
INFORMATICA, 2013, Vol. 24, No. 2, 315–337 315
© 2013 Vilnius University

Equivalent Transformations of Heterogeneous
Meta-Programs

Vytautas ŠTUIKYS, Robertas DAMAŠEVIČIUS
Software Engineering Department, Kaunas University of Technology
Student ↪u 50-415, LT-51368, Kaunas, Lithuania
e-mail: vytautas.stuikys@ktu.lt, robertas.damasevicius@ktu.lt

Received: March 2012; accepted: December 2012

Abstract. We consider a generalization of heterogeneous meta-programs by (1) introducing an
extra level of abstraction within the meta-program structure, and (2) meta-program transforma-
tions. We define basic terms, formalize transformation tasks, consider properties of meta-program
transformations and rules to manage complexity through the following transformation processes:
(1) reverse transformation, when a correct one-stage meta-program M1 is transformed into the
equivalent two-stage meta-meta-program M2; (2) two-stage forward transformations, when M2 is
transformed into a set of meta-programs, and each meta-program is transformed into a set of tar-
get programs. The results are as follows: (a) formalization of the transformation processes within
the heterogeneous meta-programming paradigm; (b) introduction and approval of equivalent trans-
formations of meta-programs into meta-meta-programs and vice versa; (c) introduction of metrics
to evaluate complexity of meta-specifications. The results are approved by examples, theoretical
reasoning and experiments.
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1. Introduction and Motivation of the Problem

A meta-program is a program that generates other programs or program parts (Ortiz,
2007). Meta-programming means writing meta-programs. Though meta-programming
can be understood and dealt with from different perspectives (e.g., as frame-based pro-
gramming (Cheong and Jarzabek, 1999), aspect-oriented programming (Kiczales et al.,
1997), generative programming (Eisenecker and Czarnecki, 2000), generic programming
(Reis and Järvi, 2005), feature-oriented programming (Trujillo et al., 2007a)), following
Veldhuizen (2006) we consider meta-programming as a program generalization and gen-
eration technique. We define meta-programming as an algorithmic manipulation of pro-
grams as data aiming to support generative reuse through generalization (Damaševičius
and Štuikys, 2008). The technique enables, at the construction time, to develop a more
abstract executable specification (meta-program) from which programs are generated on
demand automatically, at the use stage. Heterogeneous meta-programming is based on
using at least two languages for the development of a meta-program. The language at
a lower-level of abstraction, called target language, serves for expressing domain func-
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tionality. A target program written in the target language is used as data to perform ma-
nipulations at a higher-level of abstraction. The language at a higher-level of abstraction,
called meta-language, serves for expressing generalization of a target program through
transformations according to the pre-scribed requirements for change.

In this paper, we consider the reverse engineering-based approach to meta-program-
ming when a given meta-program is transformed into a meta-meta-program of the same
functionality. Why such a transformation is needed? The first and basic reason is com-
plexity. Complexity analysis is an important factor of software usability (Sobiesiak and
Diao, 2010), because higher complexity usually leads to lower usability and vice versa.
As complexity of systems and their components grows continuously, it is commonly
agreed that complexity management through program transformations and generative
reuse is a good (if not the only) solution. Therefore, designers and researchers try to
enhance reuse by anticipating possible product changes in advance. That leads to the de-
velopment of generative components and program generators implemented using meta-
programming, i.e., meta-programs.

The second reason is the increase of meta-programs complexity. In such a context, the
over-generalization of meta-programs may occur. The better solution is to split the meta-
program with the high scope of possible reusability into several parts across different
levels of abstraction. In this case, meta-programming may be seen as a tool to manage the
design complexity. Finally, the transformation-based view requires a formal description
of the process, which then provides a background to automate the process (for practical
needs of meta-program transformations, see also Section 3).

From the design perspective, a meta-designer, i.e., a system designer who provides
end-users with capabilities of participation in the design process (Fischer and Scharff,
2000), develops meta-meta-programs aiming at managing variations to support a large
scale of possible reuse. Each group of variants is specified as a separate meta-program
that can be easily derived from the meta-meta-program specification via automatic trans-
formation. Such transformation occurs on demand when the particular needs of the lower-
level users (designers, maintainers, etc.) are identified. The delivery process then follows
from the meta-designer to the lower-level user. The process enables to disclose only those
features of a meta-program that are needed for a concrete user and in such a way as to
not reveal the whole meta-meta-program as a valuable intellectual property artefact.

What is needed to support the vision provided above is the introduction of an extra
level of abstraction in the meta-program development. In this paper, we address this need
as a transformation task when the given meta-program is transformed into a meta-meta-
program while preserving the same functionality. Our contribution is: (a) formalization of
the transformation processes within heterogeneous meta-programming; (b) introduction
and approval of equivalent high-level transformations of meta-programs into meta-meta-
programs and vice versa; (c) introduction of metrics (the number of meta-parameters and
Cyclomatic Index) to evaluate complexity of meta-programs.

The rest of the paper is organized as follows. Section 2 analyzes related works. Sec-
tion 3 outlines theoretical backgrounds for heterogeneous meta-programming research.
Section 4 provides the definition of basic terms. Section 5 formulates the tasks. Section 6
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describes rules to support the meta-programming-based transformation approach. Sec-
tion 7 describes properties of the transformations. Section 8 provides the experimental
approval of the proposed theoretical statements. Section 9 summarizes the results and
provides their evaluation. Finally, Section 10 provides conclusions.

2. Related Work

Program transformation is a wide topic having applications in many areas of software en-
gineering including compilation, optimization, re-factoring, program synthesis and gen-
eration, software renovation and evolution, etc. Here, we restrict ourselves and analyze
the most relevant and informative works (i.e., reviews, surveys, if available) in two aspects
only: methodological (e.g., program transformation taxonomies) and meta-programming
related paradigms (e.g., linguistic aspects of transformations).

Program transformation taxonomies are the results of analysis and classification of
program transformations based on a selected number of criteria such as:

(1) The levels of abstraction before and after transformation, and preservation of se-
mantics during transformation (Visser, 2001). The semantics-preserving changes
correspond to the well-known concept of software re-factoring (Fowler, 1999; Win-
ter, 2004).

(2) The object, method and goal of transformation (the what-how-why taxonomy by
Winter (2004)).

(3) The dimensions of software change in the context of software evolution and main-
tenance (Buckley et al., 2003; Benestad et al., 2009).

By comparing taxonomies of Benestad et al. (2009), Buckley et al. (2003) with the
ones of Visser (2001), Winter (2004), we conclude that two terms (i.e., change and trans-
formation) define the same issue but from different perspectives and scope (e.g., develop-
ment and evolution). The following observation is important to state in this context: the
nature of software evolution now is shifting to “a continuous process, in which there’s no
neat boundary between development and evolution” (Boehm, 2010).

Formal and semi-formal description of meta-programs, meta-programming and re-
lated higher-level programming methodologies (generic programming, generative pro-
gramming, aspect-oriented programming, etc.) and transformations for implementing
higher-level programs has been intensively studied by many researchers. Intermediate
representations, notations and languages such as Abstract Syntax Tree (AST), attribute
grammars, rewrite operators, etc. are often introduced and used to simplify the specifica-
tion of particular sequences and stages of program transformations (Schordan and Quin-
lan, 2005). Applying transformations to intermediate representations rather than specific
domain languages makes transformation tools more reusable. Taha (1999) was the first to
provide a formal description for a multi-staged programming language. This theory can
be used to prove equivalency between two staged programs, or between a target program
and its staged (or meta-) program. Mens et al. (2002) consider program transformation
formally using a graph-based model. Sheard (2001) reviews and summarizes the accom-
plishments and research challenges in describing formal meta-programming systems.
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In generic programming, transformations are primarily used to instantiate a specifi-
cally customized component instance from a generic component. Becker (2000) presents
a formal view on a generic component and its customization interface, focuses on external
representation and internal realization of the variability of a generic component. Batory
(2004) describes formally several transformations used in generic programming such as
composition, modularization. Fahmy et al. (2001) specify architectural transformations
of software at and between different levels of abstraction, including the lift transformation
that raises elements of a lower-level program to higher levels in the system hierarchy. To
some extent, the lift transformation is similar to the reverse transformation described in
this paper. Cordy and Sarkar (2004) demonstrate that meta-programs can be derived from
higher level specifications using second order source transformations. Francis (2004)
describes a program transformation tool, called Metagene, for generating C++ meta-
programs (expressed using template classes) from formal specifications. Reis and Järvi
(2005) present a formal model of generic programming based on the category theory and
describe formal transformations for developing generic programming algorithms. Trujillo
et al. (2007b) describe ideas to generate meta-programs from abstract specifications of
synthesis paths. The execution of such a meta-program code synthesizes a target program
of a product line. In the context of aspect-oriented programming, Yang (2009) presents
a formal analysis of aspect weaving for introducing code modifications in components
through aspects.

In feature modelling, especially for product line engineering, formal models of prod-
uct features and different interactions between them are important for further implemen-
tation of meta-programs or software generators implementing product lines. Janota and
Kiniry (2007) define a formalized feature meta-model to support reasoning about and
within feature model approaches, feature models, and feature trees and their configu-
rations. Westfechtel and Conradi (2009) describe a formal description of multi-variant
models in the context of product line engineering, describe transformation processes on
such models including editing and product configuration, and discuss the construction and
representation of models incorporating multiple variants. Ebraert et al. (2009) present
a formal model of change-oriented programming based on feature diagrams, in which
features are seen as sets of changes (or high-level transformations) that can be applied to
a base program.

Though there are many slightly different views on meta-programming as a sub-field
of program changeability and transformation, meta-programming is not only a topic for
academic research (this view might come to one’s mind due to the restricted analysis and
because of our components to be considered later are small and specific). There are also
announcements on industrial (i.e., large-scale) applications of the meta-programming-
based systems (e.g., frame-based programming (Bassett, 1997), XVCL-based program-
ming (Jarzabek and Pettersson, 2006), template meta-programming (Karaila and Systa,
2007), pre-processing programming (Vidacs, 2009)). For example, Jarzabek and Petters-
son (2006) evaluate the benefits of generic design via parameterization (which can be seen
as another definition of meta-programming) as follows: ease of reuse with adaptation, the
overall reduction of conceptual complexity and size of the solution, improved traceability
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and changeability, which outweigh the cost of the added complexity and lower under-
standability. Note that Bassett’s frame-based and XVCL commands have some concep-
tual resemblance to our Open PROMOL functions (Štuikys et al., 2002).

Transformation of meta-programs leads to the problem of measuring their semantic
equivalence. Software complexity measures can be used to reason about program and
meta-program structure and functionality as well as for comparing and evaluating meta-
programs; see Damaševičius and Štuikys (2010). Though the researchers acknowledge
the importance of dealing with various aspects of transformation-based approaches within
the meta-programming paradigm, complexity evaluation of meta-programs only recently
attracted the attention of researchers. For example, Ross (2006) presents an analysis based
on cost-bound functions and abstract-interpretation approximation of program states for
C++ generic programs (templates) aiming to determine the best set of template parame-
ters (types) for optimal performance. Pataki et al. (2006) propose a multi-paradigm com-
plexity metric based on McCabe’s cyclomatic complexity to evaluate structural complex-
ity of aspect-oriented programs written in AspectJ.

3. Theoretical Backgrounds and Motivation

In this paper, we consider transformations of meta-programs that are designed using het-
erogeneous meta-programming techniques. Such techniques can support generalization
in software development when the main focus is given to automatically creating pro-
grams, which are derived from the meta-program specification. To express generaliza-
tion, at least two languages, i.e., meta- and target ones, are used in heterogeneous meta-
programming (in the simplest case).

A target language (TL) can be used to express multiple aspects such as representation
(e.g., of mathematical equations, plain text), security aspects (e.g., in web-based applica-
tions), computational (i.e., the conventional use), various domain models and distribution
aspects of web systems (Damaševičius et al., 2004). The latter requires the use of more
than two languages.

The role of a meta-language (ML) is to express one- or two-level generaliza-
tions through various manipulations over TL programs. Manipulations are described
using ML constructs in the structural programming manner according to pre-scribed
requirements for change that are to be anticipated in advance, e.g., at the domain
analysis phase. Various languages can be used in the role of a ML: from dedicated
(e.g., Open PROMOL (Štuikys et al., 2002), MetaL), domain-specific (e.g., Perl, PHP,
ASP) or general purpose programming language (e.g., C++, Java, Visual Basic). In
the latter case, only a part of language capabilities is used to express the generaliza-
tions.

Using two languages, it is possible to realize, e.g., two-level generalization, i.e.,
to develop meta-meta-programs. Scope of generalization can be further extended if
there is a need to use more than two languages. Further in this paper, by gen-
eralization we mean the introduction of an extra level in the meta-program struc-
ture that leads to the transformation of a meta-program into a meta-meta-program.
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In this context, however, we need to motivate the practical value of two-level gen-
eralization and adequate meta-program transformations. Though we have identified
the possibility of two-level generalization much earlier (Damaševičius, 2005), this
idea can also be tracked from Taha (1999), only recently such an approach has
been practically implemented in the development of three web-based components for
real-world applications (i.e., web sites) using two-stage meta-programming (Montvi-
las, 2009; Štuikys et al., 2009). Our recent experiments with embedded software
components, which are implemented using one-stage or two-stage meta-programming
due to the use of multiple criteria (e.g., energy, performance, accuracy, memory re-
quirements and their various trade-offs) showed the benefits of the approach. Fi-
nally, we have been convinced in the soundness of the approach for generating
learning objects (e-learning domain) from the multi-staged generative learning ob-
jects.

A kind of meta-program transformations analyzed in this paper is, in fact, a par-
tial evaluation of meta-programs. Partial evaluation (Jones et al., 1993), also called par-
tial deduction or program specialization, is an automatic program transformation tech-
nique that aims for the specialization of programs, with regard to parts of their in-
put, while preserving program semantics (Iranzo, 2003). The algorithm of partial eval-
uation is encoded at the meta-meta-level. While the instantiation of a meta-program
(i.e., generation of an instance through forward transformation) can be considered as
a full evaluation of a meta-program with respect to its meta-parameter values (i.e.,
substitution of meta-parameters with their values and execution of a transformation
algorithm at the meta-level), a partial evaluation of a meta-program concerns only
a subset of the meta-parameters. The result is another meta-program in case of the
early (implicit, online) partial evaluation, when the values of the evaluated meta-
parameters are known in advance and a meta-meta-program in case of the late (ex-
plicit, offline) partial evaluation, when the partial evaluation is encoded as a meta-meta-
program. As was proven by Welinder (1996), two expressions (programs) are equiv-
alent if they, when evaluated in the identical environments, always produce identical
results. In case of meta-programming, two meta-programs are semantically equivalent
if they generate identical sets of instances (programs) for the same values of meta-
parameters.

It should be emphasized that this kind of transformations are purposeful if two con-
ditions are satisfied: (a) there is a great variability in the domain (in terms of meta-
programming this means a great number of parameters and their values); (b) this vari-
ability is known either in advance or it can be extracted from domain (e.g., through
domain modelling). It is difficult to perform two-level generalization in a straightfor-
ward manner. To accomplish the task the best strategy is to start from the single-
level meta-program, and then proceed to the second level through some kind of trans-
formations. As the complexity of generalization and transformations involved is in-
deed challenging, we are not able to consider all aspects of the problem in detail
here. We restrict ourselves with the tasks as they are defined and stated in Sections 4
and 5.
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4. Definitions of Basic Terms

Nomenclature:
LM , LT – a formal notation of a meta-language (ML) and target language (TL), re-

spectively;
M0, M1, M2 – program representation (i.e., program, meta-program and meta-meta-

program) at different levels;
μ0, μ1, μ2 – model representation (i.e., models of a program, meta-program and meta-

meta-program) at different levels;
M1

I , M1
B – meta-interface and meta-body of a meta-program as a full specification,

respectively;
M2

I , M2
B – meta-meta-interface and meta-meta-body of a meta-meta-program as a full

specification, respectively;
μ(MI), μ(MB) – model of a meta-interface and meta-body at any level, respectively;
FT – Forward Transformation (notation used in text);
F 1, F 2 – first and second stage of forward transformations, respectively.
RT – Reverse Transformation (notation used in text);
R1, R2 – first and second stage of reverse transformations, respectively.

x−→ – Forward Transformation dependent on data x (notation used in formulae);
x←− – Reverse Transformation dependent on data x (notation used in formulae);

S – the full space of meta-parameters including parameter names and their values;
pi, V

i – a parameter name and a set of values of the parameter, respectively;
A0, A1, A2 – a program in TL (|A0| = 1), a set of programs derived from M1, and

a set of meta-programs M1
i derived from M2 (via the first stage of FT), respectively;

A1
i – a subset of programs derived from the set M1

i (through the second stage of FT),
(i = [1; q], q – the number of meta-programs).

Note. By the word “program” we mean a concrete program as an instance written in
TL (formal notation LT ) throughout the paper.

Other notations are introduced within the paper.
For simplicity reasons, in Sections 4–6, we refer to heterogeneous meta-programming

that uses only two languages (i.e., the meta and target ones). Below we present defini-
tions of the basic terms that correspond to the simplest understanding of heterogeneous
meta-programming (i.e., the use of two languages only). Elsewhere, when we refer to
heterogeneous meta-programs, the word ‘heterogeneous’ is omitted for short.

The other observation relates to the selection of languages to support meta-
programming. In general, the selection of a TL depends usually on the application do-
main, while the choice of a ML may be either optional (Štuikys and Damaševičius, 2003)
or that selection may be pre-specified by the other criteria such as requirements of the
system, relevance to the use of TL or even relevance to the meta-designer’s flavor. To
illustrate the basic concepts of the approach below, we use Open PROMOL as a ML
(Štuikys et al., 2002) and simple text strings as a TL.
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Fig. 1. Illustrative example: meta-program (a) and its derivative instance (b), i.e., target program.

DEFINITION 1. Meta-programming is an algorithmic manipulation of programs as data
aiming to support generative reuse through generalization. Generalization is parameteri-
zation (at one or two stages) specified by constructs of a ML.

DEFINITION 2. Meta-program is a higher-level executable specification (aka meta-
specification), which is coded using two languages, LM and LT , where LM is a ML,
and LT is a TL. Meta-program specifies a set of programs in LT . The programs are
derived from the meta-program when it is executed.

DEFINITION 3. Meta-meta-program is a meta-program in which the generalization is
presented at two levels. Some generalization aspects are presented at the meta-meta level
using LM , while the rest part of generalization is presented at the meta-level using LM

and LT . When executed, the meta-meta-program produces a set of meta-programs.

DEFINITION 4. Meta-program’s structural model μ1 is a composition (denoted as “+”
in (1) of two interrelated parts, i.e., meta-interface model, and meta-body model:

μ1 = μ(M1
I )+μ(M1

B). (1)

EXAMPLE 1. In Fig. 1a, we present the implementation of μ1, which specifies the task
of generating homogeneous Boolean logic equations of any length. Here the equations
are treated as target programs. The meta-program is described using Open PROMOL
functions as LM and a text string is specified as LT . Meta-interface M1

I is presented
between symbols ‘$’; n, p – are meta-parameters (shortly parameters); their values are
given within braces. Meta-body M1

B is presented after the second symbol ‘$’. M1
B is a

composition of a target program (see uppercase) and meta-functions (@for[. . .] – loop
function; i – loop variable; @sub[. . .] – parameter substitution by its value). In Fig. 1b,
we present a generated instance in LT derived from the given meta-program.

DEFINITION 5. Formally, meta-interface model of a given meta-program M1 is a n-di-
mensional (meta-) parameter space S (S ∈ M1):

μ
(
M1

I

)
= S, (2)
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where

S = (S1, S2, . . . , Sn), (2.1)

Si =
(
pi, V

i
)
, Si ⊂ S, where i ∈ [1; n], n = |P |; P = ∪pi, (2.2)

V i =
(
vi
1, v

i
2, . . . , v

i
ki

)
, (2.3)

where n – the number of parameters; pi – the parameter name (identifier); P – a set of
parameters; V i – a set of values of the parameter pi and vi

j0
∈ V i (1 � j0 � ki) is an

initial or default parameter value (see Fig. 1a).

DEFINITION 5a. Meta-interface M1
I is the implementation of its model μ(M1

I )using LM .

PREMISE. This paper considers meta-programming-based transformations at the meta-
design stage under the following pre-conditions: (a) meta-parameter space is pre-
specified in advance and can not be changed; (b) transfer of meta-parameters from the
meta-parameter space of μ(M1

I ) to the meta-meta-parameter space of μ(M2
I ) is the only

permissible source of meta-meta-parameters for M2.

DEFINITION 6. Meta-body M1
B is a part of M1 that specifies an algorithm of anticipated

modifications using two languages LM and LT . Model of M1
B is a union of finite strings

λ∗
j (i.e., 0 < j < J); J – number of strings;

μ(M1
B) =

⋃

j

λ∗
j , (3)

where λ∗
j ∈ T ∗ ∪ N ∗ and T ∗, N ∗ are generalized terminal symbols and non-terminal

symbols of a given target program to be generalized, respectively; with asterisk (*) we
specify a generalization output as a result of manipulation with a target program through-
out the paper. As not all terminal and non-terminal symbols have to be modified via
generalization, we identify T ∗, N ∗ using (4) and (5):

T ∗ = T1(LT ) ∪ T ∗
2 (LT ), (4)

N ∗ = N1(LT ) ∪ N ∗
2 (LT ). (5)

Furthermore, T = T1 ∪ T2; N = N1 ∪ N2; where T and N are terminal and non-
terminal symbols of the target program given in LT before generalization, respectively;
T1, N1 are terminal and non-terminal symbols that are not modified via generalization;
T2, N2 are terminal and non-terminal symbols that are to be generalized, i.e., modified
according to the given requirements (T1 ∩ T2 = ∅ and N1 ∩ N2 = ∅). Also we assume
that T2 �= ∅ and N2 �= ∅.

Terminal symbols T2 are to be transformed into T ∗
2 and non-terminal symbols N2 are

to be transformed into N ∗
2 according to transformation rules (6) and (7), respectively:

T ∗
2

λ(LM ),R(G)←−−−−−−−−− T2, (6)
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N ∗
2

λ(LM ),R(G)←−−−−−−−−− N2, (7)

where λ(LM ) are strings of the meta-language LM used for generalization (change);
R(G) – requirements for generalization G; and ”

x←“ denotes the reverse transformation
rules dependent on data x, which will be specified in more detail in Section 6.

DEFINITION 7. Meta-meta-program’s structural model (denoted as μ2) is a composition
(denoted by the symbol ‘+’) of three interrelated models as it is identified by (8):

μ2 = μ
(
M2

I

)
+

(
μ′(M1

I

)
+ μ

(
M1

B

))
, (8)

where μ(M2
I ) is the meta-meta-interface model and (μ′(M1

I ) + μ(M1
B)) is the model of

the meta-meta-body and μ′(M1
I ), μ(M1

B) are models of M1
I and M1

B , respectively.

DEFINITION 8. Reverse transformation (RT) is a meta-program (Case 1) or meta-meta-
program development process (Case 2) that is performed through generification of a pro-
gram or a meta-program aiming to develop a meta-program or a meta-meta-program,
respectively.

In Case 1, RT (formally, R1) is performed through modifications of a program model
(see also (4)–(7)) into a meta-program model (see Definition 4 and (1)) according to
requirements for change/generalization, which are expressed through the ML constructs.

In Case 2, RT (formally, R2) is a process of changing the meta-program structure by
re-factoring its structural model into the meta-meta-program model (see Definition 7 and
(8)) through the introduction of the extra generalization level but preserving the same
parameter space S (see (2) and (2.1)).

DEFINITION 9. Forward transformation (FT) of a meta-program into a set of (target)
programs is a process of identifying the pre-defined meta-parameter values, and then ac-
cording to those values, deriving programs through the generation process automatically.
Meta-programming-based program generation is a FT process.

DEFINITION 10. One-stage FT (formal notation F 1) of a source meta-meta-program
into a set of target meta-programs is a process of identifying the pre-defined meta-meta-
parameter values, and then, according to those values, deriving meta-programs in the
same way as generating instances (see Definition 9).

DEFINITION 11. Two-stage FT (F 2) of a meta-meta-program into a set of programs
is a process that consists of two consecutive one-stage FTs, when, first, a set of meta-
programs are generated and then, in the second stage, programs are derived from each
meta-program according to the pre-scribed meta-parameter values.

DEFINITION 12. Cyclomatic Index (CI) of a meta-program is the total number of pro-
grams that can be derived from the meta-program via the FT process. Cyclomatic Index
(CI) of a meta-meta-program is the total number of different meta-programs that can be
derived from the meta-meta-program via the one-stage FT process.
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Formally, CI is computed by enumerating all possible different paths within the meta-
program execution process graph, where the initial node is the first statement of the meta-
program and the ending node is the last statement, when a target program is produced
as a result of the process. CI enables to compare and evaluate the complexity of meta-
programs of the same or related functionality. For example, if two meta-programs (having
CI1 and CI2, respectively) are derivatives of the base meta-meta-program with CIm, then
relations (<, >, 	, 
, etc.) among entities (CI1, CI2, and CIm) enable to reason about the
meta-(meta-)program complexity and to evaluate it. In general, the need for such mea-
sures is described in Oram and Wilson (2010). They have both theoretical and practical
importance due to ever-increasing complexity of systems, the software content growth
and the shift to higher and higher abstraction levels in designing systems. In the context
of this paper, such measures are important for comparing, evaluating and managing com-
plexity of meta-specifications used in different applications (apart of the application (see
also Section 8.2 and Table 1), we have also identified the problem dealing with the other
applications, i.e., generative learning objects and web-based meta-meta-components).

Note that Definition 12 is the application of the program Cyclomatic Complexity In-
dex (McCabe, 1976) to meta-programming to measure meta-(meta-)program complexity.

DEFINITION 13. Semantics of a program is its functionality expressed through the en-
coded algorithm. By analogy, semantics of a meta-program is its functionality expressed
through algorithmic manipulations by meta-constructs applied on the base target program
within the given space of meta-parameters. Semantics of a meta-meta-program is its func-
tionality expressed through algorithmic manipulations by meta-constructs applied on the
base meta-program within the given space of meta-meta-parameters.

DEFINITION 14. A meta-parameter is said to be active if it performs the prescribed role
for change. A meta-construct of the ML is active if its parameter (or parameters) is (are)
active. Deactivation is a process to change the role from active (initially prescribed to the
meta-parameter and the meta-construct manipulating on the meta-parameter) to passive
(when the meta-parameters and meta-constructs are treated as entities of a TL).

Note that deactivation is a mechanism to manage transformations (e.g., when M1 is
transformed into M2). ML should provide such a mechanism (it is the symbol “\”, see
Fig. 3).

5. Transformation Tasks

Task 1. Given: (a) a correct source meta-program M1coded in LM and LT , (b) model
of M1 (i.e., μ1(M1) that is presented as (1), (2) and (3) (see Definitions 4–6) and M1

I is
separable from the meta-body M1

B). The task is to transform the meta-program M1 into
a set of programs A (coded in LT ) through the one-stage FT process F 1.

With regard to the set A, there might be 3 useful transformation cases:
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(1) A = A1 (i.e., all possible instances are derived from M1 based on n-dimensional
parameter space S (see Definitions 5 and 12 – only its first part)),

(2) A ⊂ A1 (i.e., a prescribed subset of instances is derived from M1 through trans-
formation);

(3) A = A0(|A0| = 1, A0 ∈ A1), (i.e., a concrete program is generated through the
transformation, which is specified by the default parameter values (∀i(vi

j0
∈ V i), (1 �

j0 � ki; see Definition 5 and Fig. 1a, for concrete details).
The choice of a variant depends on the user’s needs and capabilities (modes) of the

LM processor that performs the transformation. If we assume that M1 is syntactically and
semantically correct, Task 1 can be automatically solved through the FT process that is
supported by LM processor. The only thing the user needs to do is to select the variant by
specifying the parameter values. Figure 1 presents the solution for case 3 using a simple
illustrative example.

Task 2. Given: (a) and (b) as in Task 1, transform M1 into M2 (through the RT process)
so that the following conditions are satisfied: (a) parameter space S is decomposed into
two subspaces, i.e., S = (SM2 ∪ SM1), (SM2 ∩ SM1 = ∅; SM2 �= ∅; |S| � 2),
where SM2 and SM1 are subspaces of the meta-meta-level and meta-level parameters,
respectively; (b) model of M2, i.e., μ2(M2) is specified by (8).

Task 3. Given a meta-meta-program M2 derived from its source meta-program M1

through the RT process, perform the two-stage FT as follows: in the first stage, trans-
form M2 into a set of meta-programs A2, where A2 =

⋃q
i=1 M1

i (q – the number of
meta-programs, M1

i – a concrete meta-program); and in the second stage, for each i,
transform M1

i into A1
i , where A1

i is a subset of programs derived from M1
i .

EXAMPLE 2. To illustrate the formation of M2 a more complex meta-program M1 is
needed. The extended meta-program (see Fig. 2) is a modification of the previous one
(see Fig. 1) by introducing new features (i.e., the possible change of the function name
(parameter s1), the argument name (parameter s2), the second equation is added with the
different number of arguments (parameter n2) and operation type (parameter p2)).

Fig. 2. An extended meta-program (a) and its derivative instance (b) (see also Fig. 1).
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Fig. 3. Meta-meta-program (a), its derivative meta-program (b) derived using the pre-defined
meta-meta-parameter values and instance (c) derived using the pre-defined meta-parameter values.

EXAMPLE 3. This example explains a result of RT of M1 (see Fig. 2) into M2 (see
Fig. 3). M2

I has meta-meta-parameters s1, s2. The symbol “\” is used to change the role
of the ML constructs to the TL symbol, e.g., to deny the role of enclosing braces as ML
symbols where it is needed (see Fig. 3, @sub is the function that returns a value of its
argument).

6. Transformation Method

We describe the method of transforming M1 into M2 (Task 2) as a sequence of actions
supplemented by a set of transformation rules. The actions are performed under the fol-
lowing initial conditions: (1) the given meta-program M1 is correct, i.e., its syntax and
semantics is described by Definitions 2, 4–6; (2) the parameter subspace SM2 is specified
in advance.

Step 1. Check eligibility of meta-parameters within SM2 (Rules 1 and 2). If depend-
able parameters appear in different subspaces SM2 and SM1 , those parameters should be
moved either to SM2 or to SM1 (this is the correction of given requirements; S∗

M2 , S∗
M1 –

are the corrected subspaces).
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Step 2. Select the structure of M2, i.e., identify models for meta-meta-interface M2
I and

meta-meta-body M2
B (initially M2

I is empty).

Step 3. Fill M2
I by SM2 or by S∗

M2 (if a correction in Step 1 was made).

Step 4. Deactivate meta-parameters SM1(S∗
M1) within the meta-meta-body M2

B (see De-
finition 14 and Fig. 3).

Step 5. Deactivate meta-constructs within the meta-meta-body M2
B , which relate to the

deactivated meta-parameters (see Fig. 3).
The rules we present below with examples are based on the definitions and models

(see Section 5). The solution of Tasks 1 and 3 is the one-stage or two-stage FT process,
i.e., F 1 and F 2, respectively: it is performed automatically using a ML processor, if the
adequate meta-specification is already developed. The solution of Task 2 is about the
development of meta-specification as an input of Task 3. The rules describe how a meta-
program is to be developed.

Rule 1. If the meta-interface of the given meta-program has no dependent parameters
and there are no specific requirements to form the meta-meta-level, then the space S can
be decomposed into two subspaces arbitrarily, i.e., S = (SM2 ∪ SM1), (SM2 ∩ SM1 =
∅; SM2 �= ∅; |S| � 2).

If there are specific requirements specified by a meta-designer to form the meta-meta-
level, then the parameter space S is to be decomposed into two subspaces (i.e., SM2 and
SM1 ) according to the requirements for the semantics of the transformation.

Note. As Si = (pi, V
i) (see (2.2)) the decomposition is applied to meta-parameters pi

only, i.e., Si is treated as an element of S.

Rule 2. If the meta-interface of a meta-program has dependent parameters (e.g., there
are mutual exclusive parameter values, or some parameter requires a specific value of
another parameter, etc.) those parameters are to be placed at the same level (i.e., meta or
meta-meta).

EXAMPLE 4. The example is a modification by introducing dependable parameters s1
and s2 in the example of Fig. 3 (see Fig. 4a; here ‘neq’ and ‘eq’ are Open PROMOL’s
operations ‘not equal’ and ‘equal’ for strings, respectively).

Rule 3. Given the decomposition of the parameter space S into two subspaces, i.e., S =
(SM2 ∪ SM1), (SM2 ∩ SM1 = ∅; SM2 �= ∅; |S| � 2). The transformed meta-body
of the meta-meta-program is identified as a concatenation (denoted by ‘+’) of two items,
i.e., M2

B = (M1
I (SM1) + M1

B), where M1
I (SM1) is a part of meta-meta-body, which

serves for specifying the meta-level interface; M1
B is a part of meta-meta-body, which

serves for specifying a meta-body as a set of instances (programs) at the meta-level.
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Fig. 4. Meta-meta-program (a) for the task of Fig. 3, meta-program (b) and its generated instance (c).

7. Properties

Property 1. Cyclomatic Index CIM1 (aka |A1|) of a meta-program M1 depends on the
characteristics of meta-interface only; the index is independent upon the length (size) of
a target program which is derived from the meta-program. The index is calculated using
relationship (9) (see also Definition 5 and (2)–(2.3)):

CIM1 �
∣∣V 1

∣∣ ×
∣∣V 2

∣∣ × · · · ×
∣∣V n

∣∣. (9)

Note that formula (9) specifies the upper bound of the Cyclomatic Index. The inequal-
ity identifies the case when some parameters are dependable. In Fig. 4, e.g., parameters s1
and s2 are dependable because they have a common value (see the implementation of the
meta-meta-interface in Fig. 4). The equality sign identifies the case when all parameters
are orthogonal.

Property 2. Let we have three meta-specifications as follows: (i) M1, (ii) M2 that is
derived from the first as a result of one-stage RT and (iii) M1

i , which is a set of meta-
programs derived from M2 as a result of the FT process. Then the Cyclomatic Index of
M2 is defined by (10), and the number of all programs derived from M2 is calculated
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by (11):

CIM2 =
∣∣A2

∣∣ = q, (10)

∣∣A1
∣∣ =

q∑

i=1

CIM1
i
, (11)

where |A1| is the number of all programs derived from meta-meta-program M2 through
the subsequent transformations F 2 and F 1 (also |A1| = CIM1); and CIM1

i
is the Cyclo-

matic Index of the meta-program M1
i .

Property 3. All parameters and meta-constructs are active within a meta-program M1.
The deactivation process, if implemented correctly with respect to the given subspace
SM2 , does not change the overall functionality of meta-meta-program M2, but rather
performs the partitioning of the functionality between two levels (meta-meta and meta).

It is obvious for the given concrete subspace SM2 and due to the meta-meta-program
semantics definition (see Definition 13). As a result, the following corollary is formulated.

Corollary. Change of a meta-program M1 within the given parameter space S into
a meta-meta-program M2 via the RT process implemented as Steps 1–5 (see Section 6)
is a semantics-preserving transformation (with regard to the definitions of meta-program
and meta-meta-program semantics, see Definitions 13 and 14).

Property 4. Let we have the meta-parameter space S as follows: S = (SM2 ∪
SM1), (SM2 ∩ SM1 = ∅; SM2 �= ∅; |S| � 2). Then the number of all possible re-
verse transformations R2 of a given M1 into M2 is equal or less to the number of all
possible permutations of M1 meta-parameters between meta- and meta-meta-levels (ex-
cept marginal cases when M1 and M2 parameter spaces are empty) as follows:

σ(R2) � 2|S| − 2, 1 � |SM2 | < |S|. (12)

The equality in (12) corresponds to the case when all parameters within the space S

are orthogonal. This property follows from Rule 1. Otherwise, this number is less than
the right side expression due to Rule 2.

Are all possible transforms from M1 into M2 equivalent within the given meta-
parameter space? We argue that all possible transforms that satisfy the prescribed prop-
erties and rules are equivalent. To approve the later statement, we (1) have generated all
possible transforms and checked their equivalency experimentally using a selected ex-
ample (Section 8.1); (2) we have presented experiments we carried out with meta-meta-
programs and meta-programs for real world tasks (Section 8.2).

8. Experiments and Case Study

8.1. Generation of Bit Strings Using Meta-Programming

An example of bit string generation using Open PROMOL as a meta-language is given
in Fig. 5. Note that bit strings can be considered as low-level representation of computer



Equivalent Transformations of Heterogeneous Meta-Programs 331

Fig. 5. Example of bit string meta-programming.

programs using a 2-symbol alphabet A = {0, 1}. Each bit string, in fact, can represent
a different component of a computer program. In Fig. 5, an original meta-program M1

for generation of 3-length bit strings is presented. In Fig. 5b, an example of an equivalent
variant of meta-meta-program M2 derived from M1 via RT for a meta-parameter s1
moved to the meta-meta-level is presented. In Fig. 5c, an example of the variant of meta-
program M1 generated from M2. Finally, in Fig. 5d, examples of different variants of
bit strings that can be generated from M1 via one-stage FT or from M2 via two-stage
FT. Note that though the instances of bit strings in Fig. 5d can be generated in a different
order, depending upon the placement of meta-parameters at different levels of meta-meta-
program (Fig. 5b demonstrates only one variant of such placement, when meta-parameter
s1 is moved to the meta-meta-level; another variants include lifting meta-parameters s2
or s3), the sets of generated bit strings are equal. Therefore, the transformations leading
to the generation of such bit strings are equivalent.

8.2. Development and Complexity Analysis of Meta-Programs in Embedded Hardware
Domain

To be aware about the validation of the approach for more complex tasks, we also carried
out some experiments (by reproducing former experiments for a real task in the context
of this paper) as a case study below. We developed meta-programs that generate fault-
tolerant Intellectual Property components (soft IPs) for fault-tolerant embedded hardware
that relies on the concept of redundancy (Johnson, 1989), i.e., the addition of extra hard-
ware resources (space redundancy), additional time to perform system functions (time
redundancy), or addition of redundant data to ensure reliability during a transfer of data
via system interconnections (data redundancy), as compared to what is needed for normal
system operations.

We treat the soft IP (Štuikys and Damaševičius, 2003), whose reliability we increase,
as a black-box component. This soft IP is wrapped with a trivial circuitry that performs
majority voting of redundant signals in search of a possible error. To perform experiments
and evaluate the models, we have transformed the previously developed meta-program
(see Fig. 6 and paper Štuikys and Damaševičius, 2003) into the meta-meta-program (see
Fig. 7).
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Fig. 6. Meta-interface of meta-program in Open PROMOL for generating fault-tolerant architectures.

Fig. 7. Meta-interface of two-level meta-program in Open PROMOL for generating fault-tolerant architectures.

The experiments with illustrative examples are not presented here because there is
a motivating example (Fig. 5). Experiments for real tasks are presented in Table 1.

All experiments were checked using the Open PROMOL processor (Damaševičius,
2000) and theoretical prepositions were approved.

M2∗ is derived from Fig. 7 by moving the parameter order (see Fig. 7) to the meta-
meta level. M2∗ ∗ is derived from Fig. 7 by exchange of parameters among the meta-
meta-level and meta-level. All meta-specifications are equivalent (see Properties 1 and
3 in Section 7) because, when executed, they have produced the same programs. The
total number of unique instances (programs) generated from each meta-meta-program
was equal to 66 (see also (9)–(11)).
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Table 1

Characteristics of meta-specifications of real tasks: a case study

Meta- Number Number Cyclomatic index Cyclomatic Explanation

specification of meta-meta- of meta- of meta-programs index of meta-

parameters parameters meta-program

M1 – 7 66 – See Fig. 6 and (9)

M2 1 6 22 + 22 + 22 = 66 3 See Fig. 7 and (10)

M2∗ 2 5 6 ∗ (8 + 1 + 2) = 66 6 At level 2: type and order

M2∗∗ 6 1 22 ∗ 3 = 66 22 Reverse structure of M2

9. Summary, Discussion and Evaluation

We have analyzed some generalization aspects of heterogeneous meta-programs through
transformation processes. First, we have presented the definition of basic terms, meta-
programming-oriented transformation tasks, their properties and rules to support the
transformation processes of the approach. The generalization is achieved through the
introduction of an extra level of abstraction applied at the meta-specification’s design
stage according to prescribed requirements and anticipated model for change. We have
used abstract rather than formal languages (meta- and target) as well as abstract models
to specify transformation processes throughout the paper. Our intention was to formalize
to some extent the abstract models and processes to achieve conciseness, strictness and
unique interpretation. Thus, the discussed transformation processes should be conceived
from the pure software engineering viewpoint rather than from the perspective of formal
programming in computer science, where program correctness is based on the mathemat-
ically sound proofs.

We have demonstrated that meta-programming not only enables to develop generic
programs to support generative reuse, i.e., building program generators. More specifi-
cally, we have shown that meta-programs per se can be generalized through the introduc-
tion of the extra meta-level within the internal structure of a given meta-program leading
to the development of meta-meta-programs. Such a view of meta-programming raises the
issue of transformations to transform a given target program into a meta-program and
then, if it is needed, to transform the latter into a meta-meta-program. Note that the task
related to the first type of transformation (i.e., program into meta-program) is beyond the
scope of this paper.

The described transformations have a much wider context and consequences than
purely technical aspects of generalization. As programming is also a social activity, the
introduction of higher-levels (i.e., meta- and meta-meta-levels) changes the focus to meta-
programming and the role of actors who perform this activity. The development of an exe-
cutable meta-specification is the concern of a meta-designer or meta-programmer. He/she
is also the owner of meta-specifications as an intellectual property. The use and adapta-
tion of meta-specifications is the concern of a lower-level user (designer, programmer).
The separation of actor roles leads to the new capabilities to manage the process in the
development of products using meta-programming.
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In general, reverse transformations describe the meta-(meta-)program development
process. The introduced formalism enables to better understand the process and to make
its implementation easier. As meta-programming is a hard task, by using the reverse trans-
formation model, e.g., it is possible to introduce meta-parameters in a step-by-step man-
ner at both levels, thus simplifying the process. In other words, the two-stage reverse
transformation supports meta-program evolution. Note that meta-programs should be ap-
plied in such a context where variability (i.e., the scope of parameter space) is large and,
at some extent, known in advance.

The next important issue is as follows: where the discussed executable meta-
specifications, i.e., program generators, and their transformations can be applied? One
answer follows – their most likely place is external component libraries and repositories
for wide scale reuse, where a great variability of similar components can be found. This
answer is based on two observations though there are many others: (1) the library scaling
problem, which has been identified by Biggerstaff (1994); (2) the SPIRIT library concept
(Martin, 2004), where generators are main constituents within the library though the used
technology to implement generators is not revealed.

10. Conclusions

The reverse transformation process R2, when a heterogeneous meta-program M1 is trans-
formed into the heterogeneous meta-meta-program M2within the same parameter space,
is a semantics-preserving transformation. First, R2 can be seen as a meta-program re-
factoring process (in terms of software reverse engineering). Second, the construction of
a meta-meta-program through the use of R2 is a process for a partial evaluation of a meta-
program (in terms of formal meta-programming). The forward transformation processes
F 2 and F 1, when M2 is first transformed into a set of meta-programs M1

i , and then, each
meta-program M1

i is transformed into sets of programs, are transformations preserving
equivalent complexity in terms of Cyclomatic Index used as a complexity metric. The
forward transformations F 2 and F 1 are also seen as meta-program and program genera-
tion processes, respectively. R2 is the abstraction level lifting transformation. F 2 and F 1

are the abstraction level lowering transformations.
The presented formalism and identified properties can be treated as a background to

build automatic tools for reverse transformations (e.g., to transform a meta-program into
the meta-meta-program automatically).
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Heterogenini ↪u meta-program ↪u ekvivalenčios transformacijos

Vytautas ŠTUIKYS, Robertas DAMAŠEVIČIUS

Straipsnyje pateikiamas transformacijomis grindžiamas heterogenini ↪u meta-program ↪u apiben-
drinimas, kai meta-programos vienpakopė struktūra keičiama ↪i dvipakop ↪e struktūr ↪a, esant tai pačiai
meta-parametr ↪u aibei. Apibrėžiami pagrindiniai terminai, formalizuojami transformavimo už-
daviniai, specifikuojamos transformacij ↪u savybės ir taisyklės. Program ↪u inžinerijos požiūriu anali-
zuojami tokie procesai: (1) apgr ↪ažos transformacija, kai korektiška vienos pakopos meta-programa
M1 yra transformuojama ↪i ekvivalenči ↪a dviej ↪u pakop ↪u meta-meta-program ↪a M2; (2) dvipakopė
tiesioginė transformacija, kai iš pradži ↪u M2 yra transformuojama ↪i meta-program ↪u poaib↪i, o po to
kiekvienas poaibis yra transformuojamas ↪i program ↪u aib ↪e. Pagrindiniai rezultatai tokie: (1) hetero-
genini ↪u meta-program ↪u transformavimo proceso formalizavimas; (2) ekvivalenči ↪u transformacij ↪u
iš M1

↪i M
2, ir atvirkščiai, aprobavimas; (3) meta-specifikacij ↪u sudėtingumo ↪ivertinimas. Rezultatai

pagrindžiami pavyzdžiais, teoriniais teiginiais bei eksperimentais.


