
INFORMATICA, 1992, Vol.3, No.l, 47-63 

HYPOTHESES TESTING IN MIXTURES 

OF TIME SERIES I 

Jiff MICHALEK 

Institute of Informat.ion Theory and Automation 
Czechoslovak Academy d Sciences 
182 08 Prague 8, Pod vodarenskou vezi 4, Czechoslovakia 

Abstract. The paper defines the decomposition problem of a mixture of 
time series into homogeneous components. First part deals with a solution based 
on Bayesian approach in the case of independent observations, the other part 
is devoted to a solution of on-line decomposition for a time series consisting of 
weakly stationary components. 
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1. Introd uction In practice one .can meet the following sta­
tisticd decision problem. Let us imagine we observe. a time series 
where individual observations belong to different time subseries, 
which are stirred together in a manner unknown for the observer, 
i.e., ~e don't know which time subseries the observation actually 
belongs to. The task for a statistician is of course to make a decisiun 
about the last observation, which a time subseries this observa.tion 
belongs to (on-line problem) or when we have all the observal.ions 
at our disposal the task i~ to decompose the given mixture into the 
corresponding subseries (off-line problem). The problem described 
above can be illustrated by the follewing example. Watching the 
output from a survey radiolucator we meet precisely the on-line 
situation. We receive individua.l responses of a.irplanes detected by 
our radiolocator in irregular time intervals without knowing which 
airplane the obtained response belongs to. Thus, we are in the sit­
uation to solve the problem of assigning the last observation into 
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one of former subseries presenting the airplanes already detected. 
The off-line problem we can explain using the simplest example 
belonging into the class of time series mixtures. Let us assume the 
observed time series is a mixture of two subseries only following 
one other. This is the problem of change detection in the beha.vior 
of a random sequence. At the beginning we observe a subseries 
described, e.g., by a suitable autoregressive model but the parame­
ters of the mentioned autoregressive model have ubruptly changed 
at a time instant unknown for the observer. In this way the ob­
served time series is the mixture of two components, the first is 
observed before the change, the other after the change. Our task 
is to detect the possible change. This problematics belongs to hy­
potheses testing and parameters estimation in nonstationary time 
series and is very intensively investigated during last 15 years both 
from the theoretical point of view and the practical one because of 
the direct exploration of these methods in practice, mainly in tech­
nical diagnosis. As survey papers in this problematics of change 
detection in time series one can recommend the following papers 
Kligiene, Telksn::s (1983), Basseville, Benveniste (1986), Willsky 
(1976), Bassevi/le (1988). The main goal of this article is to sug­
gest some test$ and methods looking for components forming an 
observed time series. The presented tests are mainly based on the 
Bayesian approach. 

2. Prohlemrormulaiion. Let us consider N time serIes 
{xk(t)H~~ll whe,e the parameter t presents time. Let tl < t2 < 
ts < ... < tn be a sequence of time instances, at which we observe 
a time series. Then the time series 

where for every k E {I, 2, ... , n}, kl E {I, 2, ... , N} is named by a lllX­

ture of the time series xk(f), k == 1,2, ... ,N: The individual time 
series {Xk(t)} will be called the component of the given mixture. 
The statistical problem explained above can be briefly character­
ized how to c':lOose components from the observed mixture: The' 
number of components need not be known to the observer in ad-
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vance. Roughly speaking one must decided about every random 
variable Zkl(tj) to which of con'ponents it belongs. The simplest 
case of a mixture we obtain when all the observation are mutually 
stochastically independent and a.ll the variables forming one com­
ponent have the same probability distribution function. A special 
attention must be paid to the case when the mixture has only two 
components.· Then the random variable Zkl(tj) has the distribu­
tion function Po or PI' If we choose any subgroup of the mixture 

{X1:At j )}j=l,t:P let us say {Xkl(tj",)}~:l' we can immediately put 
the question whether this part of observations forms a. component. 
or not. We have constructed in this manner a simple hypothesis Ho 
that the chosen subgroup forms a component generated according 
to Po against a composed alternative hypothesis that this subgroup 
does not form a homogeneous component. Theoretically speaking 
we can decomposed this test. into many simpler tests where we test 
that simple hypothesis against 2M -1 simple alternative hypotheses. 
In this case the answer is given by the classical Neyman Pearson 
lemma suggesting the maximal likelihood test. But, in practice 
this approach is almost impossible owing to the large number of 
tests. Let us try to constr~ct a Bayesian test in this situation. Let 
us assume that the distribution Po, resp. PI, is given by a density 
function j, resp., g. We shall test the hypothesis Ho that all the 
observations Zkl(tj) = ~(tj), j = 1,2, ... , N have the same probabil­
ity distribution Po against the alternative hypothesis there exist.s 
among {~(tj nj":l at least one observation with the density func­
tion 'g. The parametric space is composed of N-tuples from 0 and 
1 if we shall consider 

0+-+/ 

1 +-+ 9 

Le., n = {B: B = {il' i2 , ... , in}, ij = 0 or I}. Then the hypothesis 
Ho is presented by the one-element subset 80 = (0,0, ... ,0) and the 
alternative hypothesis Hl is given by the complement n - Bo. Let 
us define the loss function £(B, Ho), £(B, HI) 

£(00 , Ho) = 0 

£(Bi,H l ) = 1 

£(80 , Hd = 1 

l(Oi' Hd = 0 
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for every 8; ::f:. 80 • 

Let be given a prior distribution function {Po, PI, ... ,P2,,-d on 
n where, of course 

j=O 

A sought decision rule is given by the prescription q>(-, x) where 
X=(XI,X2, •. "Xn ) and 

q>(Ho I x) + q>(HI I x) = 1 

so that we reject the hypothesis Ho with probability 1 - q>(Ho I x) 
under the realization x. The Bayesian decision rule must minimize 
the average loss function. For this purpose one must know the 
aposterior distribution of the parameter 8. By use of Bayesian 
formula the aposterior density function has the form 

where f;(·) is the N~dimensional density function corresponding to 
the parameter/value 8; E n. Then the conditional expected value 
of the loss furtion f(·,·) is 

E{/(8, Ho) I x;) = [1 - q>(Ho I x)]h(Oo I x) + q>(Ho I x)[l - h(80 I x)]. (*) 

We look for q>(. l x) in order that E{e(8, Ho)} may be minimal. After 
analyzing (*) we find the following decision rule: 

if h(80 I x) > ~ then q>(Ho I x) = 1 

if h(80 i x) < ~ then q>(Ho I x) = 0 

if h(8ol x) = ~ then 

1 
E{C(81 Ho) I x} = 2 fur every q>(Ho I x}. 

Since 
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then 
1 

2N_l 

h(Oo I x) > - lff Pofo{x) > L Pj /j (x) 
2 j=l 

1 
2N -1 

h(eo I x) < - if! pofo(x) < 2: Pi /j (x) . 2 
j=1 

1 
2N_1 

h(eo I x) = - iff pofo{x) = E pj/j(x) 
2 

i=1 

We obtained a nonra,ndomized Bayesian decision rule. As long as 
the prior distribution is uniform on n we don't reject Ho if 

2N -1 

fo(X) '> L /j(x). 
j=l 

Knowing this formula one can expect that this decision rule will 
be very restrictive, i.e., the hypothesis Ho will be rejected in most 
cases. This unpleasant property can be removed only by use of 
knowledge of a. prior distribution on the parameter space n. The 
considered Bayesian test is simple against the enormous number 
of classical Neyman-Pearson tests, but this simplicity is paid by 
possible rejection of Ho. 

Now, we should, of course realize that both the hypothpsis Ho 
a:-d the alternative hypothesis are invariant with respect to the 
permutation group in observations. The hypothesis Ho is invariant 
with respect to every permutation and for every Oi E Ht and every 
permutation there exists the only OJ E Ht such that th€- mentioned 
permutation transforms the density function fi(X) onto hex). The 
chosen loss function is invariant also with respect to permutations. 
It means the whole decision problem (n, Ho, H1, f) is invariant with 
respect to permutation group. If T is a prior distribution on the 
parameter space n and the decision rule 60 is 13ayesian with respect 
to T then there exists an invariant distribution TO on n that the 
decision 60 is also Bayesian with respect to TO. It means, looking 
for Bayesian. decision rules we can confine ourselves to invariant 
prior distributions on n. Let TO(OO) = gHo be. given. Then, the 
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alternative set a-BD can be divided into N mutually disjoint subsets 
AL , L = 0,1, ... , N - 1 which are closed with respect to all the 
permutations of x. Namely, a - BD = Uf';Ol AL where 

N 

Ao = {Os Ea: fo(x) = ITg(Xj)} 
j=1 

Al = {Os En: f,(x) = f(xj) IT9(Xk) j = 1,2, ... ,N} 
kt-j 

L 

AL = {os Ea: !sex) = IT f(xj') IT g(Xk) } 
1=1 kt-iz 

AN - 1 ::i.{Oi Ea: !sex) =g(Xj) ITf(Xk) j = 1,2, ... ,N}. 
kf;j 

It. is evident that lo4.L 1 = (~) and every invariant aprior distribution 
TO on a is in the unique wa:y determined by the numbers 

/ 
qHo = 70(eo),; qo == 70(Ao), ... , qL = To(Ad,···, qN-l = To(AN-d· 

J 

Let us name the subsets AL, L = 0, 1, ... , N - 1 as orbits. Then an 
invariant prior distribution on n is uniform on every orbit and vice 
versa. As long ·as we consider invariant prior distributions on n 
only then the Bayesian decision rule can be expressed in the form: 
if 

N-I QL (~) 
qHofo(x) > t; (~) {;hj(X), 

then the hypothesis liD is not rejected. The function h/) is a 
density function consisting of L marginal densities fO and".- - L 
densities g( .). Every function 

j=l 



is symmetric in:x ~ 'i1ts 'W!.1tre ~:bbt ~~~ 'l!J.}DCler <a'n <a:t­
bitrary permutat.Foia ~~ Itrm~. The 1IDll.~~1 'irnva:r-tain:t '&tia'tirslVi:c 
with respect to the peml1!l1taiiN!ffi ~'lI.;P!i's _ ~Ik sta'tis·tic, .he'n~ tt 
would be suitable to $lird ~ <a ~si0ll rr<u!l!e 1ih:a;t ~n :be '~}(,P1'~ 
by means of the Tank stai:iis:tirc. l"ihii-s ~il }s tcnlifiUed hy :the "tii!lire 
(**) because the tight ,-side fill { ...... ~ ii1; ~ ~:nr-etllic $ull'c'tio'll1" ~Ce la 

function of the r.a'nlk sta~1frc. 
Let us ~. :b;v ((!t ~ffd:ty <l!l.i' ~ ftiim tkiilJ1id ~()'r., t1ren 

evidently 

~=l-&o{.(Ho I'x)}.:: I fo(X)il'tiC., , J1( 
where K= {x: ,q'HoJo{x) ~ Lj>.o Pj!j (x)}. 

Prob:a:bHity fJ("Oi) of the second kind error ·eql:l<als 1 - 9iJe 1'tiCH O I 
x). This elTOT has, 'Of course the form of the followingin't'Eigr.a.1 

f3(n;) == I Ji(X) dx. J1(c 
This f.ad lm.:media;tely implies that ;the 'error of the secbond k~:rr~ 
is ·constant .oa:l e\1'ery :arMt. In 'Order to fi.n·dbut properti~ 'of'til-e 
suggested 'test w:-e 'must styey the behaviour bf ;3(-). Let us :assiQ~~ 
for simpiicity th~t f(x) > O.everywhere on reals. Then 

.2N -1 I ( 

KC:: {x: 1> 'L PjJ ; x) }. 
j=l qHofo(x) 

,\Ve can conclude from this fact that for every x E KC 

If (J; E 'AN-l then 

Similarly for 6; E AN-2 

P(6i ) = P(AN-2) == I ;~01:1~~~01:2~JO(X:)dx: < ~. N~(AN:.d. JK {; Zl ~2 9N=1 . 
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Finally, we can obtain that 

.B(Ao) ~ qHo ,N .B(A1), 
qN-l 

From this the following conclusion follows: if limN-..oo N, qN-l = 0 
then all the errors .B(Ad tend to zero too with the increasing num­
ber of observations. The behaviour of the second kind errors is 
determined by the behaviour of .B(AN-I) that is quite natural be­
cause the subset AN-l contains the density functions of the typ~ 
g(Xj) Ih;tj !(xe) only, which are "tfie most similar" to the hypoth­
esis fo(x). There is no surprise that the quality of this test is given 
just by the behaviour of .B(AN-d. 

Since the second kind errors ,8(AL). L = 0,1,., "N - 1 possess 
very pleasant property, they are constant on their orbits we can 
consider the following test having a hierarchical structure. The 
Hypothesis Ho is again given by the one-element subset {lio} E n, 
but instead the composed alternative hypothesis n - {OD} we shall 
consider N quite independent tests: the hypothesis Ho against every 
orbit AL separately. For complexity, we repeat that , 

! L 

! AL = {o En: <-+ IIf(Xj) IIg(zk)}' 
~ j=l k;tj 

As we know tpat every orbit is invariant with respect the permu­
tation group, we 'must consider an invariant prior distribution on 
AL only, i.e., if To(Ho) = PHo then 

for every 0 E AL. In other words spoken we shall test the hypothesis 
Ho that all the random variables have the same density function 
f(·) against the alternative hypothesis among the observed variables 
one can find just L variables having the density function g(.). It 
seems to be reasonable to proceed in the foHowing manner. First 
we test the hypothesis Ho against the alternative hypothesiS"' AN-h' 

As long as we reject Ho we need not continue because with high 
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probability a,mong' all the observations one observation is different. 
In case we don't reject Ho we can in the second step test Ho a.gainst 
AN-2 and so on. By means of this hierarchical te~t we can reach 
the last alternative hypothesis Ao, where all the observations are 
distributed accor~ing to the probability density function g(.). It is 
clear that Bayesian test of the hypothesis Ho against the alternative 
hypothesis Ai by 0 - 1 loss function has the following form: 
if 

I-PH ~ 
, PHofo(x) < (1) 0 7 h(x), 

then the hypothesis Ho'is rejected. The following lemma describes 
the asymptotic beha,viour of the second kind error for the test given 
above. 

Lemma 1. The second kind error ,B(AL) of Bayesian test com­
paring the hypothesis Ho against the alternative bypothesis AL sat­
isfies tbe relation: 

if, lim PHo = 0 then lim ,B(AL) = 0, 
N-oo N-oo 

where N is tbe number of observations. 

Proof. Although AL is not simple alternative hypothesis, as we 
know from the previous part, despite of this fact for every, (Ji E AL 

is not 'depending on Oi, 

{ ~ 1-PHo } 
KL = x: PHofo(x)::S;; L~ (N) /i(x) . 

9i EAL L, 

Let Q' be the first kind error, i.e., 

Q' = ( fo(x) dx. JKL 
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Then 1- Cl' = fKc loft() £be i;hai is precisely the distribution function 
value of the random w.arni<a;9les SL(·) at the point PHo/(l- PHo) under 
the hypothesis Ho if 

Thanks to the left continuity of any probability distribution func­
tion one can find in every case to a chosen vaJue a E (0,1) such cl, 

number pHo/(l - PHo) so that 

'r lo(x) ~ 1 - Cl'. 
JKc 

L 

Then the second kind error f3(AL) equals 

where FsiO is the distribution function of SL(-) under the alterna­
tive hypothesis AL. One can easily prove that 

~(AL) ~ PHo [ lo(x) dx ~ PHo . 
I-PHoJK'i. I-PHo 

This inequality implies immediately that limN--+oo f3(Ad =0 il 
limN_oo PHo == 0. Q.E.D. 

REMARK. In order to reach limN--+oo PHo = 0 it is sufficient to 
consider the uniform prior distribution. Then f3(Ad ~ IIN, where 
N is the number of observations. 

At this place it is very important to mention a special case of 
the hypothesis testing, which is very close to the studied questions. 
This problem deals with the detection of changes in the beh_q,viour 
of time series. The simplest considered case presents a sequence 
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of mutually independent random variables that are distributed ac­
cording to a probability density fmlction f(-) before a change and 
according to the density g(-) after a change. A special case of this 
statistical task was studied already by Page (1954), namely a possi­
ble jump in the mean value of Gaussian random variables. Hete we 
have the testing of a simple hypothesis "no jump" against a COITl­

posed alternative hypothesis "a jump occurred" at a time instant 
during the observation_ Deshayes and Pi card proved in Basseville, 
Benveniste (1986) that in this case there is no uniform best test 
because Neyman-Pearson lemma doesn't hold_ From this reason 
the behaviour of the second kind error is extremely interesting for 
every suggested test. If we consider Bayesian test based on ° - 1 
loss function then we achieve- an analogous result as before; the 

hypot.hesis Ho "no change" is reject.ed if 

N 

pofo(x) < LPjf;(x), 
j=l 

where f; (x) = n{,:; f(x;) n~l g(x;) under a prior distribution 
{Pj}f=l- Then the j-th second kind error is equal to 

{3j = f f; (x) dx, JKc 
J{ = {x: Pofo(x) ~ 2:~1 Pi f; (x)}_ As it is reasonable to consider 
Po > 0, fo(x) > 0, one case rewrite the rejection rule into the form 

I.e., 
N 

1 < "Pj g(Xj)g(x_i+d---9(XN)_ 
b. Po f(xj )f(xj+l) -- - f(XN) 

If the prior distribution {Pi }f=l is uniform we can write 
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In this way we obtained a recurrent decision rule 

g(XN) 
1 < TN(Xn) = !(XN) (TN-l(XN-d + 1) 

with To(Xo) = O. 
We proceed in our decision making so long as long as we over­

step the threshold 1 at the first time by TN(XN). In this way we 
defined a stopping rule change is detected if TN(XN) ~ 1. One can 
prove simply that under the hypothesis Ho 

We see that {TN(XN )}N':o forms a nonnegative submartingal with 

This fact implies unfortuI).ately that the considered test is very 
strong and we can expect almost in every case the rejection of Ho. 
We see that Bayesian global test comparing the simple hypothesis 
Ho against the composed a,lternative hypothesis n - Ho does not 
posses suitablr properties and hence we must consider a hierarchi­
cal test againl which tests Ho versus simple alternative hypothesis 
gradually. Evlery simple alternative hypothesis consists in the as­
sumptions a change can only occur at one of time instants among 
1,2, .. "., N. Thkn Ho is rejected if 

POJO(XN) < PLh(XN), 

where Po + PL = 1, !O(XN) = n~l !(Xi), h(XN) = nf;/ !(Xi) x 
nf=L g(Xj). Under the condition fo(x.v) > 0 the testing rule can be 
expressed as 

and then we have 

for every L = 1,2, ... ,N. 
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The asymptotic behaviour of the first and second kind errors 
i~ given in the following 

Lemma:. Let [).L and rh he the first and second kind errors 
of the test mentioned above in case Po = PI = ~. Then 

where Rkr(~) = -2(}V - L)lnf~: gl/2(r)fl/2(x)dx and 

• . . { 1 Ing"(x)f1-"(x)dx 1 
p = ,,~6?1) - 21ng1/ 2 (x)j1/2(x)dx J ' 

N is the num ber of observations. 

Proof. Let us denot.e by PN,L(X) = n~;/ f(Xi) I1j":L g(Xj) and 
YN(X) = fIr=1 f(xj). Then the Hellinger integral HN(a) equals 

where 

for a E (0.1,). 

This fact immediately follows from the independen~e of observa­
ti'">ns. Then the corresponding Re nyi distance RN(a) satisfies the 
relation 

for a E (O, 1) and 

RN(l) = (N - L) L:oo 
In ~~:V(X)dX 

for a = 1. There is no problem to show that the given statistical 
model 

{ PN,dX )}o..l 
qN(X) N=l 

can be unde:.stc.od as a martingale. Let us imagine that with the 
increasing number of observations N the number L presenting the 
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observations before a change is increasing too such that as ]V -+ 

eN. L - 00 also but 

lim NL = a E (0, 1). 
N_co 

After these assumptions one can use the generalized Chernoff the­
orem from Vajda (1990) dealing with the behavipur of the sum 
O:L + i3L for Bayesian test. The stat.ement of Lemma 2 is a simple 
application of the mentioned theorem. Q.E.D. 

REMARK. In the other words speaking, Lemma 2 states that 
for sufficiently iarg(' N, L the sum O:L + Ih can be estimated below 
and above as foP ows 

This inequality,.gives anoth~r possibility, namely 

"-'O:L + i3L ~ exp {N(l - 0:) In HI (~) }. 

Since H1( t) = J~: f!(x)g~(x) dx < ~ r~: f(x) + g(x) dx = 1, then 

! 
exponentiallyj as N -+ 00. 

There is' another possi bili ty how to construct a test corn par­
ing the hypothesis Ho against the composed alternative hypothe­
sis consisting of all the 2N - 1 possible cases. Let us denote by 
fo(x) again the density function due to t.he hypothesis and by fi(X), 
i = 1,2, ... , 2N - 1 all the densities from the composed alt.ernative 
hypothesis. 'We wish to make a decision dj under the observation 
x that x was realized according to the probability density function 
/j (x). Let the loss function t(l);, dj ) be given by 

f(Bj,o;) = 1- Oij, 

where Bj ...... /iO and Oij is the Kronecker symbol. We look for 
Bayesian decision function {cpU 1 X)}i:l-1 satisfying 

2N_l 

L I;?(i I x) = 1 
;=0 
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·and i.p(i I X) means the <"'onditional probability accf'ptjn~ <1, under 

the condition x. Let T be a prior distribution 011 the para met ric 

spac(' Q = {O. : i = 0, 1, ... 12N - l}, i.e .. 

r(O;) = Pi. 

Then the co;-}ditional risk function can bp. expressed as 

2N -1 

R(O',i.p(-1 x)) = L f(Oi.dj)Ee,{y(j I x)} 
j=O 

= 1 - E8 , {y(i I x)}. 

Using this fact we can calculate the conditional average risk with 

respect to the prior distributioI?- T, namely 

'IN -1 

r(r,y) = 1- L PiEe,{;,;(i I x)}. 
j=o 

Now, Bayesian procedure must minimize the quantity 1"(r.i'-"). The 
answer is given by the following decision rule 

where 

~(x) = {~(i I x): i = 0,1. ... . 2N -l}. 

~(i I x) = ° iff pdi(X) < max {p;f) (x)}. 
0"j,,2-"-1 

In other words, if Piofio(x) > pjfJ(x) for every j E {O. 1. .... 2'v - l}­
-{io}, then cI>(io I x) = 1 because we demand (* * *). 

The proof of the optimality for this decision rule is VNy simple 

and is based on the rpsl!lts from Hoel. Petprson (1919). 

Next, we will apply this general approach to tlw prohlplIl of 

change detections already considered eariiPl", wh('f(' tilt' jump from 

the densi1y function f to the density function !I is to Lw n>cold;"d. 

Under a suitable choice of a prior distribution 011 thp par:1:ileter 

space n we ca.n admit only t.hose parameters OJ E n. j = 0.1 ...... "-1' 

with r(Bj ) = Pi > 0 corresponding to possibJ'{' jumps at tilllP w­
stants, j = 1,2, ... , N, i.e., 

j-l :v 
Bj -- ipj(x) = IT /(:1';) I1g(x;). 

i= 1 ;=j 
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Then we obtain the decision rule stating WE.' accept the alterna.tive 
hypot.hesis Bjo if and only if 

We shall consider two simple examples for ilIustra.tiun. 
ThE' first ca.:;(' considers a possible jump ill mean value ()f Galls­

sian random va.riables, i.e., 

1 {l "} f(x) = "fi; exp - 2r , 1 {I "} g(z)= r;;-::.f'XP --2(.r+6)- , 
v2r 

wherE' for simpli<-ity li > o. Then, onE' can easily find out that the 
alternative hypothesis io is accepted if and only if 

1 jo-l f, 

-. -1 '"' Xi < -2 
)0 -!- .. 

• =1 

and at. the same time for every i = io + 1, io + 2, ... , N + 1 

I 

1 i-I - f, 

-. -. '"' Xi> -2· 
1-)0 L-

'=)0 

If we put io = N then we obtain t.he following stopping rule: 
a change at t~me instant. N is recorded if 

~ 
z: •• > -.. 2' 

N 
_ 1 '"' 
Zi = N _ i + 1 !- x/, 

1=, 

Tht> other example considers Gaussian random variahle too, but 
with possible density functions 

1 ' g(z:) = --e--;;r. 
D'./2i 
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Then, the alternative hypothesis jo will be accepted if for every 
i = 1,2, ... ,jo - 1 

1 io-l I" 
? n 0--

-. --. "" Xi < --}-
)0 -, Lt 1 - ~ 1=. a· 

and siro ultaneously for every i = jo + LiD + 2, .... S + 1 

In 0-2 1 i-I 

--- < -- "'" zr 1 - -L i - io Lt 
(12 1=)0 
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