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Abstract. In this paper, the nonlinear neural network FitzHugh–Nagumo model with an expan-

sion by the excited neuronal kernel function has been investigated. The mean field approximation

of neuronal potentials and recovery currents inside neuron ensembles was used. The biologically

more realistic nonlinear sodium ionic current–voltage characteristic and kernel functions were ap-

plied. A possibility to present the nonlinear integral differential equations with kernel functions

under the Fourier transformation by partial differential equations allows us to overcome the ana-

lytical and numerical modeling difficulties. An equivalence of two kinds solutions was confirmed

basing on the errors analysis. The approach of the equivalent partial differential equations was suc-

cessfully employed to solve the system with the heterogeneous synaptic functions as well as the

FitzHugh–Nagumo nonlinear time-delayed differential equations in the case of the Hopf bifurca-

tion and stability of stationary states. The analytical studies are corroborated by many numerical

modeling experiments.

The digital simulation at the transient and steady-state conditions was carried out by using finite

difference technique. The comparison of the simulation results revealed that some of the calculated

parameters, i.e. response and sensitivity is the same, while the others, i.e. half-time of the steady-

state is significantly different for distinct models.

Key words: neural network, mean field approximation, FitzHugh–Nagumo differential equations,

bifurcation, stability.

1. Introduction

The brain consisting of multi-massive structure in general and especially of the multi-

neural organization for humans and some primates brain is laid out as clustered higher and

lower cell density mosaics. The ordered structures are probably formed by self-organizing

mechanisms (Cowan, 1982; Garliauskas, 2003). The brain, created by neuronal networks,

the properties of which are expressed by nonlinear, excitation/inhibition potential fields,

signal delays, stochastic, is a very complex system for modeling and control analysis. The

complexity is aggravated having in mind noises, nonlinearities, space and time distribu-

tion. They take place in neuronal system elements: synapses, dendrite membranes, soma of
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neurons, axons. The mostly complicated characteristic is the sodium ionic current–voltage

N-shaped relation of synapses (Garliauskas, 1998). Beside, when considering neuronal

networks of the brain the synaptic couplings among interconnected neurons acquire an

important biological meaning and modeling presumption. The intensity or strength of

couplings is distributed in the space and represented, as a rule, by the kernel function.

The kernel function can reflect pure excitations, lateral inhibitions (the so-called Mexi-

can hat kernel function) or lateral excitations (Zhang et al., 2010). The lateral inhibition

function is more surprising and implies that neurons close to one another have excitatory

connections and neurons faraway have inhibitory ones.

Neuronal dynamics and stability of the differential equations described have been

solved in wide aspects, beginning with Hodgkin and Huxley (1952), FitzHugh (1961)

and Nagumo et al. (1962), Mackey and Nechaeva (1995), Zhang et al. (2010) and fini-

shing with Tanabe and Pakdaman (2001), Hasegawa (2003, 2004). Hasegawa solves the

dynamics of the FitzHugh–Nagumo model of neuron ensembles with time-delayed cou-

plings among neurons, noises and stochastic. Tanabe considers the solutions by numerical

calculations for single Hodgkin–Huxley neurons. Zhang studies the traveling wave fronts

in synaptic coupled neuronal networks more from the mathematical point of view.

Our goal in difference to others is to study the influence of nonlinear coupling kernel

functions and other strong nonlinearities on searching of the neuronal dynamics solutions,

stability problems, though, in the first stage, restricting to a mean field approximation.

The paper is organized as follows. In Section 2, the biological presumptions and and

more realistic models are discussed. The presumptions of simplifications and the math-

ematical modeling of the coupling neuronal network dynamics are studied in Section 3.

Section 4 is devoted to study of employing to solve the system with the heterogeneous

synaptic functions. The solution of the FitzHugh nonlinear time-delayed differential equa-

tions of the Hopf bifurcation point of view and its proofs are proposed in Section 5 and

Appendix A. Finally, Section 7 concludes the paper by giving a resume of some direction

for a further investigation.

2. The Biological Presumptions and Models

The cortex of the brain is super multiplex neuronal system. In reality the cortex can be

approximated as a three-dimensional layer, about 3 mm thick and nearly 84 cm2 in the

surface area. It has been estimated by neurophysiologists that there are nearly 300 differ-

ing neuron-cell types (Cowan, 1982). However, almost all types of neurons have one main

exclusive property – the threshold voltage characteristic. All neurons together with other

compartments (synapses, dendrites and axons) compose a synapse-dendrite-soma-axon

chain with distributed electrical and biochemical parameters on the cortex surface (Szen-

tagothai, 1974). It is necessary to emphasize that there are exist essential nonlinearities,

signal delays, and stochastic expressed by noises. All chains are structured in the neuronal

networks with specialized functional neurophysiological contributions.

Consider the main characteristics of the synapse-dendrite-soma-axon chain. The

synapse behavior has theoretically corroborated that the stead inward sodium current,
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Fig. 1. The sodium current voltage characteristic.

related to voltage, reflecting a nonlinear process of activation, had slopes of positive

and negative conductance arising from the supposed existence of the N-shaped current–

voltage characteristic (Garliauskas, 1998; Schwindt and Crill, 1977). This characteristic,

shifted the rest potential to the beginning coordinates, is approximated by the polynomial

expression of a dimensionless type as follows

f (v)= v + αv
(

v2 − 3v
)

, (1)

where non-dimensional constant α = 0.48. Some authors (Zhang, 2010; Hasegawa, 2004)

use the linear function f0(v)= av, where a is as a conductance. The characteristic curve

crosses the abscissa at three points vr , vu and vd (Fig. 1). A segment is stable in the area

around the point vr around the point vu is an unstable while a stable depolarized segment

of the firing state is close to the point vd .

Biologically a cubic function (1) is different in principle and more adequate than a

linear one to model neuronal networks used, for example, in Zhang (2010).

The couplings between neurons in the neural network may be expressed as a pure

excitation, lateral inhibition or lateral excitation. These main characteristics inside neural

networks in the space of the cortex are formed by the kernel function which may be a

one-dimensional or two-dimensional function. The mathematical approximations are as

follows

K(x)=
(

2√
3
π−1/4

)

(1 − x2)e−
1
2
x2

(2)

and

K(x,y)=
(

1 − (x2 + y2)
)

e−
α(x2+y2)

2 , (3)

respectively. Graphically they are shown in Figs. 2(a) and 2(b) at α = 0.2.

The continuum limit is achieved by fixing not only the activity of separate neurons

but also the given volume of neuronal tissue centered at a point x or (x, y) in the two-

dimensional case.
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Fig. 2. The kernel functions: (a) the one-dimensional kernel function, (b) the two-dimensional kernel function.

A neuron cell body (soma) is the central part of the neuronal chain which on by

means of biochemical and electrical processes maintains the life of cell. The neuron

produces the summation of the spatial and temporal electrical signals through dendrites

and axons disregarding a biochemical enzymatic mechanism of the neuron cell body.

If the summation signal overcomes the axon hillock’s threshold, then the neuron fires

and the output signal is transmitted along axon to other neurons. A space distribution of

state parameters in dendrites and axons is not considered applying a fixed point state-

ment.

The model of a neuron, as a rule, is presented in general by a squashing non-decreasing

function

lim
v→+∞

g(v)= 1, lim
v→−∞

g(v)= −1. (4)

The individual squashing function is a signum function without threshold or with one

sgng(v)=
{

1, if v > 0,

−1, if v < 0,
(5)

or Heaviside step function with a threshold h:H(v−h)= 0 for all v < 0 andH(v−h)= 1

for all v > 0. Another threshold function that we use is the sigmoid continuum function

gi(v)= tanh

(

∑

j

wijg(vj − h)/T

)

, (6)

where the sum expresses the common firing potentials from all j -side neurons in i-side

of the neuronal network, T is a temperature which characterizes the noise properties.

These neural cell functions will be used in the modeling bellow.
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3. Mathematical Model of the Coupling Neuronal Networks

3.1. Presumptions of Simplifications

It has been mentioned above that the different types of neuron cells achieve hundreds be-

low each point on the cortical surface. The one type of neuron is characterized as one

degree of freedom from the analytical point of view. Thus, the analytical problem is not

solvable. However, Hubel and Wiesel (1962) have discovered that almost all neuron cells

under a given point on the cortical surface have the same spatial orientation representing

locally by about ten groups of cells involving ten degrees of freedom. But even after such

a simplification the analysis remains a formidable task. As it has been shown in Iooss and

Joseph (1980) the problem is not so bad because the emergence of patterns of coherent

activity of neurons may be controlled by a single maximal eigenvalue of differential equa-

tions that describe neuronal dynamics. Therefore the analytical task can be reduced by

involving at most one or two degrees of freedom (Iooss and Joseph, 1980).

Further, we are going to use the mean field approximation of the neuronal potentials

and recovery current inside the neuron ensembles. We shell first suppose that: (a) the

distribution of the above-mentioned state variables is Gaussian and (b) large number of

neurons in the ensemble allow us to present the local random variables as the expecta-

tion with respect to the corresponding distribution according to the law of large numbers

(Hale and Lamel, 1993). In the mean field approximation approach it is assumed that the

condition (b) is approximately true even for a finite but large number of neurons.

3.2. The Mathematical Model of Neuronal Dynamics

According to mean field approximation the continuum limit will be obtained by estimat-

ing, not separate potentials of individual neurons but on their amount proportionbecoming

active per unit time in given volume elements of neuron ensemble centered at the point.

A dynamic evolution of the action of the neuron ensemble consisting of N FitzHugh–

Nagumo neurons in the cortical space kernel distribution of potentials on the surface,

noise, delaying time, and applied inputs in general is described by the 2N -dimensional

nonlinear stochastic integral differential evolution equations given by

ǫ
∂vi(x, t)

∂t
= f

[

vi(x, t)
]

− ewi(x, t)+
1

N − 1

∫ ∫

K(y, z)

×
∑

j=1 (j 6=i)
Nµijg

[

vj (t − τij − h)
]

dy dz+ ξi(t)+ I (t), (7)

∂wi(x, t)

∂t
= avi(x, t)− bwi(x, t), i = 1,2, . . . ,N, (8)

where f [vi(x, t)] expresses by (1) independent of x and t , K(y, z) is determined by (3)

or in one-dimensional case by (2) changing of coordinate names, g[·] by (6), wi(x, t) is

the recovery potential function, µij and τij are coupling strength and delay, respectively,
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which in the uniform couplings µij = µ and delay times τij = τ , and ǫ, a, b, e are con-

stants. The fourth term of Eq. (7), ξi(t) denotes the Gaussian white noise. The fifth term

in the same equation, I (t), expresses an external input current.

According to the above given mean field approximation presumption, the global vari-

ables for the neuron ensemble are almost identical neurons given by

V (x, t)= 1

N

N
∑

i=1

vi(x, t), (9)

W(x, t)= 1

N

N
∑

i=1

wj (x, t), (10)

Now the function f [vi(x, t)] becomes f [V (x, t)]. The function g[Vj (x, (t − τ ))−h]
in (7) applying sigmoid function g[Vj (x, (t − τ ))− h] = tanh[Vj (x, (t − τ )) − h] and

linearizing by Taylor expansion the term 1
N

∑N
j µg[Vj (x, (t − τ )) − h] = µV (x, (t −

τ ))− h.

Assuming that the local variables can be represented as the global variables, one-

dimensional kernel function (2), ξ(t) as a stationary, independent of space Gaussian

white noise, process with M{ξ(t)} = 0 (expectation function) and covariance functions

m{ξ(t)ξ(s))} = δ(t − s) (the Dirac delta function), I (t) = 0, and so far without consid-

ering the recovery equation, the dynamic process will be presented by the scalar integral

differential equation with two-dimensional couping functionK(y, z) as follows

ǫ
∂V (x, t)

∂t
= f

[

V (x, t)
]

+µ

∫

R

∫

R

K(y, z)V
(

x,
(

t − τ )
)

− h
)

dy dz. (11)

The solution of Eq. (11) with a convolutionproduct under the integral is more complicated

than without it. To simplify finding the solution of Eq. (11) there is a way to transform the

integral differential equation to many particular partial differential equations if to apply

the Fourier transformation (FT) of the kernel function and the convolution product. The

authors (Laing and Troy, 2003; Zhang et al., 2010) propose an appropriate method of

transformation.

Let us use the direct FT and the inverse one of the one-dimensional kernel function

written as follows

K̂(ψ)=
∫

R

K(z) exp(−izψ) dz, (12a)

K(z)= 1

2π

∫

R

K(ψ) exp(izψ) dψ, (12b)

respectively.

Applying the Fourier transformation to the Eq. (11) we deal with the convolution prod-

uct, where the direct FT of functions product equal to product of FT individual functions,
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i.e., {f (ψ) ∗ g(ψ)} = {f (ψ)}{g(ψ)}, where {∗} means the FT of appropriate functions

Then Eq. (11) for images will be presented as

V̂t (ψ.t)= f̂
[

V (ψ, t)
]

+ K̂
(

ψ)Ĥ (V (ψ, t)− h
)

, (13)

where Eq. (13) is written without delay (τ = 0), the wide hat above functions denotes

the direct Fourier transformation. The direct FT of the Heaviside H function is the same

function. If and only if K̂(ψ) can be represented by 1
K(ψ)

, whereK(ψ)will be polynomial

function of K̂(ψ) of ψ , then it is possible Eq. (13) applying the inverse FT to obtain the

equivalent partial differential equation.Taking in account the simplified form of the kernel

function the direct FT

K̂(ψ)= ρ2

ρ2 +ψ2

instead of (2) and its inverse FT

K(z)= ρ

2
exp

(

− ρ|z|
)

,

where ρ is a constant, and using formula (from Laing and Troy, 2003; Zhang et al., 2010)

∞
∑

m=0

(−1)m

m!(4ρ)m
∂2m

∂x2m

[

∂V (x, t)

∂t
− f

[

V (x, t)
]

]

=H
(

V (x, t)− h
)

the equivalent partial differential equation will be as follows

∂V (x, t)

∂t
+ f

[

V (x, t)
]

− 1

4ρ

[

∂3V (x, t)

∂x2∂t
+

(

∂2f [V (x, t)]
∂V 2

+ ∂f [V (x, t)]
∂V

)

∂2V (x, t)

∂x2

]

=H
(

V (x, t)− h
)

. (14)

3.2.1. Numerical Results

To confirm the equivalence of a direct integral differential solution and that of an equiva-

lent partial differential equation it was fulfilled a numerical modeling both of Eq. (11) in

one-dimensional case and (14) in two-dimensional one based on Maple 13 toolkit.

To lead the numerical modeling initial and boundary conditions were given for (11)

IBC =
{

V (x,0)= ρ

2
exp

(

− ρ|x|
)

, V (10, t)= 0.0

}

(15a)

and for (14)

IBC′ =
{

V (x,0)= ρ

2
exp

(

− ρ|x|
)

, V (10, t)= 0.0,V (−10, t)= 0.0

}

. (15b)
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Fig. 3. Spatial solutions at fixed time: (a) (1) the direct equation solution (solid line) and (2) the solution of

equivalent partial differential equation (dashed line) at t∗ = 0.05 are shown. (b) the same at t∗ = 0.1.

Fig. 4. The local error estimate dependent on the space coordinate and fixed time. The curve of spatial error

estimate dependent on the space coordinate for the direct solution at fixed time (t∗ = 0.02) (a), and the curve of

the spatial error estimate at fixed time (t∗ = 0.4) for the partial equation solution (b) are presented.

The modeling was fulfilled giving the bipolar Heaviside functionof type 1−2H(V (x, t)−
h) with threshold h = 2.5. The calculations were leaded in dimensionless case of vari-

ables and parameters. The comparison curves of the direct solution and equivalent one

are shown in Figs. 3(a), 3(b) at t∗ = 0.05 and t∗ = 0.1, respectively. The deviation of

the solution curves is challenged because the direct numeric integration was done in a

restricted range and with one boundary condition and the partial differential equation was

solved with two boundary conditions.

The spatial error estimates for the fixed time in the case of the direct (Fig. 4(a)) and

partial differential equation solution (Fig. 4(b)) show that maximum errors are determined

near to the marginal boundary points and where there is a sharp peak of the initial condi-

tion. The errors are quite small and thus the numerical modeling confirms the equivalence

of the direct integral differential solution and that of the partial differential equation (PDE).
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Fig. 5. The solutions of the direct (a) and partial differential equation (b) in three-dimensional space.

The equivalence of the dynamical solutions as well as their stability are testified by the

3D pictures in Figs. 5(a), 5(b).

4. Solution of the PDE System with a Recovery Factor

4.1. Description of the Neural Network PDE System

Let us consider a neural network system with a recovery current of neuron and including

the synaptic coupling thresholds. A mathematical model is presented by the PDE system.

ǫ
∂vi(x, y, t)

∂t
= −αvi(x, y, t)+ fi

[

vi(x, y, t)
]

− kui(x, y, t)
1

N − 1

×
∫

R2

∫

K(x,y)H

{

µij

N
∑

j=1 (j 6=i)
fj

[

vj (x, y, t)− hj
]

}

dx dy,

(16)

ν
∂ui(x, y, t)

∂t
= dvi(x, y, t)− eui(x, y, t), i, j = 2, . . . ,N, (17)

where the two-dimensional coupling function

K(x,y)= k1

2πσ 2
exp

(

− 1

2σ 2

[

(x − r)2 + (y − s)2
]

)

,

α is a decay coefficient, d , e, k, k1, σ , ǫ, ν are constants. The PDE system (16), (17) is

justified only if N > 2.

4.2. Numerical Modeling of the System with the Heterogeneous Synaptic Functions

System (16), (17) was solved at a fixed point of coordinates on the cortex surface, for

example, (x, y)= (1,1) by Maple 12 toolkit for an ordinary differential equation (ODE)
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Fig. 6. The neuronal dynamics with the spatial coordinates fixed. The parameters are α = 0.05, k = 2, µ= 0.1,

h = 2.5, d = 0.2, c = 0.1, ǫ = 1, ν = 1. (a) u1(t) is the solid curve, the v1(t) is dotted one, u2(t) is the the

dash-dotted one, and the v2(t) is long-dashed one. (b) the phase portrait is shown in the case of a bipolar Heavi-

side function for functions v1(t), u1(t). (c) shows the phase portrait at the unipolar Heaviside function for v2(t),

u2(t).

2N system. The ODE system for identical descriptions of f , µ, h is as follows

ǫ
dvi(t)

dt
= −αvi (t)+ fi

[

vi(t)
]

− kui(t)

+ 1

N − 1

∫ ∫

R2

K(x,y)H

{

µ

N
∑

j=1 (j 6=i)
fj

[

vj (t)− h
]

}

dx dy,

ν
dui(t)

dt
= dvi(t)− eui(t), i, j = 1, . . . ,N,

where R2 is a real number two-dimensional space.

Calculus Example. The calculus was made including different synaptic functions:

f1[v1(t)] as (1) and f2[v2(t)] = v2(t)− v2(t)
2(v2(t)− 1). A neural network was taken

for N = 2. The modeling results given with the initial conditions v1(0) = 0, u1(0)= 0,

v2(0)= −0.1, u2(0)= 0.5 by Maple dsolve and phase portrait procedures are shown in

Fig. 6. Figure 6(a) illustrates the time courses of four independent variables including two

excitatory or spiking and two recovery functions. The curves testify about periodic stable

oscillations. The phase portrait in Fig. 6(b) confirms that showing the limit circle with the

stairs formed by stepwise nonlinearities of synaptic and neuronal action functions.

5. The Solution of FitzHugh–Nagumo Equations with Kernel Function

5.1. Modeling of Dynamics

The FitzHugh–Nagumo model we expose including space potential distributions – kernel

functions that influence the dynamic solution. The model consists of two integral differ-
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Fig. 7. The potential and recovery currency solutions versus time: (a) the time courses without oscillations,

(b) the courses with quenched oscillations, and (c) the phase portraits.

ential equations formulated to mean field of excitation and recovery potential functions

and decay term looks like

ǫ
∂V (t)

∂t
= −(c+ 1)V (t)−U(t)+ dV (t)

(

V (t)2 − V (t)
)

+µ

∫ ∫

(

1 − (x − r)2 + (y − s)2
)

e−
((x−r)2+(y−s)2)

2 V (t) dr ds, (18)

∂U(t)

∂t
= aV (t)− bU(t), (19)

where f (V ) = −V + dV (V 2 − V ) is shifted to the left comparing with (1), i.e., more

realistic. The main influence of the space parameters is expressed by convolution product

under the integral sign.

The modeling results of the model presented by Eqs. (18), (19) at initial conditions

V (0)= 1, U(0)= −0.2, coefficients a = 0.14, b= 0.4, c= 0.1, d = 1.098, µ= 0.2, and

ǫ = 1.0 in the space fixed (x, y)= 1 are shown in Fig. 7(a) and at V (0)= 0.6,U(0)= 0.2

in Fig. 7(b). A behavior of the solutions depends on values of parameters. It is reflected by

time course without oscillations (Fig. 7(a)) and with ones (Fig. 7(b)). The phase portraits

with interpolation numeric results are illustrated in Fig. 7(c), where the portrait of Fig. 7(b)

results denoted by line-points curve driven to local focus and the portrait marked by line

curve driven to the periodic circle. In last case, the modeling was done at other parameters

than Fig. 7(a).

5.2. Estimation of Stability and Bifurcation

The analysis of a stability and bifurcation with degeneracy of neuronal networks better

to do basing on a standard linearizing approach of the evolutionary differential equations

including delay

ǫ
∂V

∂t
+ ǫ

1

4ρ

∂3V

∂x2∂t
= f (V )−W −µV (t − τ ), (20)
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∂W

∂t
= aV − b. (21)

The last term of Eq. (20) comparing with Eq. (7) for local variables or with Eq. (14)

for global ones was changed after linearizing g[ ] in (7) and no threshold h. Eq. (21) is

taken in simplified form with constant decay. The initial conditions have been given as

V (0)= V (θ), W(0)=W(θ), where −τ 6 θ 6 0.

It is well known way to go through a stationary state, linearizing approximation and an

evaluation of eigenvalues, and to estimate the stability and bifurcation of the task raised. It

is remarkable that such way provides necessary and sufficient conditions about behavior

of the exact system.

The stationary states of Eqs. (20), (21) are as follows

V0 = b/a, W0 = b

a

(

− 1 + d
b

a

(

b

a
− 1

))

. (22)

Let us define a new variables v = V − V0 and w =W −W0, where v and w measure the

perturbations of the equilibrium states V andW . Now after introducing new variables and

linearizing by Taylor expansion, and transformation of the system Eqs. (20), (21) with new

variables to the second order partial differential equation the new equation is as follows

ǫ
∂v2

∂t2
+ ǫ

1

4ρ

∂4v

∂x2∂t2
= k1v − a1v +µ1

v(t − τ )

∂t
, (23)

where k1, a1, and µ1 have new notations for further convenience. The assumption that

the solution of Eqs. (23) is v = exp(p(t + x/c)), where p is an eigenvalue and c is a

finite wave propagation speed of an action potential the quasi-polynomial characteristics

of eigenvalues of Eq. (24) take place.

The characteristic equation with time-delay is as follow

p2 − kp+ a −µpe−pτ , (24)

where k = k1
ǫr

, r = 1 + 1
2σ

x2

c2 , a = a1
ǫr

, µ= µ1

ǫr
and k1 = −1 + d b

a
(3 b
a

− 2).

As the differential Eq. (23) bears delayed variable, the characteristic equation (24)

of the stationary solution has an infinite of roots. Thus, the time-delay system (20)–(21)

reflects an infinite-dimensional state space. At bifurcation of the stationary state the real

parts of roots of the characteristic equation (24) are equal zero and roots are conjugate

imaginary, i.e., p± = ±iω. Substitution of p± = ±iω into Eq. (24) gives

ω1,2.3.4 = ±
{

− (k2 −µ2 − 2a)

2
± 1

2

[(

k2 −µ2 − 2a
)2 − 4a2

]1/2
}1/2

, (25)

the treatments of which are given in Appendix A.

The critical delay time τc is taken (A.4) as follows

τ ≃ τc = cos−1(−kµ)
ω

= 1

ω
arccos(−k/µ)+ 2πj, (26)
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Fig. 8. The frequencies versus delay-time and space coordinate: (a) the frequency ω1 = ω++, (b) the frequency

ω2 = ω+−.

where µ is one of four roots according to (A.5). Because of ω = 2π/T , between ω and

period T of oscillations occur a such relation

T = 2π

ω
. (27)

5.3. Modeling Results

To confirm the theoretical backgrounds of an excitable neuronal network dynamics with

spatial distribution of the spiking neurons and delay-time in the axon-dendrite channels, an

existence of possible bifurcations the modeling of the exposed FitzHugh–Nagumo delay-

differential equations was fulfilled.

The conditions of the bifurcations and stability of the stationary states described by

Eqs. (20), (21) were based on some concrete calculations. The changing of the roots of the

characteristic equation (24) ω1 and ω2 (see notations in Appendix A) versus parameters x

and µ is shown in Figs. 8(a), 8(b).

The surface in the ranges of parameters (Figs. 8(a), 8(b)) illustrates the region of para-

metric space, on boundary of which there are periodic solutions of (23) with period given

by (27).

Bifurcation curves τc,ω1
and τc,ω2

for fixed x , a = 0.3, b = 0.5, c= 0.03, d = 1.098,

j = 0, and ǫ = 0.001 are shown in Figs. 9(a), 9(b).

The curves in left-hand side are strictly abrupt at µ= 3. It means that an argument of

the arccos becomes more or equal to one or the appropriate angular frequencies ω1, ω2

become imaginary. The analogous curves τc,ω1
for fixed x = 0.1 and other recent para-

meters versus cycling number j are shown in Fig. 10(a), as well as for fixed x = 0.1 and

j = 0 versus parameter b, they are shown in Fig. 8b. The conclusion follows that than

higher cycling number than the critical values of oscillation behavior more increase.

Thus, when the eigenvalue p is pure imaginary there may be a Hopf bifurcation pro-

portioned to a pair of imaginary conjugate eigenvalues crossing the imaginary axis, disso-

ciating the left- and right hand complex plane. This bifurcation may be either subcritical

or supercritical.
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Fig. 9. The critical delay-times versus strength of synapses µ and space coordinate x: (a) the critical delay-time

with ω1 = ω++, (b) the critical delay-time with ω2 = ω+−.

Fig. 10. The critical delay-times versus strength of synapses: (a) at fixed numbers of waves, (b) at fixed decay

coefficients of recovery currents.

6. Conclusions

In the neural network FitzHugh–Nagumo model, the excited neuronal kernel function was

introduced. The introduction of kernel function, which derive to a solution distributed in

a space, complicates a search of decision. However, the using of a possibility to present

the nonlinear integral differential equations with kernel functions under the Fourier trans-

formation by partial differential equations allowed us to overcome the analytical and nu-

merical modeling difficulties.

The approach of the equivalent partial differential equations was successfully em-

ployed to solve the system with the heterogeneous synaptic functions as well as the

FitzHugh–Nagumo nonlinear time-delayed differential equations in the case of the Hopf

bifurcation and stability of stationary states. In the first time, the necessary and sufficient

conditions for the stability of solutions justified by a finding of the critical time-delay have

been found depending on the space coordinate. The different numerical modeling experi-
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ments allowed to justify the theoretical foundations in the areas of discovering oscillations,

bifurcations, and stability of solutions.

In the future investigations, the local solutions of the neuronal ensembles with noises

and time-delays will be studied. We shall include the first and second order cumulants of

deviations assuming the Gaussian distribution of the variables and the applications will

the subjects of a follow up paper.

Appendix A

It is necessary to find the roots of the transcendental equation

p2 − kp+ a −µpe−pτ (A.1)

in the Hopf bifurcation case when p = iω.

Substituting p to Eq. (A.1), changing e−iωτ by trigonometrical form, and grouping

real parts and imaginary ones one gets

a −ω2 −µω sinωτ + i(µω cosωτ − kω)= 0. (A.2)

The complex number is equal to zero when the real part and the imaginary one are equal

to zero in separately. They are following

a −ω2 = µω sinωτ, (A.3)

kω = µω cosωτ (A.4)

after taking quadratics of (A.3) and (A.4) and summarizing all parts of equations the bi-

quadratic equation follows as

ω4 + (k2 −µ2 − 2a)ω2 + a2 = 0. (A.5)

Using standard procedure of solving Eq. (A.5) we get four roots expressed by the form

ω1,2.3.4 = ±
{

− (k2 −µ2 − 2a)

2
± 1

2

[(

k2 −µ2 − 2a
)2 − 4a2

]1/2
}1/2

, (A.6)

where ω1 = ω++, ω2 = ω+−, ω3 = ω−+, and ω4 = ω−−.

For finding of a critical delay time τc, it is used (A.4) and it is got

τ ≃ τc = cos−1(−kµ)
ω

= 1

ω
arccos(−k/µ)+ 2πj, (A.7)

where µ is one of four roots according to (A.5). Finally, because of ω = 2π/T between

ω and period T of oscillations occur a such relation

T = 2π

ω
. (A.8)
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FitzHugh–Hagumo neuroninio tinklo vidutinio lauko su branduolio
funkcijomis ir sąveikos laiko delsa modeliavimas

Algis GARLIAUSKAS

Straipsnyje nagrinėjamas FitzHugh–Nagumo neuroninio tinklo modelis, išplėstas įtraukiant są-

veikos branduolio funkciją ir biologiškai natūralią natrio jonų srovės-potencialo charakteristiką. Pa-

siūlymas transformuoti netiesines integralines diferencialines lygtis pagal Furje į lygtis su dalinėmis

išvestinėmis leidžia lengviau įveikti analitinio ir skaitinio modeliavimo trūkumus. Taip pat ištirta

FitxHugh–Nagumo netiesinės su laiko delsa diferencialinės lygtys Hoph bifurkacijos ir stacionarių

būsenų stabilumo atvejuose. Analitinės studijos paremtos plačiu skaitinio modeliavimo eksperimen-

tu.


