113 4126· I 4186 i 

.0226 4126 4160 

.0452 4126 . 4214 

7. Appendix. We summarize a few concepts published in 
(Gerencser, 1989a) and used in this paper. Let Dc RP be compact 
domain and let the the stochastic process (xn) be defined on l. x D, 
wJ..,ere.Z denotes the set of natural nU:~lbers. 

Let (.1"n), n ~ 0 be a' family of monotone increasing u-algebras, 
and (.1"t), n ~ 0 be a monotone decreasing family of u-algebras. We 
assume that for all n ~ O,.1"n and .1"t are independent. For n ~ 0 

.1": := Po. 
A typical example is provided by the u-algebras 

:Ft = u{e, : i ~ n + 1}, 

where (ei) iF an i.i.d. sequence of random variables. 
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DEFINITION 1. We say that (;r:n(B») is M-bounded if for all 
l~q<oo 

Mq(;r:) = sup E1/qlxn(OW < 00. 

n<O 
BED 

DEFINITION 2. A stochastic process (;r:,.), n ~ 0 is L-mixing with 
respect to (.1'n,.1';[) ifit is .1'n-progressively measurable, M-bounded 
and with r being a positive integer and 

we have 
00 

rg = rg(z) = E ,g(r) < 00. 

T=1 

EXAMPLE. Discrete time stationary Gaussian ARMA processes 
are L-mixing. (This can be seen using a state slJace representation). 
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