
INFORMATICA, 2012, Vol. 23, No. 3, 427–441 427
© 2012 Vilnius University

Applications of Finite Linear Temporal Logic
to Piecewise Linear Aggregates

Henrikas PRANEVICIUS1, Stanislovas NORGĖLA2

1The Faculty of Informatics, Kaunas University of Technology
Student ↪u 50, LT-51368 Kaunas, Lithuania

2The Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania

e-mail: henrikas.pranevicius@ktu.lt, stasys.norgela@mif.vu.lt

Received: July 2010; accepted: June 2012

Abstract. In this paper, we consider piecewise linear aggregates (PLA) and a possibility to use a
linear temporal logic for analysis of their performance over finite structures (finite linear temporal
logic (LTL)). We describe a calculus where the search is performed with respect to a context of
the formula. An important aspect of finite LTL is the simplicity of its model of time and actions.
PLA is used for description of numerous complex systems. The answers about the behavior of
the aggregate are got by finding an interpretation in which all the formulas describing the work
of the aggregate are true. This is illustrated by formalizing alternative bit protocol (ABP) task.
We describe the ABP by putting it in the form of a planning problem. From the obtained model,
we can find a finite sequence of actions to be executed in order to achieve the goal. In addition,
an alternative bit protocol problem is described using the planning domain description language
(PDDL). We report the results of experiments conducted using the LPG-TD planner.

Keywords: artificial knowledge representation, artificial intelligence planning, piecewise linear
aggregates, finite linear temporal logic.

1. Introduction

At first, temporal logic was being created in order to formalize time tense in natural lan-
guage. It occurred later that temporal logic can be successfully used as a specification
language to solve the problems arising in the area of informatics. One of the first uses of
temporal logic was a formalization and verification of concurrent and distributed systems.
The circle of application expanded later. Now temporal logic is used in such fields as pro-
gram specification, temporal databases, knowledge representation, and natural language.
Temporal logics are classified according to whether time is assumed to have a linear or
branching structure. CTL (computation tree logic; Clarke et al., 2000) is the most used
of branching time logics. CTL formulas are composed of path quantifiers and temporal
operators. Both CTL and LTL (linear temporal logic) can be thought of as fragments of
powerful computation tree logic CTL*. The complexity of the satisfiability problem for
the logics CTL, CTL* and LTL is PSPACE or EXP. The complexity of model checking
problem for CTL* and LTL formulas is PSPACE. Only the model checking problem for

428 H. Pranevicius, S. Norgėla

formulas of CTL can be solved in polynomial time. That is why the most widely used al-
gorithms for the search of goal is model checking for the CTL formulas (Holzman, 2003).
However problems specified using LTL formulas cannot be expressed by CTL and vice
versa.

In this paper, we consider the application of finite LTL to the problems related to PLA.
The model of PLA is widely used for behavior and performance analysis of complex sys-
tems (Pranevicius, 1991, 2008; Pranevicius and Miseviciene, 2006). Some methods for
correctness analysis of the PLA models have been developed: reachable states, invari-
ants, application of predicate logic. The PLA verification methods permit to analyze the
following properties of systems: statistical and dynamical deadlocks, termination, bound-
edness, completeness, absence of redundancy, invariants veracity. Applications of satisfi-
ability checking mechanisms for LTL formulas over finite structures (Cerrito and Cialdea
Mayer, 1998; Cialdea Mayer et al., 2007) to the problems of PLA have not been exam-
ined. Complex structures (for example, Büchi automaton) are used to describe a linear
temporal logic model. Finite sequence of nodes, to which propositional variables are as-
signed, describes a finite model. Finite model can be obtained using known model search
algorithms for LTL formulas but it can be obtained faster using procedures which are fo-
cused on finite model search. Theoretically, using a model checking method it is possible
to verify if a given formula is satisfiable or not. To this end, it is necessary to run through
all possible interpretations of the formula. However that would be a primitive, highly in-
efficient algorithm (EXP complexity for CTL formulas and PSPACE complexity for LTL
formulas). We describe a calculus where the search is performed with respect to a context
of the formula. This gives a possibility to create executable interactive systems for the
most tasks described by PLA. The use of finite linear temporal logic as a specification
language for the problems cost in the PLA framework has several advantages. An im-
portant aspect of finite linear temporal logic is the simplicity of its model of time and
actions. We have a natural representation of a world that changes over time. This logic
is more expressive than classical propositional logic. Note that finite quantified LTL is
undecidable (Cerrito et al., 1999b). The validity problem for first-order linear temporal
logic over finite time structures is not recursively axiomatizable. The search of answer
is reduced to model search. The behavior of PLA is described by formulas in which the
degree of modal operators does not exceed two. This allows the described formalizations
to apply practically.

The structure of the paper is the following. The Section 2 presents a general overview
of the PLA model. A finite LTL is presented in the Section 3 of the paper. The Section 4
presents a description of an alternative bit protocol by LTL. For the sake of simplicity,
only a formalization method (idea) is given. In order to increase the effectiveness of the
algorithm more nodes are introduced by applying the specific case. More formulas are
got however all of them are described in the Section 4. In Section 5, we report the results
of experiments conducted using the LPG-TD logical inference system.

We describe an alternative bit protocol task by putting it in the form of a planning
problem (Kautz and Selman, 1992, 1999; Kautz et al., 1996). Since there is a large num-
ber of planners (such as IPP, BLACKBOX, STAN, LPG-TD, SGPLAN6, MIPS-XXL),

Applications of Finite Linear Temporal Logic to Piecewise Linear Aggregates 429

we were not willing to implement our own solution to the problem (we should find a
derivation in the calculus, which is described in the Section 3) but instead we have used
one of the existing planners, namely, LPG-TD. Experiments were also carried out with
two well known planners, SGPLAN6 and MIPS-XXL, which are accessible on the inter-
net. But the best results were obtained with LPG-TD planner, so only experiment using
this planner is described in Section 5. We apply a satisfiability approach to the planning
problem: a plan corresponds to a model of the problem specification.

2. Piecewise Linear Aggregate Formalization Approach

PLA is a special case of automaton models. In the application of the PLA approach for
system specification, the system is represented as a set of interacting piecewise linear
aggregates (Pranevicius, 2008; Pranevicius and Ceponyte, 1992; Pranevicius and Mise-
viciene, 2003). The PLA rendered as an object defined by a set of states Z, a set of input
signals X , and a set of output signals Y . The behavior of an aggregate is considered at
discrete time moments t ∈ T . The states z ∈ Z, input signals x ∈ X , and output signals
y ∈ Y are considered to be time functions. Transition and output operators, H and G,
must be known as well.

The state z ∈ Z of the piecewise linear aggregate is the same as a state of a piece-
linear Markov process, i.e., z(t) = (υ(t), zυ(t)) where υ(t) is a discrete state component
taking values on a countable set, and zυ(t) is a continuous component with coordinates
zυ1(t), zυ2(t), . . . , zυk(t). When there are no inputs, an aggregate the state changes as
follows:

υ(t) = const,
dzυ(t)

dt
= −αυ,

where αυ = (αυ1, αυ2, . . . , αυk) is a constant vector.
The state of the aggregate can change in two cases only: either when an input signal

arrives at the aggregate or when a continuous component takes a definite value. The
theoretical basis of piecewise linear aggregates is their representation as a piece-linear
Markov processes.

Continuous coordinates, which are used in PLA, define time moments when internal
events occur. The aggregate state z(tm) can be changed only at discrete time moments tm,
m = 1, 2, 3, The state stays to be fixed in every interval [tm, tm+1], m = 0, 1, 2, . . . ,
where t0 – the initial moment of system behavior. When the state z(tm), m = 0, 1, 2, . . .

of the system is known, the moment tm+1 of the next event is determined by a moment
of input signal arrival at the aggregate or by the equation:

tm+1 = min
{
w

(
e′ ′
i , tm

)}
, 1 � i � f̃ ,

where f̃ is the number of internal events. A class of the next event em+1 is specified by
the input signal. It depends on whether this signal arrives at the time moment tm+1 or it

430 H. Pranevicius, S. Norgėla

is determined by control coordinate having the minimum value at the moment tm, i.e.,
when the coordinate w(e′ ′

i , tm) reaches its minimum, em+1 ∈ E′ ′.
The new state of the aggregate is defined using H operator:

z(tm+1) = H
[
z(tm), ei

]
, ei ∈ E′ ∪ E′ ′,

where E′ and E′ ′ stand for the subsets of external and internal events, respectively.
The output signals yi can be selected by an aggregate from the set of output signals

Y = {y1, y2, . . . , ym}. This may happen only at moments of fixing the events from the
subsets E′ and E′ ′. The operator G determines the content of the output signals:

y = G
[
z(tm), ei

]
, ei ∈ E′ ∪ E′ ′, y ∈ Ỹ .

PLAs are widely applied for specification, modeling, simulation and analysis of com-
plex systems (Pranevicius, 1991; Pranevicius and Miseviciene, 2006).

3. Linear Temporal Logic Over Finite Time Structures

The language of finite linear temporal logic considered in this paper extends classical
propositional logic by means of adding the unary modal operators � (always), � (even-
tually), ◦ (next). The formula �A means that A is true now and will always be true, �A

that A is either true now or sometime in the future and ◦A that A holds in the next state.
A temporal structure is a finite sequence of elements called states or time points. Inter-

pretation M consists of states s0, s1, . . . , sn representations from N to set of subsets of
literals. To every si, a subset ν(i) of propositional variables is assigned. The satisfiability
relation Mi |= F is inductively defined as follows:

• Mi |= p if p ∈ ν(i), p is a propositional letter;
• Mi |= ¬A if A is not satisfiable;
• Mi |= A ∧ B if Mi |= A and Mi |= B;
• Mi |= A ∨ B if either Mi |= A or Mi |= B;
• Mi |= A → B if either A is not satisfiable or Mi |= B;
• Mi |= �A if for all j � i, Mi |= A;
• Mi |= �A if there exists j � i such that Mi |= A;
• Mi |= ◦A if Mi+1 |= A and i �= n; if i = n, then failure.

The degree of modal operators in a propositional formula of classical logic is 0. If the
degree of modal operators in a formula A is n, then the degree of time operators in the
formulas �A, �A, and ◦A is n + 1.

Next, we will describe a tableaux calculus, which makes it possible to find at least
one finite model (if the formula is satisfiable) or to show that the formula hasn’t got finite
models. The calculus is built using the one described in work Cerrito and Cialdea Mayer
(1997). The main features making our calculus different are the following:

Applications of Finite Linear Temporal Logic to Piecewise Linear Aggregates 431

• endpoint sm of model interval is created;
• notion failure (defined as ⊥) is used in rules;
• there are rules for logical operations ¬, ∧, ∨ and time operators �, �, ◦.

We denote by s, s1, s2, . . . ; s′, s′ ′, . . . natural numbers. The meaning of prefixed for-
mula F : s is “ F is true in the state s”. Prefixed formula F : [si, sj] (here si � sj) en-
codes the situation where F is true in each state s of finite time interval, here si � s � sj .
We consider the formulas in negation normal form. Recall that a formula is in negation
normal form if all negations immediately precede atoms.

Tableaux calculus:

(∨)
F ∨ G: si

F : si | G: si
,

F ∨ G: [si, sm]
F : si | G: si

F ∨ G: [s′, sm] | F ∨ G : [s′, sm]
s′ = si + 1 | s′ = si + 1

,

(∧)
F ∧ G: si

F : si
G: si

,
F ∧ G: [si, sm]

F : [si, sm]
G: [si, sm]

,

(�)
�F : si

F : [si, sm]
,

�F : [si, sm]
F : [si, sm]

,

(�)
�F : si

F : s′

si � s′
,

�F : [si, sm]
F : sm

,

where s′ is new in the whole tableau,

(◦)
◦F : si

F : si + 1
,

◦F : [si, sm]
⊥ ,

◦F : sm

⊥ ,

(synch)
Δ

s = s′ | s < s′ | s′ < s
s, s′ ∈ Δ

.

In the above formula, we denote by Δ the set of all time frames and inequalities in
a branch of the search tree. It is called limitation set.

On every branch of the model search tree we get limitation sets. By applying synchro-
nization rule synch, we do not get any new formulas. The goal of this rule is to put the
time frames in an absolute order.

A branch of the model search tree is closed if one of the following conditions holds
true:

• limitation set is contradiction. This means that it contains inequalities of the form:
s < s′, s′ < s;

• there are ⊥ in this branch;

432 H. Pranevicius, S. Norgėla

• there are two prefixed formulas of the following form in this branch of the model
search tree: A : s, ¬A : s′ and from the limitation set of the analyzed branch we
get that s = s′.

A branch is open if all its time frames are in the absolute order and the following
conditions are satisfied:

• if in branch exists prefixed formula in form: A ∧ B : s, then there will be such
s′ = s, that in branch will such prefixed formulas A : s′, B : s′ too;

• if there exists in the branch a prefixed formula of the type: A ∨ B : s, then there
will be such a number s′ = s that in branch will be also include either the prefixed
formula A : s′ or the prefixed formula B : s′;

• if there exists in the branch a prefixed formula of the type �A : s, then for each
state s′ � s the branch will also include the prefixed formula A : s′;

• if there exists in the branch a prefixed formula of the type �A : s, then there will
be such a number s′ � s that the formula A : s′ will belong to the branch, too;

• if there exists in the branch a prefixed formula of the type ◦A : s, then there will
be such a number s′ = s + 1 that the formula A : s′ will belong to the branch, too.

We denote by Σ the set of formulas consisting of the initial formula, formulas de-
scribing actions, successor state axioms, loop avoidance axioms and the goal formula.
On the time frame j, the search of the model tree is performed using the input data
Γ = {A : j | A ∈ Σ}. Finding a model amounts to finding an open branch of the search
tree in Γ.

Usually the search for a model (model can be finite also) is faster performed using
the described tableaux calculus than using known methods from the literature which are
designated for the search of models for linear temporal logic formulas (models can be
infinite also).

As an example, the search of the model for the formula ��p, which is described in
the book (Ben-Ari, 2001, page 246), can be compared with the search in our calculus:

��p : s0,

�p : [s0, sm],

p : s′s0 � s′ � sm.

We have found a model which has one node s′ in which p is true.
Below we present another example which shows how quickly the calculus settles the

fact that the formula ��¬p ∧ � ◦ p does not have a finite model:

��¬p ∧ � ◦ p : s0,

��¬p : s0,

� ◦ p : s0,

◦p : [s0, sm],

¬p : sm,

⊥.

Applications of Finite Linear Temporal Logic to Piecewise Linear Aggregates 433

The simplicity with which finite temporal logic model is searched opens new oppor-
tunities in finding automated solution for problems. It will be illustrated by alternative
bit with manager task. We did not implement our calculus. There are several available
planners on the internet. We have chosen one of them which can be adopted to search for
a model in our calculus.

The protocols are modeled as state-transition systems. Such structures are called
Kripke structures.

4. A Finite LTL-Based Description of Alternative Bit Protocol

4.1. Conceptual Model of Alternative Bit Protocol

A protocol manages the transmission of information packets between two protocol ob-
jects: Sender and Receiver. The packets are transmitted through a half-duplex channel.
After sending out the packet, the sender starts timer and waits for an acknowledgement.
When the time expires, the packet is resent. After receiving the acknowledgement, it is
assumed that the packet transmission cycle is over. Every transmitted packet contains
packet number that can be either 0 or 1. This causes protocol name. After receiving the
packet, the receiver sends an acknowledgement packet. It is admitted that an information
packet and an acknowledgement may be either disorded or lost during transmission.

4.2. A Description of Protocol by Finite LTL

The protocol model consists of the following three aggregates: Sender, unreliable Chan-
nel and Receiver. The structure of the aggregate model is depicted in Fig. 1.

Next, we present the description of both the Sender aggregate and the Channel aggre-
gate. To describe the model of the protocol aggregate using LTL two changes are done.
Firstly, continuous coordinates used in PLA model are changed in the following way:

w(e′ ′
i , tm) =

{
0, if operation initiating event e′ ′

i is not active,
1, otherwise.

After such changes have been done, all PLA coordinates describing model state are
discrete. This permits using a propositional logic for description of both discrete and
continuous coordinates of the aggregate model.

Fig. 1. Structure of the aggregate model.

434 H. Pranevicius, S. Norgėla

Fig. 2. State graph of the sender.

Aggregate Sender
Propositional variables are as follows:

get conf(B) – confirmation has been received with alternating bit value B;
out packet(B) – packet has been sent with alternating bit value B;
conf u – confirmation packet is not damaged;
packet formation – operation of packet formation is active;
timer on – timer is switched on.

States are as follows:

S0: packet formation, Bit1 = 1, ¬timer on;
S1: packet formation, Bit1 = 1, timer on;
S2: packet formation, Bit1 = 0, ¬timer on;
S3: packet formation, Bit1 = 0, timer on;

The state graph of the sender is shown in Fig. 2:
The meaning of arcs in this graph is as follows:

1 – get conf(B) ∧ conf d;
2 – packet formation(B = 1);
3 – ¬timer on;
4 – get conf(B);
5 – get conf(B) ∧ conf d;
6 – packet formation(B = 0);
7 – ¬timer on;
8 – get conf(B).

Actions are as follows: change Bit, form, end up, timer end up.
Confirmation packet has arrived:

�((get conf(B) ∧ (B = Bit1) ∧ conf u) → ◦do change Bit),

�((get conf(B) ∧ (B = Bit1) ∧ conf u ∧ do change Bit)

→ ◦(¬Bit1 ∧ packet formation)),

Applications of Finite Linear Temporal Logic to Piecewise Linear Aggregates 435

�((get conf(B) ∧ (B = Bit1) ∧ conf u) → do form),

�((get conf(B) ∧ ¬(B = Bit1)) → do form),

�(do form → ◦packet formation).

Formation of packet has ended:

�(packet formation → do end up),

�(do end up → ◦(¬packet formation ∧ timer on ∧ out packet(Bit1))).

Timer has ended:

�(timer on → do timer end up),

�(do timer end up → ◦(packet formation ∧ ¬timer on)).

Propositional variables of the Channel aggregate are as follows:

in packet(B) – the packet is transmitted to channel with alternating bit value B;
in acknowledgement(B) – the packet is transmitted to channel with alternating
bit value B;
out acknowledgement(B) – the acknowledgement has been transmitted to re-
ceiver;
out packet(B) – the packet has been transmitted to receiver;
lost – transmitted packet/ acknowledgement is lost.

Actions are as follows:

trans acknowledgement – acknowledgement is transmitted;
trans packet – packet is transmitted;
trans(B = Bit2).

States are as follows:

S0: do trans packet, do trans(B = Bit2), ¬do trans acknowledgement.

The packet with alternating bit value Bit2 is transmitted through the channel.

S1: ¬do trans packet, do trans(B = Bit2), do trans acknowledgement.

The acknowledgement with alternating bit value Bit2 is transmitted through the chan-
nel.

S2: do trans packet, do trans(B = Bit2), ¬do trans acknowledgement.

The channel is empty.
The state graph of the channel is shown in Fig. 3:
The meaning of arcs of this graph is as follows:

1 – in acknowledgment(B);
2 – in packet(B);
3 – trans packet ∧ out packet(Bit2);
4 – in packet(B);
5 – in packet(B) ∧ lost;

436 H. Pranevicius, S. Norgėla

Fig. 3. State graph of the channel.

6 – in acknowledgement(B) ∧ lost;
7 – in acknowledgement(B);
8 – trans acknowledgement ∧ out acknowledgement(Bit2);
9 – in acknowledgement(B);
10 – in packet(B).

Actions are as follows:
Packet has sent to channel:

�((in packet(B) ∧ ¬do trans acknowledgement ∧ ¬do transpacketlost)
→ ◦ ¬do trans packet),

�((in packet(B) ∧ do trans acknowledgement) → ◦ ¬do trans packet)
�((in packet(B) ∧ do trans packet) → ◦ ¬do trans packet)
�(in packet(B) ∧ ¬do trans acknowledgement ∧ ¬do trans packet ∧ ¬lost)

→ ◦do trans packet)
�((in packet(B) ∧ ¬do trans acknowledgement ∧ do trans packet ∧ ¬lost)

→ ◦do trans(B = Bit2)).
The acknowledgement has sent to channel:

�((in acknowledgement(B) ∧ ¬do trans acknowledgement

∧ ¬do trans packet ∧ lost) → ◦¬do trans acknowledgement)
�((in acknowledgement(B) ∧ do trans acknowledgement)

→ ◦do trans acknowledgement)
�((in acknowledgement(B) ∧ do trans packet)

→ ◦do trans acknowledgement)
�((in acknowledgement(B) ∧ ¬do trans acknowledgement

∧ ¬do trans packet ∧ ¬lost) → ◦do trans acknowledgement)
�((in acknowledgement(B) ∧ ¬do trans acknowledgement

∧ ¬do trans packet ∧ ¬lost) → ◦do trans(B = Bit2)).
The acknowledgement has transmitted:

�((do trans acknowledgement ∧ do trans(B = Bit2)
→ ◦ ¬do trans acknowledgement)

�((do trans acknowledgement ∧ do trans(B = Bit2)
→ ◦out acknowledgement(B))

The packet has transmitted:

�((do trans packet ∧ do trans(B = Bit2)) → ◦ ¬do trans packet)
�((do trans packet ∧ do trans(B = Bit2)) → out packet(B = Bit2)).

Applications of Finite Linear Temporal Logic to Piecewise Linear Aggregates 437

Below we present example properties of the analysed protocol:

• A state must be always achieved after losing either a packet or an acknowledgement
that is transmitted through the channel (when a timer is off);

• �(((trans packet ∨ trans acknowledgement) ∧ lost) → ¬timer on);
• A sender must always get an acknowledgement when a packet for sending has been

formed after a definite time;
• �((packet formation ∧ out packet(B)) → get conf(B)).
The activation of any operation depends on values assigned to the state. It will be

described by the formula �(C → do(e)). This formula means that operation e is activated
always when C is true. After activation, the coordinates change. This fact is recorded
using the formula �(do(e) → ◦H). This formula means that always, when operation
e is activated, at the next time moment the formula H becomes to be true. The formula
H describes the coordinates that have changed. Depending on the task, which is being
solved using PLA, sometimes the formula �(C ∧ do(e)) → ◦H) must be prefered. It
should be noted that more than one operation can be activated. An initial situation is
described using a propositional logic formula. When any state is accessed, the output
operator is activated, and the result, which includes the coordinates of particular state, is
obtained. In this way, temporal logic formulas, where can be no more than another time
operator occurring in operation scope of any time operator, are used for the description
of the PLA behaviors. An answer for created goals is obtained by ending interpretation
(Kripke structure) in which all the formulas describing aggregate behavior are true.

5. Experiment

In order to accomplish an experiment, the alternative bit protocol problem was described
using PDDL (Fox and Long, 2003; Gerevini et al., 2004). Many actions such as

�(do send → ◦(sent ∧ ¬ready to send))

were transformed into actions of PDDL easily without putting on extra effort.

(:actiondo send

:precondition(and(not(sent))(ready to send))

:effect(and(sent)(not(ready to send)))

.)

However, for example, actions (the complete list of variables and actions can be ob-
tained via internet (home page of S. Norgėla: http://www.mif.vu.lt/katedros/
cs/) having“OR” operator in their effect field were transformed into more than one ac-
tion. This is done in order to eliminate “OR” operator since PDDL syntax does not allow
disjunctive operators to appear in the effect field. By abolishing the operator, we have
actions with the same preconditions but different effects, so the planner decides which

438 H. Pranevicius, S. Norgėla

action to use. Moreover, action “do receive” is transformed into more than one action
too. This is needed to avoid not only “OR” operator but also conditional effects. So if
an action either has “OR” operator in its effect field or is using conditional effects, it is
transformed into more than one action of PDDL. In addition, to describe such situations
as packet deformation or packet loss and to count packets, fluents are needed. For exam-
ple, functions “i” and “k” are implemented to identify packet loss. When packet is sent
via the channel, “i” value is incremented by one. When “i” value is equal to “k” value
which is defined in problem file, init field, the packet is lost and “i” starts to count from
zero. So the packet loss (as well as packet deformation) frequencies can be specified in
problem file to obtain different plans.

(: actiondo receive 1

:precondition(and(timer)(sent)(sendin bit)(< (i)(k))(< (j)(1)))

:effect(and(received)(receiving bit)

(increase(i)1)(increase(j)1)(not(sent)))

)

(: actiondo receive 2

: precondition(and(timer)(sent)(not(sending bit))(< (i)(k))(<(j)(1)))

: effect(and(received)(not(receiving bit))(increase(i)1)

(increase(j)1)(not(sent)))

)

Basically, in order to arrange an experiment a planner which support fluents and neg-
ative preconditions is needed. There are not so many planners which fulfill this require-
ment. We have chosen LPG-TD planner (Gerevini et al., 2004) because it runs on the
Microsoft Windows platform. The experiment is performed by trying five times to send a
particular number of packets via the channel using different packet loss and packet defor-
mation rates. For example, three packets can be sent via the channel five times under the
conditions that packet transformation rate is equal to 1

4 (that means every fourth packet
is deformed) and packet loss frequency 1

2 (that means every second packet is lost) The
obtained results include the number of actions and the time averages. It is also taken into
account that the sender informs the aggregate manager about failure after three attempts
to send the same packet. The results of experiments are summarized in table. For ex-
ample, if a packet is sent five times via the channel with packet deformation and packet
loss frequencies 1

2 (that means every second packet is either deformed or lost), then the
average length plan needed to send a packet is 38 actions and the average time taken
to find the plan is 1.42 seconds. If two packets are sent five times via the channel with
packet deformation frequency 1

4 (that means every forth packet is deformed) and packet
loss frequency 1

2 (that means every second packet is lost), then the average length plan
needed to send two packets is 29 actions and the average time needed to find the plan is
2.2 seconds. The Table 1 shows that if packet deformation and loss rates are higher, then

Applications of Finite Linear Temporal Logic to Piecewise Linear Aggregates 439

Table 1

Results of experiments

P 1/2, 1/2 1/2, 1/4 1/4, 1/2 1/4, 1/4 1/8, 1/8

1 38a, 1.42s 28a, 2.10s 29a, 2.2s 8a, 0.05s 8a, 0.04s

2 53a, 18.18s 52a, 23s 52a, 20s 27a, 0.88s 15a, 0.08s

3 75a, 52.2s 75a, 82.3s 77a, 80.2s 60a, 0.5s 21a, 0.1s

bigger plans will be needed. Of course, the length of the plan depends on the number of
packets needed to be sent. Results were as we had expected. The first row of the table is
used to specify the packet and loss rates. The first column indicates the number of packets
to be sent.

The knowledge, which represents a relation between sender and receiver is described
using finite linear temporal logic formulas. The core of computer-assisted system for
answering to questions about the alternative bit protocol aggregate operation at various
time moments has been created. Questions are formulated in the form of �A. Is there
any possible situation that A is true? For example, can we access the situation where
packet acknowledgement waiting time has ended and the acknowledgement packet was
not received? This question is described by the formula �(¬timer ∧ ¬ack received).
A range of software (Fox and Long, 2003; Gerevini et al., 2004) has been developed for
this type of information processing. This software is available on the internet. The next
step is to describe restrictions and to create proof-search tactic. To make the search more
effective, the knowledge about impossible events and situations, which are not needed to
be considered, must be added to the system.

6. Concluding Remarks

PLA are automata very well suited for describing many complex systems. Those include
protocols of computer networks, processing of distributed informations logistics and busi-
ness systems among others. One of the problems tackled is to develop efficient methods
for verification and validation of the systems that are amenable to PLA based descrip-
tions. In the literature, there exist various methods for simulating the behavior of a PLA.
The majority of them are theoretical by nature. In this paper, we have proposed an inno-
vative and not yet considered approach to formalizing the notion of the automata, which
is centered around the use of linear temporal logic (LTL) formulas. For verification of
the systems described using PLA, we apply finite LTL. We reduce the verification prob-
lem to a planning problem. The latter was investigated in many studies including those
which involved time intervals for planning. However, there are only a few specific appli-
cations where finite timer temporal logic was used. In most of the papers, only possibility
to apply the LTL mechanism is discussed. In this work, we extend the application spec-
trum of temporal logic. Taking as an example the alternative bit protocol, we show that
our method can be efficient. Furthermore, the majority of LTL applications employ the

440 H. Pranevicius, S. Norgėla

model checking method. We instead use a different approach for verification, namely
a model search method. This opens new possibilities for verification and allows consider-
ing queries of different type. We not only check whether the provided query satisfies the
specifications of the problem (as the model checking method is doing), but also search
for at least one model. When a query is specified using a CTL formula, solving problems
of this type is not possible in practice because algorithms for searching an answer have
exponential worst-case complexity. However, the problem becomes tractable when the
query is described using LTL formulas and a finite model is searched. One of the merits
of the method presented in this paper hinges on the fact that there exist many planners, for
example, IPP,BLACBOX, Thus, it is possible to use already existing tools (by adopt-
ing them to searching a finite model) for solving the problems related to verification and
validation of various systems when specifications of the problems as well as queries are
described using linear temporal logic formulas. We have shown that whenever a complex
system is formalized as a PLA with no random elements, then it can also be described by
simple LTL formula (in which the degree of model operators does not exceed two) and
solved by applying already existing tools (planners).

References

Ben-Ari, M. (2001). Mathematical Logic for Computer Science, Springer, Berlin.
Cerrito, S., Cialdea Mayer, M. (1997). A prefixed tableau calculus for plan generation in linera temporal logic.

Technical report, RT-DIA-24-97.
Cerrito, S., Cialdea Mayer, M. (1998). Using linear temporal logic to model and solve planning problems. In:

Proceedings of the 8th International Conference on Artificial Intelligence: Methodology, Systems, Applica-
tions, pp. 141–152.

Cerrito, S., Cialdea Mayer, M., Praud, S. (1999). A tableau calculus for first order linear temporal logic over
bound time structures. Technical report LRI, 1207.

Cerrito, S., Cialdea Mayer, M., Praud, S. (1999). First order linear temporal logic over finite time structures. In:
LNAI, Vol. 1705, pp. 62–76.

Cialdea Mayer, M., Limongelli, C., Orlandini, A., Poggioni, V. (2007). Linear temporal logic as an executable
semantics for planning languages. Journal Logic, Language and Information, 16, 63–89.

Clarke, E.M., Grumberg, O., Peled, D. (2000). Model Checking. MIT Press, Cambridge.
Fox, M., Long, D. (2003). PDDL 2.1: an extension to PDDL for expressing temporal planning domains. Journal

of Artificial Intelligence Research, 20, 61–124.
Gerevini, A., Saetti, A., Serina, I. (2004). LPG-TD: a fully automated planner for PDDL2.2 domains. In: 14th

International Conference on Automated Planning and Scheduling (ICAPS-04), Whistler, Canada.
Holzman, G.J. (2003). The SPIN Model Checker. Addison-Wesley, Reading.
Kautz, H., Selman, B. (1992). Planning as satisfiability, In: Proceedings of the 10th European Conference in

Artificial Intelligence, Vienna, Austria, pp. 360–363.
Kautz, H., Selman, B. (1999). Unifying SAT-based and graph based planning. In: Proceedings of the 16th

International Joint Conference of Artificial Intelligence, Stockholm, pp. 318–325.
Kautz, H., McAllester, D., Selman, B. (1996). Encoding plans in propositional logic. In: Proceedings of the 4th

International Conference on Knowledge Representation and Reasoning, pp. 374–385.
Pranevicius, H. (1991). Aggregate approach for specification, validation and implementation of computer net-

work protocols, Lecture Notes in Computer Science, 502, 433–477.
Pranevičius, H. (2008). Analysis and Formalizations of Complex Systems. Kauno Technologijos Universitetas,

Kaunas (in Lithuanian).
Pranevicius, H., Ceponyte, R. (1992). Application of logic programming based for validation of computers

network protocols aggregate specifications. Automatic and Computing Technique, 2, 22–27.

Applications of Finite Linear Temporal Logic to Piecewise Linear Aggregates 441

Pranevicius, H., Miseviciene, R. (2003). Transformation of aggregate specifications to the predicate logic mod-
els. In: The International Workshop on Harbour, Maritime and Multimodal Logistics Modelling & Simula-
tion, Riga, pp. 378–384.

Pranevicius, H., Miseviciene, R. (2006). Knowlegde based verification of aggregate specifications. In: Proceed-
ings of Fifth Mexican International Conference on Artificial Intelligence, pp. 3–11.

H. Pranevicius is author of a few monographs in area of formal specification and analysis
of distributed systems using piece-linear aggregate approach. He is a professor, hab. dr,
head of Business Informatics Department. His research interests include the use formal
methods for verification and simulation of complex software systems.

S. Norgėla was awarted the candidate of physical-mathematical sciences at Leningrad
Steklov Institute in 1978. He is an associate professor of Vilnius University at the Com-
puter Sciences Chair. His research interests include the problems of artificial intelligence,
nonclassical logics etc.

Baigtinės tiesinio laiko logikos takymai atkarpomis tiesiniams
agregatams

Henrikas PRANEVICIUS, Stanislovas NORGĖLA

Atkarpomis tiesini ↪u agregat ↪u darbas aprašomas baigtinės laiko logikos formulėmis. Eksperi-
mentuota su alternatyvaus bito agregatu. Formulės užrašytos PDDL kalba. Eksperimentui panau-
dota programa LPG-TD.

