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Ab~tract. The paper defines the decomposition problem of a mixture of 

time sent's inlo homogeneous components. First part dea.1s with a solution based 
on Baye::;ian approach in the case of independent observations. the other ;)a.rt 

is devoted to a solution of on-line decomposition for a time series consisting of 

weakly stationa-y components. 

Key words: Bayesian test, Yule-\\'alker estimate", I-divergence rate, au­
toregressive modeL 

\Ve so far ~ave been interested ir;. Part I in the question about 
the distributi~ of an observed sequence in two components only, 
But. in pract~(· one can expect larg<:>r number of possible orbits, 
usually unknown for t h(' ObSN\'<'r in advancf'. EVf'1l if we knew 
tli(' 1I11llllwl' of orbits b('fore Ollr l'xp<'rimellt the off-line distribu­
tion problem into indi\'idu.d orbits wOllld be morr ('ornplicated 
than the two cornpon('llts problem. TIlE' sitll.'ltion is much more 
gE'ttin)!; worse if WE' admit a stochastil: dependence among observa­
t.ions. ender this situation the on-lille distribution problem seems 
t.o DE' b<'ttE'r solvable. In practice 011(' cltn easier assume that i'!1 the 
components are mutually stochastically ind<'pE"ndE'llt. The o,lIne 
problem can be described as follo'ws: we hav(' obtained the last 
observation and we have learnt, let us say, ,\f possible orbits con­
structed already from the previous observations. Now. \ve have to 
decide to which of these At orbits the last ohservation belcngs with 
high probability or to establish a quite new orbit.. Let us iniagin~ 
we have learnt AI components {x{,x{".".r1.}, j = 1,2 .... ,M on 



• 
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the basis of previous observations and we have the last observation 
x and the statistical problem is to decide to which componf'nt x 

belongs. For simplicity we shall assume all the observations are 
mutually independent and every i-th component is determined by 
a density function 

j,. 

fj (x) = IT f;(Xi), j = 1,2, ... , M. 
j=l 

Under this situation there exists ".,n optimal Bayesian procedure 
already mentioned advising to accept the decision x belongs to the 
jo-th orbit if 

As long as the same maximum value is achieved by two or more 
orbits one could choose among them randomly. This a.pproa.ch can 
be used by time series where observations can be mut.ually depen­
dent. if we, of course knew the evolut.ion of every orbit described 
by conditional distributions funct.ions. Then, by use of the previ­
ous Bayesian procedure we can choose tha.t orbit that possesses the 
maximal conditional density function of x under the history of the 
whole orbit. Namely, if f;(xlx{, ... . .z{j) will be the co,nditional den­
sity function describing the evolution of the j-th orbit, which can 
be briefly expressed as !(xlj) then under prior distribution {Pj }~1 
the aposterior density function f(jlx) is given by Bayesian formula 

f( 'Ix) = Pj f(xJj) . 
J / "\,,M ,r(") 

L..."i=l P~ J XII 

Choosing the orbit that maximazes the aposterior density function 
we do precisely the same as choosing that orbit jo satisfying 

P;o f(xlio) > ma.x {pi f(xli)}. 
11O;,,,M 

1#)0 

This algorithm can be used, e.g., in the case of several differ­
ent autoregressive models with Gaussian variables, where the last 
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observation r belongs to that orbi t or a u toregressi ve model Mj, 
j = 1,2, .... AI that minimizes the distance 

;;: - Cj 

-;;r-
) 

Here x) is the best prediction of z 'one step ahead in the model 
MJ , o} is the error of t his optimal prediction. 

In practice our situation is not so clear because usu,tlly we 
don't possess any models Mj, j = l,2, ... ,M and as the first step 
one must identify them, i.e., to estimate unknown parameter" u:-;ing 
those observations that form on the basis of experience one orbit. 
One cannot expect in practice as well thp knowledge of conditional 
density functions describing the evolution of orbits. From these 
practical reason it is reasonable to look for othf'f types of distances, 
which could measure similarity betwN:'n orbits. One such a clas,> of 
distances is derived from entropy and usually known as the class 
of convex statistical distances, for detail see Licse, Vajda (1987), 
e.g. \Ve shall consider the case where orbits can be approximated by 
weakly stationary sequences with different mean values and spectral 
density functiqns. Ld us know frJm the previous decisions that 
(or{.~, ... , xLi form the j-th component or orbit apd let x be again 
the last obs~rvation. The basic idea is to approximate the j-th 
orbit by a s~itable autoregressive model, where the ordN of an 
autor('gressiv~ series is chosen by means of the Akaike criterion, , . 
<,.g., and coefficient estimatE'S are obtained by th£> least squar~s 
method or by means of Yule-\\'alker estimat.f's. The mean value 
is estimated in usual by the arithllJt'tic mean. The task is then 
understood as follows: to find in a certa.in sense the most similar 
model from the models given befor£> to thE' model derived from 
every orbit completed by r. As one of possible distances can &erve 
the AIR-distance (asymptotic I-divergence rate) defined by 

where ui = 2r exp { ~/r f~r in)pl (A) d'x}. This distance is derived from. 
I-divergence between two Gaussian stationary measures given by 
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mean values ml. m2 and spectral density function 'Pd,), ;;2(-); for 
• details see Vajda (1989). It is necessary notice the AIH-distance 
is not symmetric. If we wished a symmetric distance wc could 
consider, e.g., 

Although this "similarity measure" is derived of Gallssian random 
variables one can recommend it in a case of non-Gaussian variables, 
too. \Ve can namely in such it case underst.and the approxilllation 
of an observed orbit given by an autoregr('ssive IC1Clel bas('(i on 
Yule- Walker estimators as the closest projection into t hp class of 
Gaussian autoregressive models; for deeper information see, e.g., 
Vajda (1989), Michalek (1990). Now, let {l,aii), ... ,a~i.),orm;} be 
the coefficients of the approximating autoregressive moJel of t.he 
order Pi for the i-th orbit. These coefficients are obta.ined by min­

iruaxing AIR(<pi,md'Poo,m) over all the autoregressi\,(, models of 
the order Pi determined by mean value m a.nd the spectral density 
function 

The spectral density function <"?i(- ) is given by the covariauce co('f­
ficients estimates 

.1:.-.1: 
-(il 1 ~ ( (i) (i) 

Rk = k. L.J XjH - mi)(X j - mi), 
I j=1 

k=O,l. ... ,]li 

1 1;. - L (i) m; - - X" k. J 
S j=1 

i.e., 
p. 

<pi(A) = k~i) + 2 L fly) cosUA). 
j=1 
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As proved in Michalek (1990) the solution of this minimizatic"l 
problem is given by solving the 'r'ule-Walker equations. One must 
dema.nd automatically Pi ~ ki for every i = 1,2 .... , A1. 

Let us consider for every orbit {xii), x~il, .... x~i,)} a sliding win-
dow of a fixed length C, where l < k i • i = 1,2, ... , M and simultane-
ously f ~ Pi. i = 1,2, ... , M. Calculate for every orbit the estimates 
of the covariance coefficients up to the order Pi derived from t.he 
observations forming that sliding window including the last obser­
vation x, i.e., 

.1:.+1-.1: 

R~i)(x) = l ~ 1. L (xy) - X<i)(x»)(xn.l: - zli)(X)) 
J=k.+l-l 

k = 0, 1, ... , Pi , i = 1, 2 .... , Iv!, 

X (i) -,. 
10.+1 - .. 

1 10.+1 

X<i)(X) = -- \" xJ
U) 

£'1 £-J 
-r- j=k.+l-l 

At this moment we shall evaluate the AIR-distance between the 
dut.oregressive approximation of the i-th orbit and the correspond­
ing sliding wirldow. It. is possible to prove that this AIR-distance, 
e.g., see Mich~lek (1990) can be written in the form . I 

i 

1 (xii)(x) - xiil)2 1 A~i) R~i)(x) -I- 2 I:;~1 AJi) Rji)(;r) 
-2 ,., +- ., 

, ~ 4~ ~ 
11' 

+ ~ In O'~ - ~ J In 1!,(i)(,X) d,X 
2 '4;r r:r ' 

(1) 

where A(i) = ~p,-l: a~i)a~i) k 0 1 • 
k '-.J)==O J l+k' =, ,···,P" 

p, 

L 
i=-p, 

The only problem is to calculate the integral standing in (1)., 
Since the covariance coefficients R)(x), j = O,l, ... ,Pia:ie chq~ 

sen so that the Toeplitz matrix {R)~I:(;r) }~,il.:=O is positive definite 
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.with probability one then t.p~\. ) as a Fourier image must. be a non­
negative trigonometric polynomial, and hence 

Pi p,., 
<p~(,\) = Rbi)(x) + 2 L RY)(x) cos.xj = I L rj (x )eii>. r, 

. j=l j=O 

where we want r~i)(x) > O. The relation between r~i)(x) and R~i\x) 
is given by the formula 

P.-I: 

. R~i)(i) = L rnk(x)r;')(x), k = 0, 1, ... ,Pi· 
k=O 

In order to solve this system o~ non-linear equat.ions we may use the 
Cholesky algorithm for the decomposition of the Toeplitz matrix 
into the product of two triangular matrices. One of these matrices 

will be {r~i2l( x )}~:i=O' k ~ t Then 

r. 

217r J In<p~)(A.)dA = In Hi)(x)( 
-1f 

Thus, the decision problem assigning the last observation x to one 
of the orbits is solved by minimizing AIR-distances between the au­
toregressive approximation and the corresponding sli.ding window. 

We can proceed solving this decision problem in the following 
manner, too. \Ve have approximated every orbit by a: suitable 
autoregressive model 

Pi 

X I ""' a(i)x . - ~·e n+l""t" L-- j n-l-J - Vt n+l· 

j=l 

Using this model we can construct a best predictor one step ahead, 
l.e., 

• _ Ci). (0)-p, ( p, ) 
Xn +l - - ~ aj Xn+l- J + {; aj . + 1 x, 

where. 



70 Hypothe,u testing in mixture, 0/ time ,eries 

and then we can compare this prediction derived from the obser­
vations forming the i-th orbit with the last observa.tion x, i.e., 

As long as we can avoid some troubles with calculating the coef­
ficients r~i), k == 0,1, ... , Pi we use the symmetric version of AIR­
distance which in this case has a form 

IxCi ) - X(i)(x)\2 + IxCi ) _ x(i)(x)1 2 + A~i) R~i)(x) + 2 I:j~l A?) kY)(x) 

a} o}ex) 0-; 
A~i) .k~i)( x) + 2 I:j~l A}i) kji)(x) 

+ . a}(x) , 

p.-k 

A~i)(x) = L an1:(x)a;'\x), . k = 0.1, ... ,Pi· 
j=O 

The coefficients aY)(x) with abi)(x) = 1 are determined on the basis 

of kY)(x), j = jJ, 1,: ... ,Pi by solving the- Yule-Walker equations. 
We explarned in detail a method assigning the' last observation 

x into the mdst similar subseries. This procedure can be carried 
out not only ~ith th~ last observation x but with a group of ob­
servations beciring the latest informatio of evolution of an observed 
time series. 
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