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PREDICTION OF A STRUCTURA]~ 
INSTABILITY IN STOCHASTIC PROCESS 
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Abstract. The idea of predicting the case, when the considered long-term 
\'RMA model, fitted to the observed time series tendsto become unstll.ble be­
:ause of deep changes in the structural st.ability of data, is developed in this 
Japer. The aim is to predict a possible Ull.5t able regime of the process {x., tET} T­

teps in advance before it will express itsdi by a high level crossing or large vari­
,nee of an output varia.ble .i,. The probI",,, ;~; solved here for locally stationary 
\'R(p) sequences iX" tET}, whose estimated p;lralueters ean reach critical sets 
oeated at the boundary of the stability area. An alarm function a.nd an alarm 
et are fitted here to predict catastrophic faiiures in sy;;t.ems output T units in 
,dvance for given ,'>0 and a confidence level '"Y. The probability of false alarm 
s derived explicitly for AR(!) depending on T,"r and N _. the number of the last 
.bservations of {X,}. 

Key words: non-stationary AR, prediction of structural inst.ability, 
'-predictable catastrophe, alarm set;· false alarm proba.bility. 

1. Introduction. A change is an universal property. Any phe­
l<''llenon is changing - slowly or rapidly, continuously or abruptly. 
~ven a rock standing iminovable at the same place in the course of 
:enturies does undergo slow changes in physical and chemical struc­
ures eventually turning into soil. A statistical model well fitted to 
lescribe the behaviour of any kind of phenomena becomes unfit 
~fter some time. A theory of various kinds of smooth behaviour 
)econ:~es less and less applicable in our complicated dynamical life 
lowadays. A sudden change may be caused by a smooth alter­
Ltion in. the situation. Political and economical systems collapse, 
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bridge and buildings fall down when some critical point in their 
state is reached. The probabilistic approach to predict a catas­
trophe, specified as a high level crossing by the sample path of 
a stochastic process was proposed by Jacque de Mare (1980) and 
Lindgren (1980) where an optimal alarm system was fitted. But 
the level crossing is one of the visible properties, it can be treated 
as a result of some structural changes in the system, generating a I 

time series, or it can be interpreted as a rare event in the sample 
path of a stationary random process. The latter interpretation has 
been used in the papers mentioned a,bove. Our aim is to relate 
such catastrophic failures in system output with deep changes in 
it's structural stability, since the parameters describing the system 
change in such a way that 1(hey reach critical sets. It is important 
to join analytical and probabilistic techniques in order to handle 
such a behaviour and to predict it in advance. 

Let us prepare the probabilistic tools necessary for the solution 
of the mentioned problems. 

2. Notation and basic facts. Let {Xt , t ET}, T = O,±l, 
±2, ... , be a itme series described by ~the model ARMA(p,q) 

p' . g E aj(t)(Xt_j - JJt) = :~::)j(t)Et-i' ao(t) == 1. (1) 
j=? j=O 

Here all e'S are independent identically distributed with mean zero 
EEt = 0 and variance EEl =1. The right ha.nd side of equation (1) 

, and the parameters bj(t), j = 0 -:- q represent non-stationary, un­
measured natural excitation while the parameters 8(t) = (al(t), ... , • 
ap(t), JJt) reflect the structure of the real object, identifiable by sta­
tistical methods on the base of the observed data - realizations 
Zl,Z2"",ZNp i = 1,2, ... ,M of the sequence {Xt , t ET}. We are 
interested here only in structuralparamet'ers 8(t) and their possi­
ble changes making dynamical system (1) unstable. The insta.bility 
leads to "catastrophic" failures of a physical system: a.n up~rossing 
of a high level, the explosive character of output. Such unpleasaiit. 
or dangerous events must be predicted in advance, say r steps ahea4 . , 



N. Kligiene 23 

on the base of the whole information available at the moment. The . 
problems that arise in this context are the following: 
(i) to choose the prE:'dictor or alarm function which carries the 

information on stability of a dynamical system, enabling the 
algorithm to make an alarm T steps ahead; 

(ii) to evalu.ate characteristics of the fitted alarm system, na.mely 
the probabilities of false alarm and undetected failures; 

(iii) to optimize an alarm system. 
The first two goals are the subject ofthe presented paper while 

the optimization ~ill be pursued in the future investigations. 
Let us formalize the problem. Necessary definitions and facts, 

certainly known to the reader,.will be given below in order to avoid 
misunderstanding. 

e(t)=e, the system invariant in time. Rewrite the equa­
tion (1) as: 

p q 

:~:>j(Xt-j - /-l) = I)jCt-5' (2) 
j=O )=0 

DEFINITION 2.1. A stochastic system described by the equa­
tion (2) is stable iff all the roots Z1, Z2, .•. , zp of the characteristic 
polynomial equation 

(3) 

are less tha.n unity in magnitude 

j = 1 -:- p. (4) 

The output of a stable system (2), i.e., time series Xl, .t2,··· ,'XN, 

1S a realization of a stationary random process or sequence {Xt , 

t ET}. 
In this context it is useful to mention the theorem proved in 

the monograph by Anderson (1971). 

Theorem 2.2. If a stationary stocha.stic process satisfies a 

stochastic difference equation for which at lea.st one root is 1, a.ll 
values sf the process are the same with probability 1. 
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A random pmcess {X" t E T} is no longer sta.tionary if the 
polynomial (3) contains a factor of the form (z _l)d, d ~ 1, although 
its d-th difference would be stationary. 

DEFINITION 2.3. If some root of the polynomial equation (3) is 
larger than 1 in absolute value, system (2) is unstable, its output 
is a non-stationary sequence anu the random process {Xt, t ET} is 
explosive. 

Denote by 
(5) 

a set in a complex plane Z inside the unit circle and by aZ1 = 
{z: Izl = I}, a boundary of the stability region, according to defi­
nition 2.1. 

The subset Zl C Z may be mapped into a closed subset of pa­
rameters e c RP for every fixed p, i.e., the number of characteristic 
roots. 

Denote the mapping, known as the formulae of Viete, relating 
the roots of the polynomial and its coefficients by v, 

where 

v: Zl:::} e, 
v ;' aZ1 :::} ae, 

~ = {8 : IZjl < 1, j = 1-:- p}, 

(6) 

(7) 

(8) 

and ae is the boundary of the p-dimensional stability region e of 
stOl:hastic system (2). 

Note that we consider real X, 's and only real-valued coefficients 
al, a2, . .. , ap , so Zl, ... , zp are only complex conjugate and real. 

The complements to Z, and e that aTe denoted here by 21 and 
6: 

(9) 

Namely, Z, and El are the areas of instability in Z plane and 
parameter space R!'. 

8(t) time-variant. Let us return to equation (1) and c~nsider 
separately abrupt and continuous changes of B as time goes. 
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(1) Step-wise function B(t). Say B(t) is piece-wise constant:' the 
value eel) E e changes suddenly to B(2). Two situations are possible: 
0(2) E e and (J(2) fj. e. Both cases are unpredictable events if an ob­
seryable sequence {Xt, t ET} is independent of B's changes in the 
statistical sense. 'In case (J(2) E e. the res11lting process {Xt } satisfies 
the stabilitY.requirements but it is non-stationary, of course. Any 
change inside e is allowed. The processes of such a kind are known 
(Ozaki and Tong, 1975; Kitagawa and Akaike, 1978) as a piece-wise 
stationary or locally stationary. The process may consist of M inde-

1 t t t' ,., {XCi) } . M - 0 penaen s a lOnary pieces t, ti-l ~ t ~ ti t = 1,2, ... , ,to = , 
corresponding to the values (J(;) E e; as if it is switching from one 
stationary regime to another. _ The result is the switching process 
that can be considered as the limiting process"(Kligiene, 1976) of a 
locally stationary process when sudden changes are rare events and 

the intervals of 'stationarity' are larg,' as compa,red to the value p, 

i.e., the order of cquati~n (1) op tljl:' left side. 

(2) Evolutionary chrmging 8(t), Here we ha.ve in mind any con­
tinuous, slow changes. In the study oi a long-life phenomenon, the 
process {Xd is often non-sta.tionary. tor instance. the long-term 
wave effects on the offshore or the evolution of some bioiogical sys­
tem. For those phenomena one has to consider two time scales: 
short-term (minutes, days, say) and long-term (Oll' the order of 
years). The short-term probabilistic model is then described under 
the conditions oflocal stationarity, the pa.rameters being fixed. The 
longcterm model is obtained on providing a long-term probabilistic 
description of the short-term parameters .. If such a description is 

available, the prediction of that important change r-steps ahead is 
possible. Both cases (}(2) E e or 0(2) rt. e may be considered aga.in, 

the latter being more important in our problem. It is well known 
("White, 1958) that an unstable process becomes explosive. 

Let {Xt, t E T} be a time series defined by equat.ion (1) with 
the structural parameters O(t) = tal(i), ... , op(t), Jit) for each t pe­
longin,g to the stability region e. For each time point t let et be a 
measurable set of sample functions. 

DEFINI': ION 2.4. A catastrophe occurs at time t if X E Ct · 
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Such a definition of a catastrophe was introduced and used by 
Jacque de Mare (1980), where as an example of Ct is given: 

(10) 

As a rule, 6 is a small positive number and u is a high level. 
It is rather a mere occurrence of level cros'sing within the near 
future that is of interest, not the exact time of it. Therefore, we 
formulate the problem as a pure two-choice problem: at each time t 
we make one of two possible statements: either that Xi+. will cross 
the prescribed level u at least once for some sE (0,8), or that there 
will be no such crossing. 

Let us restrict our investigation to a definite situation formu­
lated here as the following 

ASSUMPTIONS: 

(AI) The short-term model is time invariant AR(i)(p) model 

p 

"" (t) ~aj (X'_j -,.,) = et, t E Ti (11) 
j=O 

j=1,2, ... ,M, 
, 

where all the roots of the polynomial equation 
I 

p L a)i) zp-j = 0 (12) 
j=O 

are less than 1 in absolute value. 
(A2) The long-term model consists of the locally stationary pro­

cesses AR(l)(V), AR(2)(p), ... , AR(M)(p) defined on non-overlap­
ping intervals Tl , ... , TM represented by the observed sequences 

(i) (i) (i). 
Xl 'X2 ""'XN.' t = 1,2, ... ,"~. 

Theorem 2.5. If some roots (at least one z(i)) of the poly­
nomial equation (12) are larger than 1 in ,absolute value,then a 
catastrophe Ct will occur at some time t E T.:o with probability 1. 

Proof. Introducing the backward shift operator B- 1 defig'ed by 
.... 1' 

and (13) 
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,where B·B-1 = J, the stochastic difference equation (11) can'be 
rewritten (we shall omit the dpper index (i) what is not important 
here) 

and formally. 

p 

LajB-j(Xt - J.l) = ~t 
}=o 

where Dj'S are the coefficients in 

(tajzi)-l = "fOjZ j . 

j=o ;=0 

(14) 

(15 ) 

(16) 

Note that the roots of '.L.j=o ajxi = 0 are Xi = 1/ Zi when ap :f 0 
and Ixd > 1 if the condition IZi I < 1 is fulfilled. Then the series 

1 
( 17) 

converges absolutely for any x: Ixl < minlzil. 
Let us consider the case in which some roots of the polynumial 

equation (12) are larger than 1 in absolute values. Suppose, Ix;! > I, 

i = 1; ... , r, IXil < 1, i = r+l, ... ,po We write the stochastic difference 
equa.tion (11) as 

p P 

~t = LaiW-i X t _ p = II(B - Xi)Xt - p • (18) 
i=o j=o 

The inverse of (18) is 

r F 

X t - p = II(B - xd- 1 IT [B(l- xiB-l)rl~t 



28 Prediction of a structural instability 

where 6J's are the coefficients in Loran's series 

00 r -r 00 -1 v P 00 v 

L 6; zi = IT ( - 7.-) L (7.-) . IT L: (:.), (20) 
j=-oo i=l· I v=o I i=r+l v=O • 

which is divergent because the convergence area of the essential part 
Izl < min Iz;/ < 1 = max Ix;/-1 has no common area with that of the 
regular part Iz-11 < min lXii, i.e., Izl > rnin lx;/-I. So the expression 

00 00 

X t = L b;€t = L6j€~_.j (21) 
t=-oo j=O 

is convergent only in case ,r = 0 and divergent if r # o. The conclu­
sion is that ",/t+. > u for any large u with probability 1. As soon 
as some of tU-e roots become larger than one: Ix;! > 1, the event et 

I 
will occur with probability 1. 

3. Fitting of alarm areas, probabilities of errors. On 
the base of Theorem 2.5 we shall focus our attention on the critical 
event i.e., crossing of the boundary ae of the closed area e by 
tht function of the parameters 8(s) in a p-dimensional space at the 
moment t: 

Ct(fJ) = {O(t - 1) < ae ~ B(t)} 

-{O(s)ee, ifs<t; O(s)e6, ifs~t} (22) 

In terms d the characteristic roots ;1t, ... , Zpt, consid~red as 
time dependent in a long-term model, the event analogous to (22), 
may be expressed as .' 
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rhe final outcome of the events (22) or (23) will express itself by a 
ligh level crossing (10) what follows as consequence of Theorem 2 .. 5. 

Thus, if we want to detect the failure of stability, we must 
letect one of the events Ct(z), Ct(O),Ct(X) not only as soon as 
)()ssible but also we need to anticipate catastrophic failures, i.e., 
. > 0 time instants ahead to give an alarm 011 a catastrophe at the 
noment t. 

Typical examples are the fatigue of some structures, the fail­
lres in nuclear plants, earthquakes, etc. One approach to forecast 
t catastrophe Ct r time units ahead is to condense the informa­
ion available in realization Xl,X2, ... ,XN of {X.,s < t - T} into a 
.tochastic process Yet) and to give an alarm if and only if Yet) has 
tn upcrossing of the specified alarm boundary at time t. Naturally 
ve can consider Yet) = B(t), Y E RP if we have decided to pre­
lid. the event (22). The er-algebra generated by Y(t) is denoted by 
I='} = cr{Y(t)} = er{X., s ~ t - r} = F};T. D~fine a t-indexed set by 
4t(T) which is F}-measurable as the ala.rm set for a catastrophe Ct 

.0 be detected T units in advance. 
We say that there is an alarm for a catastrophe at time t if 

( E At. The alarm is false if Y E At but X fJ. Ct and there is 
tn undetected catastrophe at time t, if Y fJ. At but X E et. The 
)fobabilities of errors P{Y E At ! X fJ. Cd an.d P{Y ~ At I X E Cd 
i.1'~ of special interest. It is not our goal to construct an optimal 
Llarm system as it was done by Jacque de Mare (1980). At first 
",e would like to define an alarm region At( T, P) for fixed T and 
P{Y E At I X fJ. Ct} - the probability of false alarm. 

DEFINITION 3.1. We shall call the catastrophe et T - predicable 
f there exist such T> 0 a.nd yet) that 

P{Y E At I et} = C, c # 0, (24) 

tnd Ct is unpredictable if r = O. 

REMARK 3.2. The property (24) is stat~d for the available 
evel of knowledge condensed in Fir. An un predictable catastrophe 
",jth respect to Py may become predictable in the sense of F"k, if 

Py c.11. 
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EXAMPLE 3.3. If the vector function e(t) = (al(f), ... , Gp(t» is a 
slowly varying in time continuous and monotonous t function (each 
component considered separately), then Ct(B) is T-predictable. 

EXAMPLE 3.4. If O(t) is a step-wise function with an unknown 
Jaw of a abrupt change, independent of X, the catastrophe Ct is 
unpredictable. Ct will also be unpredictable if it is not related to 
the structure of model (1) and it is provoked by some outward 
effect. 

DEFINITION 3.5. For every real e> 0 define a subset A(t) C Zl 
as 

At(c) = {z: 1 - t: < Izl < I}. (25) 

Time t is attributed here to r-upcrossing of {)Z at t. 
Note that A(e:) is in the neighborhood of a boundary {)Z of a 

stability region and in some sense can serve as an alarm area. The 
problem is to relate e: with rand P. 

Relation (6) maps a subset At (e:) C Zj into AtC , . ) c e : 
v: At(e:) => At {-,·) c e, (26) 

and our tas¥ is to specify the alarm boundary in concrete cases 
p = 1,2 and r(t) in terms of the observed realization Xl, ... , XN and 
given value~ r, P with r > 0, ° < P < l. 

4. Alarm boundaries for AR(l), AR(p) sequences. The 
mean value JJ~ = E{Xd is not essential in our investigation, let 
JJt = 0, 'rit, and consider AR(1) sequence defined by 

Xt + al(t)Xt - 1 = bo(t)ct. (27) 

Let the assumptions (A1), (A2) be valid. The short-term 
model admits local stationarity of the sequence {Xt}, the parame­
ters al(t) = aI, lall < 1, bo(t) = ba, 'rit, being constant and estimated 
from the observed realization Xl,X2, ... , XN as 

1 N i N 

al = - N _ 1 L XtXt-l / IV LX;, 
t=2 t=1 

(28) 

'2 1 ~ - 2 
bo = N _ 1 L.,..(Xt + alXt-l) • 

t=2 
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The long-t.erm model will include t.he evolution of the· pa­
rameter a1(t) from lall < 1 to lall = 1 and lall > 1. We need to 
find the limiting distribution of g(N)· (al - a1), where t.he function 
g(N) is such that g(N)(a1 - ad has a non-degenerate distribution 
for all the values of al. It is a usual way (White. H).58) to take 
g(N) = [I(ad]~ = E~( -d21ogf/dal), where f(ad is Fisher's inforrna­
tion, or the value asymptotically equivalent to [lead] ~, i.e., 

r-
I N 

y 1- ar 
for lad < 1; (30) 

g(N) = N 
for lal! = 1; (31) ..}2' 

lall N 
for lall > L (32) -2--1' a1 -

It is well known (White, 1958) that g(N)(ill - al) is asymptotically 
N(O, 1) for lall < 1 and the limiting distribution is the Cauchy one 
for lad> 1. 

The confidence interval of the level 'Y = 1 - 2P in the case 
lall < 1 can be written out 

(33) 

where Zp is the N(O, 1) quantile of the level 1 - P. 
Relation (33) enables us to fit the alarm boundary for sta­

bility of model (27) which is stable if lal(t)1 < 1 and unstable if 
la1 (t)1 > 1. 

Let us fix the moment of upcrossing the unit boundary at point 
s: lal(s)1 = 1. It is neces~ary to make an a.larm not later than s'- r 
for fixed r > O. Let yes) = lil1(t)!, t < s -i. Say we get the ob­
servations xi%. = (x~i), ... , x~) periodically from each interval T 
and the estimates a,ei), of al(t), t E Ti - are derived according to 
(28). In such a way the continuous function al (t) is approximated 
by polygon, each level a~i) of it is provided by the confidence L.­
terval (33). Evidently, the alarm region consists of the interval 
.4~ = [1::- £,1). 
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s 

Fig. 1. The alarm region for AR(1).' 

It is natural to consider an exponential approaching to the 
boundary: al(s) =e<>(·-t\ having the value al = 1 at the moment 
s = tj lall < 1 for s < t and. lall > 1 for s > t, see Fig. 1. 

Let Y(t)/ = Ol(t), t < S - T. E~ch time the estimate a~i) of 
al (t), t E ri is derived according to (28) from the observations 

(i) (i) I 
Xl , ... ,xN ,': 

The alarm region on the base of expression (33) is 

In the exponential case it leads to 

(35) 

where a may be estimated from the value InaI. In addition to (AI), 
(A2), assume that NI < N2 < ... < NM, i.e., we are able to observe 
larger realizations when approaching to the boundary or-stability 
and to get the estimates of al good enough. The probability of 



N. Kligiene 33 

fa,lse alarm can be calculated in the following way: 

P{Yt E At I X t fI. Ct; a1(t) < l} 

= P{l- E ~ al(t - r-) < 11 Xt fI. Ct ; al(t) < I}. (36) 

Denote a random variable by . . 

then 

and the random variables 

(37) 

(38) 

(39) 

are independent because of independence of (t and (1-1" Thus the 
probability (36) 'becomes unconditional and we have 

P{Y, E At I X t fI. Ct : al(t) < l} 

=P{l-e:< cZl(t-T)+ .lM(t-1' < I} (40) 

. {-INi ( ) -INi ( . ) } =f -;-1-a1(t-T)-e: «t_.,.<-;-1-a1(t-T) 

= 4> ( V; (1 - a1 (t - T))) - 4> ( V; (1 - 2al (t - T) - Z p k) ), . 
where <P(.) is a standard normal distribution function. Expressi"on 
(40) relates the probability of false alarm to the length Ni of lately 
observed series Xl,.'" XN. and to the fixed values; and /. 

In the general case of the AR(p) model, choosing Y(t) = (izl(t), 

... ,ap(t)) it is possible to define an alarm region At (T, P) C e on the 
base of the well known (Anderson, 1971) asymptotic result 

(41 ) 
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where Rp = (R;j, i,j = 1 +p), Rij = COV(Xi,Xj), R;l.Rp == I. 
The alarm region cannot be so simply fitted as for p = 1 but 

the idea is the same: to map an e-environment of aZ1 into e and 
to derive an alarm region there, at the sta.bility boundary ae. The 
case p = 2, given as an example in Fig. 2, illustrates the fact that 
the mapping in e has no such a simple form as its origin, namely, 
an e-ring in the Z plane. That implies the thought that it depends 
on the location of e in e how close to the boundary ae one-can 
approach without too much ~isk to hit it. 

Q.e, 

-j 

Fig. 2. The alarm region At C R2 in Z and e planes for AR(2). 
Here 0' = 20: _ g2. 

5. Conclusions, comments. It was the first attempt to re-. 
late the changes in the structural parameters with catastrophic 
failures in the output of a stochastic system in order to predict 
a possible unstable regime. The idea is to focus the attention on 
the essen~ - the behaviour of characteristic roots of the stochastic 
difference equation, while an alarm set is made in the parametric 
space. 

The subject deals with the non-stationary time series analy~is 
as well as with a prediction theory, that cannot be used here ~n 
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.a traditional way. There is no reason to base a predictor on Cl 

criterion such as a minimal mean sq uare prediction error or like it. 
Since a stability is defined through characteristic roots, it would 
be very natural to base a criterion on the behaviour of the roots, 
too. Two difficulties arise an this way: first - to estimate the roots 
efficiently; second - to derive their probability distribution law (at 
least asymptotic). First of all, we shall have to deal with complex 
valued variables, afterwards even a :::light deviation in the estimated 
parameters might cause not so slight variations is the location of 
the roots, especially if the order of the polynomial is high. Without 
knowledge of statistical properties of the estimated roots we should 
not be able to provide them ~ith confidence levels. That is why it 
is simpler to fit an alarm set in e, not in Z. The case p = 1 is a mere 
occurrence, when both e and Z is the same unit inter,vaJ (-1,1). 

There is no real applicator in this paper, but we all know that 
most of the applications are the systems governed by AR or ARMA 
equations and the prediction of an unstable situation is urgent in 
many fields. Note the paper by Popescuand Demetriu (1990) where 
the records of 'strong ground motion of the Romanian eari hquake 
of 4 March 1977 are described by the locally stationary ARMA 
models whose parameters are located near the edge of stability. 
This is a,n example, convincing us that such a really catastrophic 
f'vent as earthquake can be handled by means of the scheme of the 
r-predictable catastrophe. The links with a conventional catastro­
phe. theory (Poston and Stewart, 1977), as a coherent mathemat­
ical description of discontinuous changes in dynamical systems, is 
an open problem. It seems that a theory, analogous to the ex­
isting one, might also be developed when a stochastic differ~nce 
equation describes the phenomenon instead of non-stochastic dif­
ferential equations used in the catastrophe theory up till now. 
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