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Abstract. The paper defines the decomposition problem of a mixture of
time series into homogeneous components. First part deals with a solution based
on Bayesian approach in the case of independent observations, the other part
is devoted to a solution of on-line decomposition for a time series consisting of
weakly stationary components.
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1. Introduction In practice one can meet the following sta-
tistical decision problem. Let us imagine we observe a time series
where individual observations belong to different time subseries,
which are stirred together in a manner unknown for the observer,
i.e., we don’t know which time subseries the observation actually
belongs to. The task for a statistician is of course to make a decision
about the last observation, which a time subseries this observation
belongs to (on-line problem) or when we have all the observaiions
at our disposal the task is to decompose the given mixture into the
corresponding subseries (ofl-line problem). The problem described
above can be illustrated by the following example. Watching the
butput from a survey radiolocator we meet precisely the on-line
situation. We receive individual responses of airplanes detected by
our radiolocator in irregular time intervals without knowing which
airplane the obtained response belongs to. Thus, we are in the sit-
uation to solve the problem of assigning the last observation into
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one of former subseries presenting the airplanes already detected.
The ofl-line problem we can explain using the simplest example
belonging into the class of time series mixtures. Let us assume the
observed time series is a mixture of two subseries only following
one other. This is the problem of change detection in the behavior
of a random sequence. At the beginning we observe a subseries
described, e.g., by a suitable autoregressive model but the parame-
ters of the mentioned autoregressive model have ubruptly changed
at a time instant unknown for the observer. In this way the ob-
served time series is the mixture of two components, the first is
observed before the change, the other after the change. Our task
is to detect the possibie change. This problematics belongs to hy-
potheses testing and parameters estimation in nonstationary time
series and is very intensively investigated during last 15 years both
from the theoretical point of view and the practical one because of
the direct exploration of these methods in practice, mainly in tech-
nical diagnosis. As survey papers in this problematics of change
detection in time series one can recommend the following papers
Kligiené, Telksnvs (1983), Basseville, Benveniste {(1986), Willsky
(1976), Ba,ssevi’fle (1988). The main goal of this article is to sug-
gest some tests and methods looking for components forming an
observed time series. The presented tests are mainly based on the
Bayesian approach.

2. Problem formulation. Let us consider N time series
{zx(t)}i_,, where the parameter ¢ presents time. Let #; < t2 <
1z < --- < t, be a sequence of time instances, at which we observe
a time series. Then the time series

{l'kl(tj)}?=1,£=1,

where {or every k € {1,2,...,n}, k, € {1,2,..., N} is named by a nix-
ture of the time series zi(t), k = 1,2,...,N- The individual time
series {zp(¢)} will be called the component of the given mixture.
The statistical problem explained above can be briefly character-
ized how to choose components from the observed mixture. The:
number of components need not be known to the observer in ad-
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vance. Roughly speaking one must decided about every random
variable zx,(t;) to which of components it belongs. The simplest
case of 2 mixture we obtain when all the observation are mutually
stochastically independent and 2ll the variables forming one com-
ponent have the same probability distribution function. A special
attention must be paid to the case when the mixture has only two
components. Then the random variable z,(¢;) has the distribu-
tion function Py or P;. If we choose any subgroup of the mixture
{z,(t;)} ] <y, e=1, let us say {zy,(t;,.)}M_,, we can immediately put
the question whether this part of observations forms a component
or not. We have constructed in this manner a simple hypothesis Ho
that the chosen subgroup forms a component generated according
to P; against a composed alternative hypothesis that this subgroup
does not form a homogeneous component. Theoretically speaking
we can decomposed this test into many simpler tests where we test
that simple hypothesis against 2 —1 simple alternative hypotheses.
In this case the answer is given by the classical Neyman Pearson
lemma suggesting the maximal likelihood test. But, in practice
this approach is almost impossibie owing to the large number of
tests. Let us try to construct a Bayesian test in this situation. Let
us assume that the distribution P,, resp. Py, is given by a density
function f, resp., g. We shall test the hypothesis Hy that all the
observations z,(t;) = £(t;), j = 1,2,..., N have the same probabil-
ity distribution P, against the alternative hypothesis there exists
among {£(t;)}}L, at least one observation with the density func-
tion'g. The parametric space is composed of N-tuples from 0 and
1 if we shall consider '

0~ f

l—g
ie., Q={0: 6 ={i1,iz...,in}, ij =0 or 1}. Then the hypothesis
H, is presenied by the one-element subset 5 = (0,0....,0) and the

alternative hypothesis H; is given by the complement Q — ;. Let
us define the loss function £(6, Ho), (9, Hy)

E(ao,HQ) =0 l(gO,Hl)zl
f(gg,H1)=1 !(8,:;H1)=0
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for every 8; # 6,.
Let be given a prior distribution function {po,p1,...,p2n-1} o0
Q where, of course

A sought decision rule is given by the prescription ®(-,x) where
X = (z1,%2,...,25) and

Q(Ho lX)+¢(H1 IX):I

so that we reject the hypothesis Hy with probability 1 — ®(Hy | x)
under the realization x. The Bayesian decision rule must minimize
the average loss function. For this purpose one must know the
aposterior distribution of the parameter §. By use of Bayesian
formula the aposterior density function has the form

fi(x)
BB | X) = —iil
G0 = S

where f;(-) is the N-dimensional density function corresponding to
the parametersvalue §; € Q. Then the conditional expected value
of the loss furfction £Q(-,-) is

E{I(8, Ho) | X} = [1 — @(Ho | X)]h(8 | X) + ®(Ho | X)[1 — h(6o | X)]. (¥)

We look for ®(- | x) in order that E{{(d, Ho)} may be minimal. After
analyzing (*) we find the following decision rule:

it A8 | X) > % then ®(Ho | x) = 1
it h(d | X) < % then {Ho | X) = 0
if h(bp|x)= -;— then |
E{4(6 | Ho) | x} = % for every ®(Ho | X}
Since

po fo(X)

h{8, = —,
G 10 =y &
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then
2N

h(Bo | %) > 5 1l pofo(X) > D p;fi(X)
j=1

2V

it pofo(x) < 3 pifi(x)

j=1

!

h(?o l X) <

2N_1
iff  pofo(x) = D p;fi(x)

j=1

h(8o | %) =

2]

We obtained a nonrandomized Bayesian decision rule. As long as
the prior distribution is uniform on Q we don’t reject Hy if

2N -1

fo(x)> D fi(x).
j=1

Knowing this formula one can expect that this decision rule will
be very restrictive, i.e., the hypothesis Hy will be rejected in most
cases. This unpleasant property can be removed only by use of
knowledge of a prior distribution on the parameter space Q. The
considered Bayesian test is simple against the enormous number
of classical Neyman-Pearson tests, but this simplicity is paid by
possible rejection of H,.

Now, we should, of course realize that both the hypothesis Hy
ard the alternative hypothesis are invariant with respect to the
permutation group in observations. The hypothesis Hy is invariant
with respect to every permutation and for every §; € H, and every
permutation there exists the only 6; € H; such that the mentioned
permutation transforms the density function f;(x) onto f;(x). The
chosen loss function is invariant also with respect to permutations.
It means the whole decision problem (Q, Ho, Hi, £) is invariant with
respect to permutation group. If 7 is a prior distribution on the
parameter space Q and the decision rule 6, is Bayesian with respect
to r then there exists an invariant distribution 7 on Q that the
decision §y is also Bayesian with respect to 7o. 1t means, looking
for Bayesian decision rules we can confine ourselves to invariant
prior distributions on Q. Let m(6y) = gy, be given. Then, the



52 Hypotheses testing

alternative set Q—8, can be divided into N mutually disjoint subsets
Ar, L =0,1,...,N — 1 which are closed with respect to all the
permutations of x. Namely, Q — 6§y = iv=—01 Ar where

N
Ao={8:€0: fi(x) =[]}
Jj=1

Ay = {a; €Q: fi(x)= f(zj)gg(zk) j= 1,2,...,N}

: L
ar={6€9: fix)=]]fzs) I] o(en)}
i=1

k#£5

Avo1={6:€Q: fi() = go(z) [[ flzr) i =1.2.... . N}.

k#j

It is evident that |4;] = (]g) and every invariant aprior distribution
7o on Q is in the unique way determined by the numbers

4; ,
25, = 70(%0),1 90 = 70(4o), -+, gz = 70(AL)s---, gn—1 = To{AN=-1)-
i

Let us name the subsets Ay, L =0,1,..., N —1 as orbits. Then an
invariant prior distribution on  is uniform on every orbit and vice
versa. As long as we coasider invariant prior distributions on
only then the Bayesian decision rule can be expressed in the form:

if
N, ()
G fo(x) > Y ZE Y fr (%), (%)
= (L) j=1
then the hypothesis H, is not rejected. The function fr () is a
density function consisting of L marginal densities f(-) and .. — L
densities g(-). Every function ’ -

()
2 1)
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is symmetric in X because its valie does not change under &n ar-
bitrary permutation applied to x. The maxinyal invariant statistic
with respect to the permutation group is the rank statistic, hence it
would be suitable to find such a deciston rule that can be expressed
by means of the rank statistic. This demand is fulfilled by the rule
(**) because the right side of (»+) is @ symmetric function, hence a
function of the rank statistic.

Let us denote by o probability of the first kind error, then
evidently

o= i—- Ego'{@(ﬂo IX)} = L fo(X)dX,

where K = {X: g, Jo(%) € ;500 fi(%)}.
Probability 8(6;) of the second kind error equals 1= By ®(H, |
x). This error has, of course the form of the following integral

B6:) = / Fi(x) dx.
JIKe
This fact immediately implies that the error of the second kind
is constant on ewery orbit. In order to find out properties of the

suggested test we must study the behaviour of 3(-). Let us assume
for simplicity that f(x) > 0.everywhere on reals. Then

fi(x)
:{X: 1> Z pJfQZ(X)

j=1 1Ho

We can conclude from this fact that for every x € K¢

filx) g,
‘ fo(x) < pi
If 6; E.AN..l then
38 = 3 _ [ 9=z N.He (1 o
B(6:) = B(AN-1) = . F )fo(x) dx < | qN-1(1 o

. Similarly for ¢; € An-»

86) = Ban-n) = [ SEDIEL ) ax ¢ Sl Ny,
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Finally, we can obtain that

B(A) < o . NB(4y).
dn-1

From this the following conclusion follows: if limy—.co NV -gnv-1 =0
then all the errors 8(A.) tend to zero too with the increasing num-
ber of observations. The behaviour of the second kind errors is
determined by the behaviour of 3(Ax_-1) that is quite natural be-
cause the subset Ay_; contains the density functions of the type
9(z;) [1xz; F(zi) only, which are "the most similar” to the hypoth-
esis fo(x). There is no surprise that the quality of this test is given
Jjust by the behaviour of 8(An.1).

Since the second kind errors 8(Ar), L =0,1,...,N — 1 possess
very pleasant property, they are constant on their orbits we can
consider the following test having a hierarchical structure. The
Hypothesis Hp is again given by the one-element subset {6} € Q,
but instead the composed alternative hypothesis 2 — {63} we shall
consider N quite independent tests: the hypothesis Hy against every

orbit Ay separately. For complexity, we repeat that
§

! L
far={0e: =] fz;) [T o(z0)}-
|

k#j

As we know that every orbit is invariant with respect the permu-
tation group, we must consider an invariant prior distribution on
Apg only, i.e., if 7o(Ho) = py, then

- 1-p Ho
O
for every 6 € Ar. In other words spoken we shall test the hypothesis
H, that all the random variables have the same density function
f(-) against the alternative hypothesis among the observed variables
one can find just L variables having the density function g(-). It
seems to be reasonable to proceed in the following manner. First
we test the hypothesis Hy against the alternative hypothesis An_1,-
As long as we reject Ho we need not continue because with high
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probability among all the observations one observation is different.
In case we don’t reject Hy we can in the second step test Hy against
AN-» and so on. By means of this hierarchical test we can reach
the last alternative hypothesis Ag, where all the cbservations are
distributed according to the probability density function g(-). It is
clear that Bayesian test of the hypothesis Hy against the alternative
hypothesis Ar by 0 — 1 loss function has the following form:
if
1= py,
P fo(x) < =22 3 f5(x).
' (L) i
then the hypothesis Hy'is rejected. The following lemma describes
the asymptotic behaviour of the second kind error for the test given
above.

Lemma 1. The second kind error (AL) of Bayesian test com-
paring the hypothesis H, against the alternative hypothesis Ay sat-
isfies the relation: '

if . im pg,=0 then lim B(AL)=0,

where N is the number of observations.

Proof. Although A is not simple alternative hypothesis, as we
know from the previous part, despite of this fact for every 6; € A,

pe) = [ e dx = p(ar)

is not depending on 4;,

Kp = {x: pHofo(X) < E L _A?Hofi(x)}'

8, €A (L

Let a be the first kind error, i.e.,

a= /KL fo(x) dx.
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Then 1-a = fj. fo(x)dx that is precisely the distribution function
value of the random vaziables Sr(-) at the point pg, /(1 - pg,) under
the hypothesis Hy if

1 og{ei,) g(ziy_p)

Si(x) = @f(mil) o f@iny_g)

Thanks to the left continuity of any probability distribution func-
tion one can find in every case to a chosen value « € (0,1) such a
number pg /(1 - pg,) so that

Then the second kind error 8(AL) equals

) = [ xR (72

where Fy,(-) is the distribution function of Si(-) under the alterna-
tive hypothesis Ar. One can easily prove that

[}(A{ﬁ) =/ Sp(x)fo(x)dx.
/. {x:pHO/(l—PH0)>SL(x)} .
Then, of cours:e
o PH PH,
B(AL) < 22 X)dX< g7
(Ar 1-pg, K;_fo( ) 1~ P,

This inequality implies immediately that limy_., 8(4L) =0 i
iimN-..w VPH, = 0. QED

REMARK. In order to reach Emy— o pu, = 0 it is sufficient to
consider the uniform prior distribution. Then 8(A4.) < 1/N, where
N is the number of observations.

At this place it is very important to méntion a special case of
the hypothesis testing, which is very close to the studied questions.
This problem deals with the detection of changes in the behaviour
of time series. The simplest considered case presents a sei;uence
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of mutually independent random variables that are distributed ac-
¢ording to a probability density fuuction f(-) before a change and
according to the density g(-) after a change. A special case of this
statistical task was studied already by Page (1954 ), namely a possi-
ble jump in the mean value of Gaussian random variables. Here we
have the testing of a simple hypothesis "no jump” against a com-
posed alternative hypothesis "a jump occurred” at a time instant
during the observation. Deshayes and Picard proved in Basseville,
Benveniste (1986) that in this case there is no uniform best test
because Neyman-Pearson lemma doesn’t hold. From this reason
the behaviour of the second kind error is extremely interesting for
every suggested test. If we consider Bayesian test based on 0 -1
loss function then we achieve an analogous result as before; the
hypothesis Hy "no change” is rejected if

N
pofo(X) < 3 pifi(x),
i=1

where f;(x) H;—1 f(z,)HJ 1 9(zi) under a prior distribution
{r;}iL,. Then the j-th second kind error is equal to

B =/ch,~(x)dx,

K = {x: pofo(x) < Zﬁl p; fi(x)}. As it is reasonable to consider
po > 0, fo(X) > 0, one case rewrite the rejection rule into the form

o pi fi(%)
J
t< J};po fo(X)
i.e.,
> p; 9(25)9(zi41) - -g(zN)
po f(z;)f(zj41) - F2N)

If the prior distribution {p;};L, is uniform we can write

1<
j=1

. zx) o(z)g(zi41) ---g(zn) -\
< F(zn) ( Z F@D ) fen) 1)
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In this way we obtained a recurrent decision rule

1<Tyn(x,) = ;Eii% (Tn-1(XN-1)+ 1)

We proceed in our decision making so long as long as we over-
step the threshold 1 at the first time by Tn(xy). In this way we
defined a stopping rule change is detected if Ty(xny) 2 1. One can
prove simply that under the hypothesis Hy

Eu {Tn(xn) l (xn=1)} =Tn-1{xXn-1)+ 1.
We see that {Tn(xn)}¥., forms a nonnegative submartingal with
Eg {Tn(xNn)} = N.

This fact implies unfortunately that the considered test is very
strong and we can expect almost in every case the rejection of Hp.
We see that Bayesian global test comparing the simple hypothesis
Hy against the composed alternative hypothesis Q — Ho does not
posses suitable properties and hence we must consider a hierarchi-
cal test a,ga,ini' which tests Hq versus simple alternative hypothesis
gradually. Every simple alternative hypothesis consists in the as-
sumptions a change can only occur at one of time instants among
.,N. Theen H, is rejected if

pofo(xXN) < prLfr(xN),

where po +pr = 1, fo(xn) = [T}, f(z), fr(xn) = [ f(%) x
H~_L g(z;). Under the condition fo(xv) > 0 the testing rule can be
expressed as

PL H f((:?) (XN)

and then we have
EHO{TL(XN)} = —0

for every L=1,2,...,N.
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The asymptotic behaviour of the first and second kind errors
L]
is given in the foliowing

Lemma 2. Let ap and B be the first and second kind errors
of the test mentioned above in case po = p; = 1. Then

Jim (ag + B )N = expip),
where RE (}) = —2(N = L)In [ g/%(z) f1/3(z)dr and

‘= min 1 Ing*(z)f1~%(z)dz
p T a€(0,1) Zlngl/z(z:)fll’?(x)dr)

N Is the number of observations.

Proof. Let us denote by pyr(X) = H{‘_’l—f(xi) H]‘;L g(z;) and

i=1

gn(¥) =[IjZ, f(z;). Then the Hellinger integral Hx(a) equals

+
Hy(a) = /—m ("q‘ L(X )) gn(X)dx = H¥"*(a),

where

\ o
Hl(a)z/ ¢ (z)f17%z)dz  fora€ (0.1,).
This fact immediately follows from the independence of observa-
ti~rns. Then the corresponding Ré nyi distance Rn(a) satisfies the

relation N - L)ln Hy(a)
. —L)InHy{a
En(a) = ( a)—l .

for a € (0,1) and

y()

Ex(1)= (N - L) j fy e

for a = 1. There is no problem to chow that the given statistical
model - ‘
{PN,L(X) }
aN (X) N=1

can be undersicod as a martingale. Let us imagine that with the
increasing number of observations N the number L presenting the
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observations before a change is increasing too such that as N —
oc. L — oo also but

L
Jim = =a€(0,1).

After these assumptions one can use the generalized Chernoff the-
orem from Vajda (1990) dealing with the behavipur of the sum
ayp + B; for Bayesian test. The statement of Lemma 2 is a simple
application of the mentioned theorem. Q.E.D.

REMARK. In the other words speaking, Lemma 2 states that
for sufficiently large N, L the sum ay + 8, can be estimated below
and above as fol'ows

eL-NHIAN ~¢) £ o, 4 8; < ¢(L'N“" HI(%) (o +e)

This inequality .gives another possibility, namely

N

ar + FBr < exp {N(l —a)ln Hl(%> }

Since Hy(L) = [T f3(2)g3(z)dz < & [7%° f(2) + g(z)dz = 1, then

' ar + B —90

exponentia.lly;’ as N — oc.

There is*another possibility how to construct a test compar-
ing the hypothesis H, against the composed alternaiive hypothe-
sis consisting of all the 2V — 1 possible cases. Let us denote by
fo(x) again the density function due to the hypothesis and by f;(x),
i=1,2,...,2% — 1 all the densities from the composed alternative
hypothesis. We wish to make a decision d; under the observation
x that x was realized according to the probability density function
fj(x). Let the loss function #(6;,d;) be given by

£h;,6)=1-8;,
where 8; — f;(-) and &; is the Kronecker symbol. We look for
. . . . . aN_ . .
Bayesian decision function {p(i | x)}7_;? satisfying

2N 1

Z pilx)=1 , (*'**")‘

t=0
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-and ¢(i | X) means the conditional probability accepting d, under
the condition x. Let 7 be a prior distribution on the parametric
space Q= {0; :i=0,1,...,2Y — 1}, Le..

7(9,') = pi-
Then the conditional risk function can be expressed as
2V -y
R(fi.p(- 1 X)) = Y €6i.d;)Es {0(j | X)}
j=6
=1— Es {e(i | x)}.
Using this fact we can calculate the conditional average risk with
respect to the prior distribution 7, namely
2M-1
r(rop)=1-= > piEs {eli | X)}.
i=0
Now, Bayesian procedure must minimize the quantitv r(7,). The
answer is given by the following decision rule

&(x) = {®(i|x): i=0,1,....27 -1},

where

&7 =0 iff i JilX) < > ; 13-
(@ 1x) o pifix) < | max  {p;f;(x)}

In other words, if p;, f; (X) > p; f;(x) for every j € {0.1.. ... 2V 1}~
—{io}, then ®(ip | X) = | because we demand (* = *).

The proof of the optimality for this decision rule is very simple
and is based on the results from Hoel, Peterson (1949}.

Next, we will apply this general approach to the problem of
change detections already considered earlier, where the jump froin
the density function f to the density function ¢ is to be recorded.
Under a suitable choice of a prior distribution on the parameter
space Q! we can adinit only those parameters §; € . j=0,1,..... N
with 7(6;) = p; > 0 corresponding to possible jumps at time in-
stants, j = 1,2,..., N, lL.e.,

j-1 N
8; — ;%) = [T £z [T oz,
PE-S

i=j
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Then we obtain the decision rule stating we accept the alternative
hypothesis 8;, if and only if

Pio¥jo(X) > max pivi(X).
1¥£30
We shall consider two simple examples for illustration.
The first case considers a possible jump in mean value of Gaus-
stan random variables, i.e.,

21
IE

1 1. 1 1
= ——expl — 227 = ol - ~(r+6
fiz) \/Q_T.exp{ 57 1, glz) ‘/_E_T.exp{ 2(:-1» )

where for simplicity § > 6. Then, one can easily find out that the
alternative hypothesis jo is accepted if and only if

i
If we put jo = N then we obtain the following stopping rule:
‘a change at time instant X is recorded if

L _ &
max(Z;,Z2.....In-1) < 3
“but
S é
N > =,
N5
where
R
"=m§i_1izz, i=12...N-1

The other example considers Gaussian random variable too, but
with possible density functions

3 1 2
-5 ———eT 367,

1
'ﬁ;e ’ 9(z) = o/ 27

flz) =
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Then, the alternative hypothesis jo, will be accepted if for every
i=1,92,....5o—1

1 - Ino~
Jo—i 4w ST
Jo =i o
and simultaneously for every i1 =jo+1.jo+2,....N +1
Ineo* 1 =
2
. ; I;.
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