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Abstract. Multi-Objective Optimization takes care of different objectives with the objectives keep-
ing their own units. The internal mechanical solution of a Ratio System, producing dimensionless
numbers, is preferred. The ratio system creates the opportunity to use a second approach: a Refer-
ence Point Theory, which uses the ratios of the ratio system. This overall theory is called MOORA
(Multi-Objective Optimization by Ratio Analysis). The results are still more convincing if a Full
Multiplicative Form is added forming MULTIMOORA. The control by three different approaches
forms a guaranty for a solution being as non-subjective as possible. MULTIMOORA, tested after
robustness, showed positive results.
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1. Why Using Multiple Objectives Optimization

Cost-Benefit Analysis is the traditional used method. Cost-Benefit takes a monetary unit
as the common unit of measurement for benefits and costs. In this way, cost-benefit
presents a materialistic approach, whereby for instance unemployment and health care
are degraded to monetary items. Multi-Objective Optimization will take care of the dis-
advantages of Cost-Benefit: the objectives can keep their own units.

In order to define an objective better we have to focus on the notion of attribute.
Keeney and Raiffa (1993, pp. 32–38) present the example of the objective “reduce sul-
fur dioxide emissions” to be measured by the attribute “tons of sulfur dioxide emitted per
year”. An attribute should always be measurable. Simultaneously we aim to satisfy multi-
ple objectives, whereas several alternative solutions or projects are possible, characterized
by several attributes. An alternative should be quantitatively well defined. An attribute is
a common characteristic of each alternative such as its economic, social, cultural or eco-
logical significance, whereas an objective consists in the optimization (maximization or
minimization) of an attribute.

Economic Welfare (the term was invented by professor Pigou, 1920) comprises micro-
and macroeconomics. Microeconomics would include attributes such as: yearly capacity
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to be reached, Net Present Value (NPV), Internal Rate of Return (IRR) and Payback Pe-
riod. Macro-economics would include increase in Gross Domestic Product (GDP), sur-
plus in the current account of the balance of payments, direct and indirect employment
increase and ENPV. Indirect employment is measured by input–output techniques. ENPV
means Economic Net Present Value, i.e., discounted revenues before national taxes, mi-
nus discounted investments, exclusive of subsidies. ENPV is different from GDP, but
represents in macro-economics the counterpart of NPV, also with deduction of invest-
ments.

Satisfaction of all stakeholders is still another series of objectives. Stakeholders mean
everybody interested in a certain issue. Due to consumer sovereignty and the economic
law of decreasing marginal utility, consumer surplus, level of salaries, leisure time and
again employment at the local and national level have to be taken into consideration.

Some attributes like NPV, ENPV, GDP, balance of payments surplus and consumer
surplus are expressed in money terms, like dollars or Euros. However, a Euro in con-
sumer surplus cannot be compensated for instance with a GDP-Euro. In addition, IRR is
expressed in a percentage, the payback period in months or years, employment in number
of persons per year, production, for instance in tons, etc. Consequently, a serious problem
of normalization is present.

Well-being goes farther than Economic Welfare. In the well-being economy, each
individual would have to feel good concerning material wealth, entrance to the most
essential free goods like water supply, health, life expectancy at birth, education, all kind
of security and concerning the environment. With other words, multiple objectives have
to be fulfilled.

Well-being “tout court” concerns the well- being of the actual generation. Sustainable
or Durable Development means well-being not only for the actual generation but also
for the future generations. Indeed: development indicates time. “Developing countries”
means developing over time. After the dictionary sustainable means capable of being
maintained. In this way the KIJOTO agreement is sustainable development accentuated
mainly on CO2 emissions.

Normalization means reduction to a normal or standard state. However, the term got
many interpretations but the stress is mainly put on the unification of diverting systems of
measurement. As decision making is interested in measurement, normalization in tech-
nology is a main starting point, whereas scales of measurement and measurement of
quality may be troublesome (for more on normalization, see Brauers (2007).

2. Conditions of Robustness in Multi-Objective Methods

For the researcher in multi-objective decision support systems the choice between many
methods is not very easy. Indeed numerous theories were developed since the fore-
runners: Condorcet (the Condorcet Paradox, against binary comparisons, 1785, LVIII),
Gossen (law of decreasing marginal utility, 1853) Minkowski (Reference Point, 1896,
1911) and Pareto (Pareto Optimum and Indifference Curves analysis 1906, 1927) and
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pioneers like Kendall (ordinal scales, since 1948), Miller and Starr (Multiplicative Form,
1964), Roy et al. (ELECTRE, since 1966), Hwang and Yoon (TOPSIS, 1981), Brans et al.
(PROMETHEE since 1984), Saaty (AHP, since 1988), Opricovic and Tzeng (VIKOR,
2004), Brauers (MOORA, 2004a, 2004b, 2004c) and Brauers and Zavadskas (MULTI-
MOORA, 2010b).

We intended to assist the researcher with some guidelines for an effective choice on
basis of a definition of Robustness towards Multi-Objective Optimization. Elsewhere we
tried to define robustness in relation to statistics and econometrics (Brauers and Zavad-
skas, 2010a).

By 1953, which is quite recent for statistics (as well known, statistics already ex-
isted in Roman times with the census of population), robust became a statistical term
as “strong, healthy, sufficiently tough to withstand life’s adversities” (Stigler et al., 1973,
p. 872). Nevertheless, already in 1969, statistician Huber (1969) considered robustness as
purely cardinal: as a compromise between a normal distribution and its light deviations.
At a later time many statisticians or econometricians gave a sometimes different cardinal
meaning to robustness (Brauers and Zavadskas, 2010a).

At the other side, we observe a move to a more vague and qualitative definition
of robustness, namely to the meaning of common language (Webster’s new Universal
Unabridged Dictionary: robust: strong; stronger, strongest), from a cardinal towards a
qualitative scale: the most robust one, more robust than . . ., as robust as . . ., robust, weak
robust, less robust than . . ., not robust etc., comparable to so many other scales in multi-
objective analysis (for instance mentioned by Brauers (2004a, pp. 97–99).

Kreps (1990) esteems that robust predictions are crucial although the meaning given
to robustness may depend on the context (also Vincke, 1999, 186(2)).

Concluding on the remark that significance of robustness depends on the context can
be specified in different ways. First, robustness can be considered as cardinal or as qual-
itative. Second, if robustness is indicated as vague or arbitrary is it also not the case
with inference statistics (Hoel, 1971, 2 versus Hays, 1974, p. 47; Casella and Berger,
2002, VII), probability theory (Hays, 1974, p. 47) and statistical specification (Intriliga-
tor, 1978, p. 2; Matyas and Sevestre, 1992, Chapter 9, versus Thomas, 1985, p. 71; Won-
nacott, 1970, p. 312)? Third, robustness is characterized by completeness being present
in the statistical population, when defined as covering events and opinions which are
present, as well as in the statistical universe with events and opinions not only present
but also possible (Brauers and Zavadskas, 2010a). Consequently, this completeness of
robustness justifies also the making of a link with Multi-Objective Methods.

The most robust multi-objective method has to satisfy the following conditions
(Brauers and Ginevicius, 2009, pp. 121–122).

1. The method of multiple objectives in which all stakeholders are involved is more
robust than this one with only one decision maker or different decision makers de-
fending their own limited number of objectives. All stakeholders mean everybody
interested in a certain issue. Consequently, the method of multiple objectives has to
take into consideration Consumer Sovereignty. The method taking into considera-
tion consumer sovereignty is more robust than this one which does not respect con-
sumer sovereignty. Community indifference loci measure consumer sovereignty.
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Solutions have to deliver points inside the zone of the highest possible community
indifference locus.

2. The method of multiple objectives in which all non-correlated objectives are con-
sidered is more robust than this one considering only a limited number of objec-
tives.

3. The method of multiple objectives in which all interrelations between objectives
and alternatives are taken into consideration at the same time is more robust than
this one with interrelations only examined two by two.

4. The method of multiple objectives which is non-subjective is more robust than
this one which uses subjective estimations for the choice and importance of the
objectives and for normalization.

4.1. For the choice of the objectives.
A complete set of representative and robust objectives is found after Brain
Storming and Ameliorated Nominal Group Technique Sessions with all the
stakeholders concerned or with representatives (The Ameliorated Nominal
Group Technique is explained in Brauers and Zavadskas (2010c, pp. 72–74).

4.2. For giving importance to an objective.
With weights and scores importance of objectives is mixed with normaliza-
tion. On the contrary Delphi can determine the importance of objectives sep-
arately from normalization. In addition, as all stakeholders concerned are in-
volved, the Delphi Method is non-subjective (the Delphi Method is explained
in Brauers and Zavadskas (2010c, pp. 74–75).

4.3. For normalization.
The method of multiple objectives which does not need external normal-
ization is more robust than this one which needs a subjective external nor-
malization. Consequently, the method of multiple objectives which uses non-
subjective dimensionless measures without normalization is more robust than
this one which uses subjective weights (weights were already introduced by
Churchman et al. (1957) and Churchman and Ackoff (1954) or subjective
non-additive scores like in the traditional reference point theory (Brauers,
2004a, pp. 158–159).

5. The method of multiple objectives based on cardinal numbers is more robust than
this one based on ordinal numbers: “an ordinal number is one that indicates order or
position in a series, like first, second, etc.” (Kendall and Gibbons, 1990, p. 1). Ro-
bustness of cardinal numbers is based first on the saying of Arrow (1974, p. 256):
“Obviously, a cardinal utility implies an ordinal preference but not vice versa” and
second on the fact that the four essential operations of arithmetic: adding, subtract-
ing, multiplication and division are only reserved for cardinal numbers.

6. The method of multiple objectives which uses the last recent available data as a
base is more robust than this one based on earlier data.

7. Once the previous six conditions fulfilled the use of two different methods of multi-
objective optimization is more robust than the use of a single method; the use of
three methods is more robust than the use of two, etc.
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Table 1

Comparative performance of some MODM methods

MODM Computational Simplicity Mathematical Stability Information

time calculations type

MOORA Very less Very simple Minimum Good Quantitative

AHP Very high Very critical Maximum Poor Mixed

TOPSIS Moderate Moderately critical Moderate Medium Quantitative

VIKOR Less Simple Moderate Medium Quantitative

ELECTRE High Moderately critical Moderate Medium Mixed

PROMETHEE High Moderately critical Moderate Medium Mixed

Consequently we have to find a method which satisfies all conditions, inclusive the
seventh condition. It is the case with MOORA (Multi-Objective Optimization by Ratio
Analysis). MOORA, eventually assisted with the Ameliorated Nominal Group Technique
and with Delphi, is indeed composed of two methods: a Ratio System and a Reference
Point Approach. MOORA will be explained in detail later.

The tests were made as non-subjective as possible, but as the authors of this article
were involved in setting up the test, it seemed better to avoid any impression of favoritism.
Therefore Chakraborty (2011, p. 1165), as an outsider, could judge better about MOORA.
Chakraborty took up conditions of robustness and checked six famous methods of Multi-
Objective Decision Making for decision making in manufacturing. Table 1 shows the
results.

Instead of “complete aggregation” Schärlig (1985, 1996) defines ELECTRE (ELEC-
TRE I: Roy, 1968; ELECTRE II: Roy and Bertier, 1971; Fuzzy ELECTRE III: Roy, 1977;
ELECTRE IV, without weights, Roy and Hugonnard, 1981) and PROMETHEE (Brans
et al., 1984, 1986) as partial aggregations. In this way conditions two and three of robust-
ness are not satisfied.

In addition, AHP (Saaty, 1988), ELECTRE and PROMETHEE are less robust after
the 7 conditions as being based on binary comparisons. Even worse they lead to a Con-
dorcet Paradox. Condorcet (1785) demonstrated the nonsense of binary comparisons for
multifarious conclusions.

We use a Condorcet example after replacing the different rankings of candidates by
different rankings of alternatives per objective, whereas scores per objective replace the
numbers of votes.

The algorithm finally consists of a multifarious generalization of binary comparisons
between possible alternatives facing several objectives. This algorithm could lead to a
contradictory outcome as illustrated by the following example.

Alternatives A and B receive scores of the stakeholders for the realization of five
objectives:
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Objectives 1 2 3 4 5
Scores 23 17 2 10 8
Ranking 1st A B B A B

2nd B A A B A

A P B (P means preferred to) with A scoring 33 against a preference for B of 27.
If however three alternatives are present, the outcome could be contradictory. Indeed:

Objectives 1 2 3 4 5
Scores 23 17 2 10 8
Ranking 1st A B B C C

2nd B C A A B
3rd C A C B A

A P B P C with A scoring 23, B 19 and C 18.
Binary comparisons would have produced:

Between A and B: A (with 33) P B (with 27)
Between C and A: C (with 35) P A (with 25)
Between B and C: B (with 42) P C (with 18).

This is Contradictory indeed.
For Bordes and Tideman (1991, pp. 182–183) Arrow’s General Possibility Theorem

(Arrow, 1963, p. 13, 15, 97), which is rather an Impossibility Theorem, is mainly based on
the manipulation of candidacies in voting, for us alternatives. The result could be a reverse
order. Let us give an example for consistency conditions concerning two alternatives A
and B:

Objectives 1 2 3
Scores 9 7 4
Ranking 1st A B B

2nd B A A

B (with 11) P A (with 9). Suppose a third alternative is introduced, viz., C, in such a
manner that:

Objectives 1 2 3
Scores 9 7 4
Ranking 1st A B C

2nd B A B
3rd C C A

leading to: A (with 9) P B (with 7) P C (with 4), i.e., a Reverse Order compared to the
binary case. In this way the introduction of C could be a maneuver. Indeed Bordes and
Tideman remark that for public works projects with two alternatives the legislative branch
may favor B. If the executive branch prefers rather A, it will introduce a new project C,
for which it does not care, but which will insure that A is chosen above B.
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TOPSIS (Hwang and Yoon, 1981) is less robust after the 7 conditions by violating
condition one on Consumer Sovereignty. Elsewhere it is demonstrated that by following
Euclidean distances TOPSIS deviate from the real ranking (Brauers, 2008).

Finally, VIKOR (Opricovic and Tzeng, 2004) is less robust after the 7 conditions by
violating condition one on Consumer Sovereignty. Elsewhere it is demonstrated that by
following Rectangular distances VIKOR deviate from the real ranking (Brauers, 2008).
In addition, VIKOR still uses weights whereas Normalization is no more needed. Dimen-
sionless figures do not need normalization anymore.

3. The Data Assembled in a Matrix

A table (a matrix) assembles the data with vertically numerous objectives, criteria
(a weaker form of objectives) or indicators and horizontally alternative solutions like
projects (Table 2)

The data originate from statistics, desk research, Project Engineering (UNIDO, 1978,
pp. 98–128) or from simulated figures. In this way, alternatives, solutions or projects enter
the response matrix as rows. Concerning projects information has to be as intensive as
possible.

The question remains how to find and how to decide on the choice of the objectives.
One decision maker like a captain of industry will focus on his own objectives. Differ-
ent decision makers do not change the picture. In some industrial countries the large
companies are obliged to have some directors from outside the company in the board
of directors. Even this group of decision making will stick to its own limited objectives.
Rather all stakeholders, which mean all persons interested in a certain issue, have to be
found.

Once agreement reached about alternatives and objectives, a decision has to be taken
how to read the Response Matrix, either horizontally or vertically.

3.1. Horizontal Reading of the Response Matrix

The Additive Weighting Procedure (MacCrimmon, 1968, pp. 29–33), which was called
SAW, Simple Additive Weighting Method, by Hwang and Yoon (1981, p. 99) and Usual

Table 2

Matrix of responses

Obj. 1 Obj. 2 . . . Obj. i . . . Obj. n

Alternative 1 X11 X21 . . . Xi1 . . . Xn1

Alternative 2 X12 X22 . . . Xi2 . . . Xn2

. . . X. . . X. . . . . . X. . . . . . X. . .

Alternative j X1j X2j . . . Xij . . . Xnj

. . . X. . . X. . . . . . X. . . . . . X. . .

Alternative m X1m X2m . . . Xim . . . Xnm
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Fig. 1. Diagram of MULTIMOORA.

Reference Point Methods read the response matrix in a horizontal way. As the weights
add to one a new super-objective is created and consequently it gets difficult to speak of
multiple objectives.

Usual Reference Point Theory is non-linear, whereas non-additive scores replace the
weights. The non-additive scores take care of normalization. But being non-additive the
comments on the weights adding to one and consequently creating a super-objective is
absent here.

With weights and scores importance of objectives is mixed with normalization. Indeed
weights and scores are mixtures of normalization of different units and of importance
coefficients.

3.2. Vertical Reading of the Response Matrix

Vertical reading of the Response Matrix means that normalization is not needed as each
column is expressed in the same unit. In addition if each column is translated in ratios
dimensionless measures can be created and the columns become comparable to each
other. Indeed they are no more expressed in a unit. Different kind of ratios are possible
but Brauers and Zavadskas (2006) proved that the best one is based on the square root
in the denominator. The Ratio System which forms the basis of the MOORA method
follows the vertical reading of the matrix. Figure 1 shows the exact relation between the
two methods of MOORA and in addition to MULTIMOORA, MOORA plus the Full
Multiplicative Form, to be explained later.

4. Multi-Objective Optimization by Ratio Analysis (MOORA)

4.1. The Two Parts of MOORA

The method starts with a matrix of responses of different alternatives on different objec-
tives:

(Xij),



Robustness of MULTIMOORA: A Method for Multi-Objective Optimization 9

with xij as the response of alternative j on objective i; i = 1, 2, . . . , n as the objectives;
j = 1, 2, . . . , m as the alternatives.

MOORA goes for a ratio system in which each response of an alternative on an objec-
tive is compared to a denominator, which is representative for all alternatives concerning
that objective. For this denominator the square root of the sum of squares of each alter-
native per objective is chosen. Brauers and Zavadskas (2006) proved that this is the most
robust choice:

x∗
ij =

xij√∑m
j=1 x2

ij

, (1)

with xij = response of alternative j on objective i; j = 1, 2, . . . , m; m the number of
alternatives; i = 1, 2, . . . n; n the number of objectives; x∗

ij = a dimensionless number
representing the normalized response of alternative j on objective i.

Dimensionless Numbers, having no specific unit of measurement, are obtained for
instance by deduction, multiplication or division. The normalized responses of the alter-
natives on the objectives belong to the interval [0; 1]. However, sometimes the interval
could be [−1; 1]. Indeed, for instance in the case of productivity growth some sectors,
regions or countries may show a decrease instead of an increase in productivity, i.e.,
a negative dimensionless number.

For optimization these responses are added in case of maximization and subtracted in
case of minimization:

y∗
j =

i=g∑
i=1

x∗
ij −

i=n∑
i=g+1

x∗
ij , (2)

with i = 1, 2, . . . , g as the objectives to be maximized; i = g + 1, g + 2, . . . , n as the
objectives to be minimized; y∗

j = the normalized assessment of alternative j with respect
to all objectives.

An ordinal ranking of the yj shows the final preference.
For the second part of MOORA the Reference Point Theory is chosen with the Min–

Max Metric of Tchebycheff as given by the following formula (Karlin and Studden, 1966,
p. 280):

min
(j)

{
max
(i)

∣∣ri − x∗
ij

∣∣}, (3)

with |ri − x∗
ij | the absolute value if x∗

ij is larger than ri for instance by minimization.
This reference point theory starts from the already normalized ratios as defined in the

MOORA method, namely formula (1). Preference is given to a reference point possessing
as co-ordinates the dominating co-ordinates per attribute of the candidate alternatives and
which is designated as the Maximal Objective Reference Point. This approach is called
realistic and non-subjective as the co-ordinates, which are selected for the reference point,
are realized in one of the candidate alternatives. The alternatives A (10; 100), B (100; 20)
and C (50; 50) will result in the maximal criterion reference point Rm (100; 100).

Given the composition of (3) the results are ranked in an ascending order.
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4.2. The Importance Given to an Objective by the Attribution Method in MOORA

It may look that one objective cannot be much more important than another one as all
their ratios are smaller than one (see formula (1)) Nevertheless it may turn out to be nec-
essary to stress that some objectives are more important than others. In order to give more
importance to an objective its ratios could be multiplied with a Significance Coefficient.

In the Ratio System in order to give more importance to an objective its response
on an alternative under the form of a dimensionless number could be multiplied with a
Significance Coefficient:

ÿ∗
j =

i=g∑
i=1

six
∗
ij −

i=n∑
i=g+1

six
∗
ij , (2 bis)

with i = 1, 2, . . . , g as the objectives to be maximized; i = g + 1, g + 2, . . . , n as the
objectives to be minimized; si = the significance coefficient of objective i; ÿ∗

j = the total
assessment with significance coefficients of alternative j with respect to all objectives.

For the Reference Point Approach the place of the significance coefficient would be:

∣∣siri − six
∗
ij

∣∣.

The Attribution of Sub-Objectives represents another solution. Take the example of
the purchase of fighter planes (Brauers, 2002). For economics, the objectives concerning
the fighter planes are threefold: price, employment and balance of payments, but there is
also military effectiveness. In order to give more importance to military defense, effec-
tiveness is broken down in, for instance, the maximum speed, the power of the engines
and the maximum range of the plane. Anyway, the Attribution Method is more refined
than that a significance coefficient method could be as the attribution method succeeds
in characterizing an objective better. For instance, for employment two sub-objectives re-
place a significance coefficient of two and in this way characterize the direct and indirect
side of employment separately.

5. MULTIMOORA

In his book of 2004 Brauers (2004a) described the three parts of MULTIMOORA: (1) the
Ratio System Approach, producing dimensionless ratios, (2) the Reference Point Ap-
proach, but still based on scores, (3) the Full Multiplicative Form. Some time later
Brauers (2004b, 2004c) switched over to a Reference Point Approach with instead of
scores uses the ratios found in the ratio system. In this way dimensionless measures were
obtained again. The synthesis of the two approaches was called later: MOORA (Brauers
and Zavadskas, 2006). In 2010 a third approach was added and MULTIMOORA was born
(Brauers and Zavadskas, 2010b). Indeed, MULTIMOORA is composed of MOORA and
of the Full Multiplicative Form of Multiple Objectives. Up till now no other approach is
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known satisfying the previous six conditions of robustness and including three or more
methods, MULTIMOORA becomes the most robust system of multiple objectives opti-
mization.

5.1. MOORA

MOORA (Multi-Objective Optimization by Ratio Analysis) was explained under point 4
above.

5.2. The Full Multiplicative Form of Multiple Objectives

5.2.1. Multiplicative Forms
Mathematical economics is familiar with the multiplicative models like in produc-
tion functions (e.g., Cobb-Douglas and Input-Output formulas) and demand functions
(Teekens and Koerts, 1972).

Allen (1957, p. 473) launched the “bilinear and quadratic form” as:
∑

r

∑
s arsxrys,

for us concerning weights and objectives but with interrelations only examined two by
two.

For Keeney and Raiffa (1993, p. 234) besides additive utilities, a utility function may
also include a multiplication of the attributes beside. The two dimensional u(y, z) can
then be expressed as a multilinear utility function. This representation mixes additive and
multiplicative parts (Brauers, 2004a, p. 228).

For Keeney (1973, p. 110) the additive form is rather a limiting case of the multiplica-
tive utility function, for us the SAW method as explained earlier in Section 3.1.

The danger exists that the multiplicative part becomes explosive. The multiplicative
part of the equation would then dominate the additive part and finally would bias the
results.

Considering these shortcomings, preference will be given to a method that is non-
linear, non-additive, does not use weights and does not require normalization. Such mul-
tiplicative form for multi-objectives was introduced by Miller and Starr (1969, pp. 237–
239) and further developed by Brauers (2004a, pp. 227–245).

The following n-power form for multi-objectives is called from now on a Full-
Multiplicative Form in order to distinguish it from the above mentioned mixed forms:

Uj =
n∏

i=1

xij , (4)

with j = 1, 2, . . . , m; m the number of alternatives; i = 1, 2, . . . , n; n being the number
of objectives; xij = response of alternative j on objective i; Uj = overall utility of
alternative j.

The overall utilities (Uj), obtained by multiplication of different units of measure-
ment, become dimensionless. The outcome of this presentation is nonlinear, which
presents an advantage, as the utility function of human behavior toward several objec-
tives has to be considered as nonlinear.
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5.2.2. How to Designate the Importance of an Objective in the Full Multiplicative
Form?

Stressing the importance of an objective can be done by adding an α-term or by allocating
a coefficient (a Significance Coefficient) on condition that this is done with unanimity or
at least with a strong convergence in opinion of all the stakeholders concerned.

In fact formula (4) has to run as follows:

Uj =
n∏

i=1

(αi + βixij), (5)

with j = 1, 2, . . . , m; m the number of alternatives; i = 1, 2, . . . , n; n being the number
of attributes and objectives; xij = response of alternative j on attribute i of objective
i; α and β are measures of importance; Uj = overall utility of alternative j. Uj is a
dimensionless indicator.

Several situations may occur, related to the α-terms and the β-coefficients.

1. All β-coefficients are larger than zero with all α-terms equal to zero.
If three attributes and two alternatives are assumed:

n = 3, m = 2.

(a) in general: α1 = α2 = α3 = 0

U1 = β1 β2 β3 x11 x21 x31,

U2 = β1 β2 β3 x12 x22 x32.

(b) the β-coefficients have the form of weights:

0 � β1 � 1, 0 � β2 � 1, β3 = 1 − β1 − β2,

with the following outcome:

U1 = β1 β2 (1 − β1 − β2) x11x21x31,

U2 = β1 β2 (1 − β1 − β2) x12x22x32.

(c) the β-coefficients have the form of ratios:

β1 = 1/γ1, β2 = 1/γ2, β3 = 1/γ3,

(these ratios have the form of weights if they satisfy the same conditions as
under b).

U1 = (1/γ 1/γ2 1/γ3)x11x21x31,

U2 = (1/γ1 1/γ2 1/γ3)x12x22x32.
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Conclusion
In the three cases, the relation between the two overall utilities remains the same:

U1

U2
=

x11x21x31

x12x22x32
.

The following conclusions arise from the invariance between the overall utilities.

Rule I
In the full-multiplicative form the relation between the utilities does not change if

more importance is given to an objective by multiplying it by a factor. Indeed, at that
moment all alternatives are multiplied with that factor.

Consequence 1
In the full-multiplicative form the introduction of weights is meaningless. Indeed

weights are here in fact multiplying coefficients.

Rule II
Rule II implies that in the full-multiplicative form an attribute of an objective can be

divided by a constant without changing the relation between the overall utilities of the
alternatives.

Consequence 2
In the full-multiplicative form an attribute of the size 10, 102, 103, 106, 109 etc. can

be replaced by the unit size without changing the relationship between the utilities of the
alternatives.

This consequence is extremely important for attributes expressed in monetary units.
Instead of expressing an attribute in tens, hundreds, thousands, millions, billions for in-
stance of dollars, the use of one digit in the integer part is sufficient.

General Conclusion
A Beta Coefficient is senseless.

An Illustrative Application
The example in the Table 3 illustrates the theory. Three projects are competing in a

firm having to maximize NPV (Net Present Value). At the same time, the government
asks to maximize employment.

Table 3

Projects facing Multiple Objectives

Increase of employment NPV

Project 1 400 man-years 100 m. Euro

Project 2 300 man-years 150 m. Euro

Project 3 100 man-years 350 m. Euro
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1. All β-coefficients are equal to one and all α-terms zero.
Applying Consequence 2 of Rule II the following outcome is obtained:

U1 = 4 × 10 = 40,

U2 = 3 × 15 = 45,

U3 = 1 × 35 = 35,

U2PU1PU3.

2. In addition to the previous case, assume that the stakeholders like to favor an at-
tribute above the others. For instance, NPV is considered as valuable as two times
the employment level (β = 2):

U1 = 4 × 2 × 10 = 80,

U2 = 3 × 2 × 15 = 90,

U3 = 1 × 2 × 35 = 70,

U2PU1PU3.

The outcome remains unchanged but with all utilities two times larger than in
the previous case (Rule I). Additionally one could conclude that in the full-
multiplicative form the use of weights is senseless, as already mentioned in conse-
quence 1.

3. By manipulating α the stakeholders like to favor an objective.

3a. Suppose the stakeholders like to favor the objective “increase in em-
ployment”. Therefore they make α1 equal to 100 person-years with all
β-coefficients remaining equal to 1.

U1 = 5 × 10 = 50,

U2 = 4 × 15 = 60,

U3 = 2 × 35 = 70,

U3PU2PU1.

Unexpected not the employment objective is favored but rather the NPV ob-
jective under the form of U3.

3b. Suppose the stakeholders like to stress the NPV importance by putting α2

equal to 600 m. Euro with all β-coefficients remaining equal to 1:

U1 = 4 × 70 = 280,

U2 = 3 × 75 = 225,

U3 = 1 × 95 = 95,

U1PU2PU3.

Unexpected not the NPV objective is favored but rather the employment ob-
jective under the form of U1.
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General Conclusion
The use of an Alpha Coefficient is senseless.
Finally the solution remains by allocating an exponent to an objective.

Attributes of Objectives Raised to Powers
Allocating an exponent to an attribute of an objective signifies stressing the impor-

tance of this attribute.
Is consequence 2 of rule II also of application here? Miller and Starr (1969, pp. 237–

239) bring the answer. Table 4 demonstrates ratios that do not change if single-dollar
units are transformed to million-dollar units even when attributes are raised to powers.

The costs, which are expressed in dollars, such as investment and labor costs, have
to be minimized. The other objectives are minimized too: 0 for the best and 10 for the
poorest (see Table 4).

1. An Incorrect Method that is Frequently used (Miller and Star, 1969, 238).
An additive method with the scores as weights gives different results by changing
the scale:

(a) the dollar-attributes are expressed in unit dollars: S2/S1 = 1.50
(b) in million dollars units instead of single-dollar units.

The sum of the products of the scores (here weights) with the strategies
changes: S2/S1 = 1.38.
The change in scale introduces dimensional distortion in the ratio.

2. A Dimensionally Correct Method:

(a) the dollar-attributes are expressed in unit dollars:

S1 = (1, 000, 000)3(6)4(1.70)5(7)1(2)3(9)2 = 8.34 × 1025,

S2 = (1, 500, 000)3(10)4(1.50)5(4)1(8)3(6)2 = 1.89 × 1028,

S2
S1

=
1.89 × 1028
8.34 × 1025

= 226.

(b) in million dollars units:

S1 = (1)3(6)4(1.70)5(7)1(2)3(9)2 = 8.34 × 107,

Table 4

Example of Multiple Objectives with Exponents

Attributes Units Scores Strategy S1 Strategy S2

Investment Dollars 3 1,000,000 1,500,000

Site Preference* 4 6 10

Labor cost Dollar/hour 5 1.7 1.5

Relations Cooperation* 1 7 4

Raw-material Quality* 3 2 8

Transport Facility* 2 9 6

* 10 poorest; 0 best.
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S2 = (1.5)3(10)4(1.50)5(4)1(8)3(6)2 = 1.89 × 1010,

S2
S1

=
1.89 × 1010
8.34 × 107

= 226.

S1 is preferred to S2 (a minimization process).
The ratios are indeed invariant to the transformation of scale. The indicator
226 is dimensionless. It certainly does not mean that S1 is 226-times better
than S2.

Conclusion
Contrary to the β-coefficients or the α terms the introduction of exponents will influ-

ence the Ranking of the Alternatives.
Returning once again to the example of Table 3 point 1, where the following ranking

was obtained:

U1 = 4 × 10 = 40,

U2 = 3 × 15 = 45,

U3 = 1 × 35 = 35,

U2PU1PU3.

If an exponent 2 is given to N.P.V the ranking changes in favor of U3 as was expected:

U1 = (4 × 102) : 2 = 400 : 2 = 200,

U2 = (3 × 152) : 3 = 675 : 3 = 225,

U3 = (1 × 352) : 3.5 = 1225 : 3.5 = 350,

U3PU2PU1.

Objectives Moving in a Different Direction
How is it possible to combine a minimization problem with the maximization of the

other objectives? Therefore, the objectives to be minimized are denominators in the for-
mula:

U ′
j =

Aj

Bj
, (6)

with

Aj =
i∏

g=1

xgi,

j = 1, 2, . . . , m; m the number of alternatives; i = the number of objectives to be
maximized, with

Bj =
n∏

k=i+1

xkj ,



Robustness of MULTIMOORA: A Method for Multi-Objective Optimization 17

n − i = the number of objectives to be minimized,
with U ′

j : the utility of alternative j with objectives to be maximized and objectives to be
minimized.

It is true that the Full Multiplicative Form is read horizontally in the Response Matrix
of Table 2. Nevertheless with the full-multiplicative form, the overall utilities, obtained by
multiplication of different units of measurement, become dimensionless measures. This
situation would not bias the outcomes amidst the several alternatives as the last ones are
represented by dimensionally homogeneous equations, being: “formally independent of
the choice of units” (De Jong, 1967, p. 28).

6. The Theory of Dominance

In the most of the not too complicated cases a summary of the ranking of the three MUL-
TIMOORA methods is made. For very large matrices Brauers et al. developed a Theory
of Dominance (Brauers and Zavadskas, 2011; Brauers et al., 2011).

6.1. Axioms on Ordinal and Cardinal Scales

1. A deduction of an Ordinal Scale, a ranking, from cardinal data is always possible
(Arrow, 1974).

2. An Ordinal Scale can never produce a series of cardinal numbers (Arrow).
3. An Ordinal Scale of a certain kind, a ranking, can be translated in an ordinal scale

of another kind.

In application of Axiom 3 we shall translate the ordinal scale of the three methods of
MULTIMOORA in another one based on Dominance, being Dominated, Transitivity and
Equability.

6.2. Dominance, Being Dominated, Transitiveness and Equability

Stakeholders or their representatives may give a different importance to objectives in
a multi-objective problem but this is not the case with the three methods of MULTI-
MOORA. These three methods represent all possible methods with dimensionless mea-
sures in multi-objective optimization and one can not argue that one method is better than
or is of more importance than the others.

Dominance
Absolute Dominance means that an alternative, solution or project is dominating in

ranking all other alternatives, solutions or projects which are all being dominated. This
absolute dominance shows as rankings for MULTIMOORA: (1-1-1).

General Dominance in two of the three methods with a Pb Pc Pd (P preferred to)
is for instance of the form:

(d-a-a) is generally dominating (c-b-b),

(a-d-a) is generally dominating (b-c-b),

(a-a-d) is generally dominating (b-b-c),

and further on transitiveness plays fully.
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Transitiveness
If a dominates b and b dominates c than also a will dominate c.

Overall Dominance of one alternative on another
For instance (a-a-a) is overall dominating (b-b-b) which is overall being dominated

by (a-a-a).

Equability

Absolute Equability has the form: for instance (e-e-e) for 2 alternatives.

Partial Equability of 2 on 3 exists, e.g., (5-e-7) and (6-e-3).

Circular Reasoning
Despite all distinctions in classification some contradictions remain possible in a kind

of Circular Reasoning.
We can cite the case of:
Object A (11-20-14) dominates generally object B (14-16-15).
Object B (14-16-15) dominates generally Object C (15-19-12), but Object C (15-19-

12) dominates generally Object A (11-20-14).
In such a case the same ranking is given to the three objects.
The same rules apply for the three methods of MULTIMOORA. with no significance

coefficients proposed.

6.3. Is the Theory of Dominance not Overlapping with Other Theories?

Let us illustrate this question with the example: “how to choose a secretary?” Three
choices are possible as explained in the Table 5.

Beside the Theory of Dominance can be discussed: (1) the Plurality Rule assisted with
a kind of Lexicographic Method, (2) the Method of Correlation of Ranks.

6.3.1. The Plurality Rule Assisted with a Kind of Lexicographic Method
In 1785 Condorcet was not satisfied with the generally used form of voting. Starting from
that view he examined the possibility of giving votes to different rankings of candidates,
whereas the final decision was taken after the Plurality Rule, i.e., in favor of the candidate
receiving the greatest number of votes for all its first places. A further elaboration would

Table 5

The choice of a secretary

Secretary Typewriting Friendly Intelligent

A Extremely good (1) Extremely friendly (1) Extremely stupid (3)

B Extremely bad (3) Extremely unfriendly (3) Extremely intelligent (1)

C Good (2) Friendly (2) Quite intelligent (2)
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lead to the Condorcet Paradox (Brauers, 2004a, pp. 118–119), later taken over by Arrow1.
For Bordes and Tideman (1991) Arrow’s General Possibility Arrow’s Theorem (1963,
p. 13, 15, 97), which is rather an Impossibility Theorem, is mainly based on the manipu-
lation of candidacies in voting, for us alternatives. The result could be a reverse order.

Following the Plurality Rule secretary A is chosen with 2 first places. With a kind of
Lexicographic method secretary B will rank second with one first place. In these methods
secretary C will always take the last rank despite his or her satisfactory position in all
fields.

6.3.2. The Method of Correlation of Ranks of Kendall (1948, p. 87)
Kendall ranks in an ascending order and according to the sum of ranks allotted to the
individuals. In this way the following ranking is obtained: (1) A with 5 points; (2) C with
6 points; (3) B with 7 points.

The Theory of Dominance comes to the same results:
A (1-1-3) dominates C (2-2-2) and B (3-3-1)
C (2-2-2) dominates B (3-3-1).
However there is an essential difference in method. The similarity has to be considered

as pure chance.

6.3.3. The Method of Correlation of Ranks Compared to the Theory of Dominance
The method of correlation of ranks consists of totalizing ranks. Rank correlation was
introduced first by psychologists such as Spearman (1904, 1906, 1910) and later taken
over by the statistician Kendall in 1948. He argues (Kendall, 1948, p. 1): “we shall often
operate with these numbers as if they were the cardinals of ordinary arithmetic, adding
them, subtracting them and even multiplying them”, but he never gives a proof of this
statement. In his later work this statement is dropped (Kendall and Gibbons, 1990).

In ordinal ranking 3 is farther away from 1 than 2 from 1, but Kendal (1948, p. 1) goes
too far (Table 6).

For Kendal B is far away from A as it has 7 ranks before and A only 4, whereas it is
not true cardinally.

In addition a supplemental notion, the statistical term of Correlation, is introduced.
Suppose the statistical universe is just represented by two experts, for us it could be two
methods. If they both rank in a same order different items to reach a certain goal, it is
said that the correlation is perfect. However, perfect correlation is a rather exceptional
situation. The problem is then posited: how in other situations correlation is measured.
Therefore, the following Spearman’s coefficient is used (Kendall 1948, p. 8):

ρ = 1 − 6
∑

D2

N(N2 − 1)
, (7)

where D stands for the difference between paired ranks, and N for the number of items
ranked.

1In the 1963-edition of his book Arrow maintains that in the first edition of 1951 he was not aware of
the work of Condorcet:“When I first studied the problem and developed the contradictions in the majority rule
system, I was sure that this was no original discovery, although I had no explicit reference, and sought to express
this knowledge by referring to the well known ’paradox of voting” (Arrow, 1963, p. 93).
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Table 6

Ordinal versus cardinal: comparing the price of one commodity

Ordinal Cardinal

1

2

3

4

A 5 6.03$

6 6.02$

7 6.01$

B 8 6$

According to this formula, perfect correlation yields the coefficient of one. An ac-
ceptable correlation reaches the coefficient of one as much as possible. No correlation at
all yields a coefficient of zero. If the series are exactly in reverse order, there will be a
negative correlation of minus one, as shown in the following example (Table 7).

This table shows that the sum of ranks in the case of an ordinal scale has no sense.
Correlation leads to:

ρ = 1 − 6 × 112
7 × (49 − 1)

= −1.

However, as a sum of ranks is not allowed also a subtraction in the differences D is not
permitted.

The full multiplicative method with its huge outcomes illustrates the best the trend
break between cardinal and ordinal numbers as shown in Table 8.

In a usual arithmetical progression: 1, 2, 3, 4, 5, . . . the distance from the rank 4 to 5
would be the same as from 3 to 4 which is certainly not the case here. In addition also all
the other progressions fail to discover a trend break.

Table 7

Negative rank order correlations

Items Expert 1 Expert 2 Sum of ranks D D2

1 1 7 8 −6 36

2 2 6 8 −4 16

3 3 5 8 −2 4

4 4 4 8 0 0

5 5 3 8 2 4

6 6 2 8 4 16

7 7 1 8 6 36

112
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Table 8

Ranking of scenarios for the Belgian regions by the Full-Multiplicative method at the year 1996

Scenario Name Total/100,000 (a)

1 Scenario IX Optimal Economic Policy in Wallonia and Brussels 203,267

2 Scenario X Optimal Economic Policy in Wallonia and Brussels even
agreeing on the Partition of the National Public Debt

196,306

3 Scenario VII Flanders asks for the Partition of the National Public Debt 164,515

4 Scenario VIII No Solidarity at all 158,881

5 Scenario II Unfavorable Growth Rate for Flanders 90

6 Scenario IV An Unfavorable Growth Rate for Flanders and at that mo-
ment asks also for the Partition of the National Public Debt

87

7 Scenario III Partition of the National Public Debt 54

8 Scenario I The Average Belgian 51

9 Scenario V Average Belgian but as compensation Flanders asks for
the Partition of the National Public Debt

49

10 Scenario O Status Quo 43

11 Scenario VI Flanders asks for the Partition of the National Public Debt 42

(a) MAX. Private Income in BEF per Capita (Wallonia*Brussels*Flanders); MIN transfer pay-
ments in BEF per capita from Flanders to Wallonia; MIN in % of Public Debt to GRP (Wallo-
nia*Brussels*Flanders). Substitution of one BEF from transfer payments to private income in not pos-
sible.
Previously 1 BEF = 0.0247893 Euro.
Source: Brauers, 1999, p. 15.

Contrary to the Method of Correlation of Ranks which mixes ordinal with cardinal
scales in a not allowed manner, the Theory of Dominance operates and remains all the
time in the ordinal sphere as demonstrated above.

7. Conclusion

For a researcher in multi-objective decision support systems the choice between many
methods for multi-objective optimization is not very easy. We intended to assist the re-
searcher with some guidelines for an effective choice. In order to distinguish the different
multi-objective methods from each other we use a qualitative definition of robustness,
with an outsider judging favorably on MULTIMOORA.

Multi-Objective Optimization by Ratio Analysis (MOORA), composed of two meth-
ods: ratio analysis and reference point theory starting from the previous found ratios,
solves the difficult problem of normalization whereas the importance of the objectives
is treated separately. If MOORA is joined with the Full Multiplicative Form for Multi-
ple Objectives, also with the importance of the objectives treated separately, a total of
three methods is formed under the name of MULTIMOORA, a mighty instrument for
Multi-Optimization in a Well Being Society. MULTIMOORA, eventually joined with
Delphi for giving importance to an objective, represents the most robust approach for
multi-objective optimization up to now.
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Daugiatikslės optimizacijos MULTIMOORA metodo stiprumas

Willem Karel M. BRAUERS, Edmundas Kazimieras ZAVADSKAS

Daugiatikslė optimizacija iškelia skirtingus tikslus, kurie išsaugo tikslams būdingus mato
vienetus. Santyki ↪u Sistemos (Ratio System) vidiniai sprendiniai suteikia galimyb ↪e naudoti bedi-
mensius dydžius. Taip pat, Santyki ↪u Sistema (Ratio System) leidžia taikyti Atskaitos taško (Ref-
erence Point) metodik ↪a. Sujungus abu metodus išvesta MOORA (daugiatikslis optimizavimas re-
miantis santykio analize) metodo teorija. Pasiekti dar tikslesnius rezultatus galima taikant piln ↪aj ↪a
sandaugos form ↪a (Full Multiplicative Form), kuri ↪a apjungia MULTIMOORA (MOORA plius pil-
noji sandaugos forma) metodas. Išbandžius MULTIMOORA metodo stiprum ↪a gaunami tikslūs
rezultatai.




