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Abstract. The paper defines the decomposition problem of a mixture of
time series into homogenecus components. First part deals with a solution based

on Bayesian approach in the case of ind2pendent observations. the other part
1s devoted to a solution of on-line decomposition for a time series consisting of
weakly stationa-v components.
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We so far have been interested in Part I in the question about
the distribution of an observed sequence in two components only.
But. in practice one can expect larger number of possible orbits,
usually unknown for the observer in advance. Even if we knew
the number of orbits before our experiment the off-line distribu-
tion problem into individua! orbits wonld be more complicated
than the two components problem. The situation is much more
getting worse if we admit a stochastic dependence among observa-
tions. Under this situation the on-line distribution problem seems
to be better solvable. In praciice one can easier assume that 2! the
components are mutually stochastically independent. The o: -iine
problem can be described as follows: we have obtained the last
observation and we have learnt, let us say, M possible orbits con-
structed already from the previous observations. Now, we have to
decide to which of these M orbits the Jast observation belongs with
high probability or ioc establish a quite new orbit. Let us imagine
we have learnt M components {x{,z’z,,zjk} Jj=12....,M on
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_the basis of previous observations and we have the last observation
z and the statistical problem is to decide to which component z
belongs. For simplicity we shall assume all the observations are
‘mutually independent and every j-th component is determined by
a density function ‘

Qi
Fx)=T]fi(z), i=12... .M
J=1

Under this situation there exists an optimal Bayesian procedure
already mentioned advising to accept the decision z belongs to the
jo-th orbit if
Pio fiolz) > max {p; f;(x)}.
tFlo

As long as the same maximum value is achieved by two or more
orbits one could choose among them randomly. This approach can
be used by time series where observations can be mutually depen-
dent if we, of course knew the evolution of every orbit described
by conditional distributions functions. Then, by use of the previ-
ous Bayesian procedure we can choose that orbit that possesses the
maximal conditional density function of z under the history of the
whole orbit. Namely, if f; (z|z], ... ~1‘{;J) will be the conditional den-
sity function describing the evolution of the j-th orbit, which can
be briefly expressed as f(z|j) then under prior distribution {p]-}j”;1
the aposterior density function f(jlz) is given by Bayesian formula

: p; flz|j)
fll) = =F—F—
iz Pi flz])
Choosing the orbit that maximazes the aposterior density function
we do precisely the same as choosing that orbit jy satisfying

Pio f(zljo) > pax, {p: f(zli)}.
t#io

This algorithm can be used, e.g., in the case of several differ-
ent autoregressive models with Gaussian variables, where the last
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observation z belongs to that orbit or autoregressive model M;,
7=1,2,...,M that minimizes the distance

T —JLj

o]
Here r; is the best prediction of z-one step ahead in the model
M, o} is the error of this optimal prediction.

In practice our situation is not so clear because usually we
don’t possess any models M;, j =1,2,..., M and as the first step
one must identify them, i.e., to estimatc unknown parameters using
those observations that form on the basis of experience one orbit.
One cannot expect in practice as well the knowledge of conditional
density functions describing the evolution of orbits. From these
practical reason it is reasonable to look for other types of distances,
which could measure similarity between orbits. One such a class of
distances is derived from entropy and usually known as the class
of convex statistical distances, for detail see Licse, Vajda (1987),
e.g. We shall consider the case where orbits can be approximated by
weakly stationary sequences with different mean values and spectral
density functigns. Let us know from the previous decisions that
(2.2, .. ,:ri) form the j-th component or orbit and let z be again
the last obséx:va.tion. The basic idea is to approximate the j-th
orbit by a suitable autoregressive model, where the order of an
autoregressive series is chosen by means of the Akaike criterion,
e.g., and coefficient estimates are obtained by the least squares
method or by means of Yule-Walker estimates. The mean value
is estimated in usual by the arithmctic meai. The task is then
understood as follows: to find in a certain sense the most similar
model from the models given before to the model derived from
every orbit completed by z. As one of possible distances can serve
the AIR-distance (asymptotic I-divergence rate) defined by

- 2 p a ool X ‘
AIR(¢21m2l¢lvml):M+%/ (‘P,(A)_ln Y?( ) _1> dA
-

o v1{A) p1(A)

where o = 2z exp { & 7 In1(A)dA}. This distance is derivéd from:
I-divergence between two Gaussian stationary measures given by
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mean values m;, m, and spectral density function ¢,(-), v2(-); for
"details see Vajda (1989). It is necessary notice the AIR-distance
is not symmetric. If we wished a symmetric distance we could
consider, e.g.,

[AIR{p2,maler, m1) + AIR (1, iz, m3)]

DO =

(my — ma)? + _1_(m1 — ma)? + _1_ (£1(N) = pa())?
a? 2 o2 27 1(A)2(A)

-

-1
T2

Although this “similarity measure” is derived of Gaussian random
variables one can recommend it in a case of non-GGaussian variables,
too. We can namely in such a case understand the approximation
of an observed orbit given by an autoregressive model based on
Yule-Walker estimators as the closest projection into the class of
Gaussian autoregressive models; for deeper information see, e.g.,
Vajda (1989), Mich4lek (1990). Now, let {1,a\"”,...,a}) 67, m;} be
the coefficients of the approximating autoregressive model of the
order p; for the i-th orbit. These coefficients are obtained by min-
immaxing AIR (¢;,mi|pso.m) over all the autoregressive models of
the order p; determined by mean value m and the spectral density

function )
' 1 2
‘P‘aa(x) = —

2 NtA
i Zf’:o aje‘J’\l

The spectral density function ¢;(-) is given by the covariance coef-

ag =

ficients estimates

Bi—k
Lo 15 - . .
R£)=FZ(I§2k“mi)(I§)"mi)’ k=0,1...., i
‘j:l
E
_1s.®
ms—z 'tj 3 s
Jj=1

le.,

P .
¢i(A) = R + 23 RS cos(jA).

i=1
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As proved in Michdlek (1990) the solution of this minimization
problem is given by solving the Yule-Walker equations. One must
demand automatically p; < k; for every i =1,2,..., M.

Let us consider for every orbit {z(li), x(;), e rfj)} a sliding win-
dow of a fixed length ¢, where ¢ < k;, i =1,2,...,f and simultane-
ously £> p;, i =1,2,..., M. Calculate for every orbit the estimates
of the covariance coefficients up to the order p; derived from the
observations forming that sliding window including the last obser-
vation z, i.e.,

koki-k
o 1 : . o () .
B@) =g L (-7 - 79)
j=k,+1-¢
k=0,1,...,p;, t=1,2...., M,
\ 1 k41
() _ . =) _ 2t o)
T, = 7 (z)_£+1- Z z;0
jz=k,+1-£

At this moment we shall evaluate the AIR-distance between the
autoregressive approximation of the i-th orbit and the correspond-
ing sliding wirgdow. It is possible to prove that this AIR-distance,
e.g., see Michglek (1990) can be written in the form
: j
i
. ) N . o
E@) -2 1 APRY@) + 2 T AR )

_1_ i=1
R ar :

o2
+imer- L ]1n¢(*)(x)dz (1)
27" 4x o !

where A = ;’:__"0" aﬁ”aﬂb k=0,1,...,p

P
e = 3 MR (),

J==ps ! -

The only problem is to calculate the integral standing in (1).

Since the covariance coefficients R}(z), j=0,1,...,p; are cho-
sen so that the Toeplitz matrix {R‘g?k(z)};‘k:o is positive definite
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with probability one then gog)(-) as a Fourier image must be a non-
negative trigonometric polynomial, and hence

. P . D 2

B0 = BO@) +2 B(e) cos )y = | Y ry(@)e P
. i=1 J=0

where we want rgi)(z) > 0. The relation between rgf)(:c) and Rg)(:c)

is given by the formula

o mE
R(k')(;zf) = Z rgz_zk(z)rg-’)(z), k=0,1,...,pi.
k=0

In order to solve this system of non-linear equations we may use the
Cholesky algorithm for the decomposition of the Toeplitz matrix
into the product of two triangular matrices. One of these matrices

will be {r}),(2)}¥",_,. k <t Then

T
1 ~(i i 2
E/lngog)(x)dxzm [r)(2)])"
-

Thus, the decision problem assigning the last observation z to one
of the orbits is solved by minimizing AIR-distances between the au-
toregressive approximation and the corresponding sliding window.

We can proceed solving this decision problem in the following
manner, too. We have approximated every orbit by a suitable
autoregressive model ‘

Ps
i
Tp41 + Zag )In—1—j = Ci€nyl.
j=1

Using this model we can construct a best predictor one step ahead,
ie., -

pl pl L.
L N (z#’ + )
j=1 i=1 :

where,
k;

T = %zzn-é-l—j)

Y=l
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and then we can compare this prediction derived from the obser-
vations forming the i-th orbit with the last observation z, i.e.,

|z - 5?.)4—1 .

As long as we can avoid som¢ troubles with calculating the coef-
ficients ri'), k =0,1,...,p; we use the symmetric version of AIR-
distance which in this case has a form

79 - 20)(z)|? . 70 - 2)(2)|? . AP RO (@) +2 70, AV RD(z)
o? o?(z) o?
AR (2) + 270, AV RO ()
-+ 3 ,
oi(z)

where o2(2) = B (2) + A Rﬁ-i)(z)a?)(z) and
. p"k ‘. -
AP = Y af)u@a(z), k=01, p
j =0

The coeflicients agi)(x) with a{'’(z) = 1 are determined on the basis
of R;i)(z), i=MA,1,..,p: by solving the Yule-Walker equations.

We explayned in detail a method assigning the last observation
z into the mdst similar subseries. This procedure can be carried
out not only with the last observation z but with a group of ob-
servations bedring the latest informatio of evolution of an observed
time series. '
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