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Abstract. Relational mathematics, as it is studied in fields like mathematical economics and social
choice theory for some time, provides a rich and general framework and appears to be a natural
and direct way to paraphrase optimization goals, to represent user preferences, to justify fairness
criterions, to cope with QoS or to valuate utility. Here, we will focus on the specific application
aspects of formal relations in network design and control problems and provide the general con-
cept of relational optimization. In relational optimization, we represent the optimization problem
by a formal relation, and the solution by the set of maximal (or non-dominated) elements of this
relation. This appears to be a natural extension of standard optimization, and covers other notions
of optimality as well. Along with this, we will provide a set of fairness relations that can serve as
maximizing relations in relational optimization according to various application needs, and we spec-
ify a meta-heuristic approach derived from evolutionary multi-objective optimization algorithms to
approximate their maximum sets.
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1. Introduction

Recently, advances in network technologies and their increasing impact on all our daily’s
life have raised a new quality of problems with regard to optimization, efficiency and
controllability. The change is essentially coming from the stronger reference to the sub-
jectivity of agents, expressed in terms like preference, equity, fairness, or envy-freeness.
As an example, consider a scenario for a Broadband Wireless Access (BWA) system, the
so-called OFDMA (Orthogonal Frequency-Division Multiple Access) system, which also
employs cooperation among various agents via relays. In such a model, three types of sta-
tions (mobile stations, relay stations, base station) are placed in a plane. There is a complex
interplay between the stations, but the main goal is to direct downlink traffic from the base
station to the mobile stations, partially utilizing the relay stations. There are many influ-
encing factors as well as features of a specific configuration of such a system (see Zhang
et al., 2009 for a nice introduction into this problem):
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• the allocation of directing transmissions from mobile stations to relay stations in
a cooperative manner, or to the mobile stations directly, and the share of such a
cooperation,
• the number and placement of relay stations (probably taking physical terrain condi-

tions or antenna heights into account),
• the power allocation to relay stations with corresponding signal-to-noise ratios, and

choices of their forwarding mode: decode-and-forward, where the relay station de-
codes the transmission from the base station, encodes anew and forwards to the mo-
bile station, causing additional delay, amplify-and-forward, where the relay station
just amplifies the base station transmission, resulting into higher power usage, or a
mixture of both modes,
• minimum transmission rates, maximum delays, and/or maximum tolerable error

rates seeked by the mobile stations,
• subcarrier allocation to stations with corresponding channel coefficients, and the ac-

companying splitting of transfer rates into low and high rates that influence channel
utilization,
• the management of time slots, etc.

There is no immediate specification of an efficient guidance for the system configu-
ration, while exactly this is needed to set up and operate the system at each time instant.
Common ways to achieve such a guidance are optimality, fairness, Quality-of-Service
(QoS), among many other like inferring from simulation studies or descriptions of proba-
bility distributions, identification of equilibrium states etc. We can easily see that in such a
context, even the most generic concept among them, i.e. optimization can be understood in
various manners, and be given in terms of efficiency, maximality, “better-ness” or robust-
ness. QoS usually refers to features that are guaranteed throughout the operational time
of the system, and often appear as constraints to the optimization. These are all referring
to objective circumstances. By fairness, for the first time we also introduce subjectivity of
agents.

Here, we want to put forward a theory that appeared in a number of recent publications
in a coherent manner, which utilizes aspects of economics as efficient guidance on a strict
relational framework. Section 2 will recall basic facts about relations and tailor this to
the needs of relational optimization, expressed by the task of finding maximum sets of
relations. Section 3 will introduce a special class of relations, fairness relations, and its
utilization in network design and control problems will be exemplified in Section 4. The
paper will draw some conclusions and compare to related work in Section 5.

2. Relations and Relational Optimization

In set theory, a binary relation R on a set X is simply a subset of X ×X, indicating all
(ordered) pairs (x, y) of elements from X between which the relation holds. Thus, R is
basically a set

xRy ⇔ (x, y) ∈R ⊆X×X, (1)
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and we speak about “x is in relation to y ,” “the relation is between x and y” etc. This is a
special case of a relation between elements from a set A and elements from a set B (which
is a subset of A× B) where A = B , and it is also a special case of an n-ary relation as
subset of n-times the direct product of X with itself, where n= 2.

There are several ways to represent a relation, in addition to the set representation. For
example, if X = {1,3,5}, then

X×X =
{

(1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1), (5,3), (5,5)
}

.

We consider a “larger”-relation R> as the subset of pairs {(3,1), (5,1), (5,3)}, but it
seems to be more transparent to represent it as:

R =
{

(x, y)
∣

∣ x, y ∈X ∧ x > y
}

. (2)

This is the logical representation of R as a set comprehension, i.e. a statement describing
the properties that its member pairs must satisfy. Another way is the functional represen-
tation as a mapping (1→∅,3→ {1},5→ {1,3}) that assigns to each x ∈ X the subset
of elements of X to which it is in relation.

Assuming an ordering of X so that X is composed of elements xi with i = 1, . . . , |X|,
then

R =Rij =





0 0 0

1 0 0

1 1 0



 (3)

gives a matrix representation of the same relation, where Rij = 1 if and only if
(xi, xj ) ∈ R. Among the many other ways to represent a relation, we only want to mention
the graph representation of a relation as a directed graph G= (V ,E) of node set V and
edge set E. In our example, the nodes of the graph are the elements of X, and there is an
edge from x ∈X to y ∈X if and only if (x, y) belongs to the relation.

Since the various representations refer to different mathematical concepts, we can
“borrow” terms from the corresponding disciplines and use them for relations as well. For
example, we can speak about the spanning tree of a relation, or its diameter, according to
the graph representation. According to the matrix representation, we can speak about the
rank, or the Eigenvalues of a relation etc.

The set X is often called the domain of the relation. Given a relation R between el-
ements of X, we can define a restricted relation between elements of any subset of X. If
Z ⊆X then RZ is the set of all pairs (x, y) ∈R such that x ∈ Z and y ∈ Z.

From a practical point of view, relations can refer to various things, or, in other words,
can have different interpretations. A few examples:

• Relations can represent equivalence of things, or that two things are representing the
same. It is usually expressed as = relation. Close to equivalence, there are also the
aspects of approximation or similarity (≈) and of identity (≡).



416 M. Köppen

• Very often, we use the term “relation” with respect to a social relation, like father-of,
daughter-of, boss-of etc., thus referring to a position in a hierarchy.
• Feasible spaces of problem domains directly refer to a relation among its elements –

while usually we will need an n-ary relation for its representation.
• Relations can refer to some aspect of “better-ness” like more, better, larger, “at least

as good”, dominates, is-preferred-to etc. and thus help characterizing a percept from
environment.
• Relations can also refer to a temporal or logical order, esp. to represent causality,

precedence, or linkage.
• Non-binary relations are also used to represent pairings (like (Apple,Banana) and

are of utmost importance for the formal handling of relational databases.

For distinguishing all these different aspects of relations, properties of relations can be
considered. Among the basic properties that can be found in any textbook are:

• Completeness: ∀x, y ∈X: x 6= y→ (x, y) ∈R ∨ (y, x) ∈ R,
• Reflexivity: ∀x ∈X: (x, x) ∈R,
• Irreflexivity: ∀x ∈X: (x, x) 6∈R,
• Antisymmetry: (x, y) ∈R ∧ (y, x) ∈ R→ x = y ,
• Transitivity: ∀x, y, z ∈X: (x, y) ∈ R ∧ (y, z) ∈R→ (x, z) ∈ R, or
• Symmetry: ∀x, y ∈X: (x, y) ∈ R→ (y, x) ∈R.

There are many specific properties, and we will see a few more later on. Then, classes of
relations are specified by composing elementary properties: a relation is an Equivalence,
if it is reflexive, transitive and symmetric. Or: a relation is an Ordering, if it is reflexive,
antisymmetric and transitive. But as already indicated by re-using the bold font here, these
compound properties are just properties as well, and we may logically combine them with
other compound properties to represent presumed “elementary” properties as compound
properties. This is the far reach of the Ugly Duckling Theorem (Watanabe, 1969), and it
also means that there is no way to grasp the semantic meaning of a relation (equivalence,
similarity, better-ness etc.) by means of properties alone, i.e. between two such relations
the total number of distinguishing properties (all compounds from a set of basic proper-
ties) between two differently interpreted relations is constant. It means we have to ponder
the properties, in order to come up with a practical approach.

With regard to the set representation of a relation, we can define corresponding oper-
ations on relations, in order to get new relations from given ones. A few examples:

• Complement: (x, y) ∈ R̃↔ (x, y) /∈R,
• Converse: (x, y) ∈ R̂↔ (y, x) ∈R,
• Converse Complement: the converse of the complement of a relation R (same as

the complement of the converse),
• Relational Product: (x, z) ∈ (R1 × R2) ↔ ∃y ∈ X: (x, y) ∈ R1 ∧ (y, z) ∈ R2

(R1,R2 both have the same domain X, also note that this operation the base for
the definition of relational algebra),
• Transitive Closure: The smallest RT C such that R ⊆ RT C ⊆ X × X and RT C is

transitive,



Relational Optimization and Its Utilization 417

• Symmetric Part: S(R)= {(x, y) ∈R | (y, x) ∈ R}, or
• Asymmetric Part: P(R)= {(x, y) ∈R | (y, x) 6∈R}.

The above-mentioned problems with the specification of relations by properties alone
come up when we consider special sets specified by relations. While we can apply the
following definitions to any relation, they make only sense if the relations belong to a spe-
cial class of algorithms. Nevertheless, two of these special sets, maximum set and best
set, will be the major focus of the remaining part of this paper.

(a) Upper Approximation of a set Z ⊆X by a relation R is given as the set ẐR = {x ∈

X | ∃z ∈ Z: (x, z) ∈ R}. This is referring to the character of the relation as a similarity
relation, and appears this way in rough set theory, along with the related definition.

(b) Lower Approximation of Z ⊆ X by R as ŽR = {z ∈ Z | ∀x ∈X: (x, z) ∈ R→

x ∈ Z}.
Per definition, we could also consider upper and lower approximations of sets by order

or equivalence relations, but here, they would just coincide with the sets Z. Thus, some
care has to be taken about the proper meaning of a relation, and this also applies for the
following two specifications, where the focus is on the better-ness character of a relation R.

(c) Maximum Set M(R) of a relation R is given as the subset of all elements of X to
which no other (different) element of X is in relation P(R), formally

x ∈M(R)←→6 ∃y ∈X, y 6= x : (y, x) ∈ P(R), (4)

followed by the specification.
(d) Best Set B(R) of a relation R as the set of all elements of X that are in relation

P(R) to any other element of X, formally:

x ∈ B(R)←→∀y ∈X, y 6= x : (x, y) ∈ P(R). (5)

Both definitions could be applied to any kind of relation, but also, as long as we are
focusing on better-ness, they do not serve an interesting purpose. For example, for a tem-
poral order of events, the maximum set refers to the last event, and the best set to the
first event. For an equivalence relation, both sets are empty since the asymmetric part is
empty. We say that the maximum set is composed of maximal elements, and the best set
is composed of greatest elements. In either case, these are extreme elements.

The reference to the asymmetric part P(R) is for formal convenience. We are basi-
cally interested in the relation to non-equivalent elements in order to justify maximality
or greatestness. If considering the same definitions based on R instead of P(R), these
sets will probably be modified, and we speak about strong maximum sets and weak best
sets. It can be seen that maximum and best sets are related concepts: the maximum set of
a relation is the same as the weak best set of the converse complement relation, and the
best set of a relation is the same as the strong maximum set of the converse complement
relation.

We will also use the “infix” notation x >R y to refer to a relation R between x and y

with the interpretation of better-ness, and by x >R y to its asymmetric part P(>).
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Fig. 1. Illustrating maximum and best set elements for a graph representation of a relation. The figures show
only relations involving extreme elements.

So far, we have recalled mostly fundamental facts about relations that can be found in
many textbooks. But if someone compares the various sources for introducing relations, it
can be seen that there are slight variations in the way of defining things – like a “dialect” of
speaking about relations. In fact, so far we have followed the “dialect” of a mathematical
economist, for a good reason. Relations play a central role in mathematical economics to
formalize the concept of social choice, and the strict application of relational mathematics
here was provided by Suzumura (2010).

What is a social choice function? Given is a choice set X (for example of goods to dis-
tribute) and a system S of subsets si of the choice set X. Then a choice function C assigns
to each subset si of S one of its non-empty subsets C(si). This notation can represent
many concepts, for example an election: the choice set X are all electable persons of a
community, and the subsets si the sets of candidates for various elections. Then, a voting
scheme can be applied to the totality of these candidate sets, comprising the set S with the
effect of selecting a winner for each contained candidate set. In this case, the subset of si

of chosen candidates usually contains exactly one element, but in other circumstances, the
chosen subset can also have more than one element. Figure 2 illustrates the case where the
choice set X has 7 elements. Here, the choice function does not have to provide means for
choices from all possible subsets, but only for two subsets: it selects two items for subset
s1 and one item for subset s2 (indicated by open circles). Note that not all elements of X

need to belong to a subset, and that elements can also belong to more than one subset.
Then Suzumura introduced the concept of rationalizability of a social choice. In gen-

eral, this refers to the special case of a social choice function, where we can specify a
relation R among the elements of X such that for each element of S the chosen subset
C(si) of si corresponds with the best (or maximum) set of the restricted relation Rsi . For
some reason, Suzumura actually defines rationalizability based on what we called weak
best set, but the small differences in formal notation will not be relevant for the aspects
studied here.

Figure 3 illustrates a rationalization of the choice function that was shown in Fig. 2 by
providing a correspondence between choices from subsets and greatest elements (it also
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Fig. 2. Social choice from a choice set.

Fig. 3. Rationalizability of a social choice function.

contains a case where a greatest element is not maximal, but chosen nevertheless).
In general, not all choice functions will have a rationalizing relation, and there can be

more than one rationalization of the same choice function. We say that a choice function
is rationalizable if at least one rationalizing relation exists.

In Suzumura (2010) it is also demonstrated how various economical theories can be
brought under the umbrella of this formal framework, by providing additional assumptions
about the choice functions as so-called axioms. For example, Arrow’s Axiom is given as:

∀s1, s2 ∈ S: s1 ⊂ s2→
[

s1 ∩C(s2)= ∅∨ s1 ∩C(s2)= C(s1)
]

. (6)

The “meaning” of this may take a moment to comprehend. It is virtually exclusion of
choices depending on absence of choice items. Assume a scenario where someone goes
into a cafe and wants to order cake, and the waiter explains the menu choices blueberry
cake, cheesecake, and cherry cake. The customer decides for the blueberry cake. After a
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Fig. 4. Universal rationalizability, extending the concept of a social choice function to other domains.

moment, the waiter returns to the table and excuses that he made a mistake when telling
the choices, and there is no cheesecake available anymore. The, the customer replies “If
that’s the case, I will take the cherry cake!” Such a change of mind is actually excluded by
Arrow’s Axiom for a “rational” agent. There, s2 is {cheese, cherry,blueberry} and s1 =

{cherry,blueberry}. Then, the customer is the “performer” of the choice function C and
this assigns C(s1)= {cherry} and C(s2)= {blueberry}. So we have s1 ⊂ s2, that means the
range of available items s2 is narrowed down to s1 (“no cheesecake”). But the implication
appears to be wrong: s1∩C(s2)= {blueberry} is not empty, and s1∩C(s2)= {blueberry}

is different from C(s1)= {cherry}.
So, Arrow’s Axiom reads like: if the range of available items (s2) is narrowed down to

s1, but still contains some previously chosen items, no previously unchosen item becomes
chosen and no previously chosen item becomes unchosen.

As an example for the further reasoning: based on this assumption about the choice
function, and if the choice function is rationalizable by a relation R the relation is an order-
ing if and only if the choice function fulfills Arrow’s Axiom (Theorem 2.2 in Suzumura,
2010).

This is a very short and sketchy introduction to the Suzumura approach to social
choice, and we highly recommend the book (Suzumura, 2010) for further reading. As
it was stated in the introduction, our concern is optimality as a means to efficiently se-
lect configurations for design and operation of a system. However, the pure set notation
of rationalizability implies its applicability to various other contexts, and we want to call
this universal rationalizability (see Fig. 4). Rationalizability was given by the correspon-
dence between best or maximum sets and social choices. But also if we want to formalize
optimality, we refer to the selection of optimal states for each element of a collection of
subsets of the feasible space, and we can consider its rationalization by a relation. Then,
the optimal states corresponds with the maximum or best sets of the relation, restricted
to the corr. subset. In fact, the traditional approach to optimization is to maximize a real-
valued function, so the relation here is simply the > relation (alternatively >), where
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both, the best and maximum sets correspond with the largest element or supremum.1 In
multi-objective optimization, we refer to the Pareto-front (i.e. the maximum set of the
Pareto-dominance relation) of non-dominated elements in a similar sense (see next sec-
tion). But the correspondence also shows that we can provide optimality by specifying
any other “better-ness” relation in the same fashion. This is the approach of relational
optimization.

The other argument is about algorithms. There might be different opinions about the
meaning of “algorithm” but it might not cause to much critique if one says that an al-
gorithm is a step-by-step procedure of state transitions, starting from an initial state and
arriving at a final state. If we also agree that the final state is just an ordinary member of
the possible initial states, the concept of rationalizability applies as well: for some algo-
rithms there might exists a relation such that the selection of a final state coincides with the
maximum or best set of a relation among the elements of the initial states. This is another
correspondence of universal rationalizability. The last one discussed here is that then, an
algorithm can solve an optimization problem, if they share a rationalizing relation. But
also, given an algorithm, we can ask what kind of optimality it provides by identifying a
fitting relation. This principle will gives us guidance in the following. By using a relation
as a rationale, a selection principle can become efficient.

3. Fairness Relations

In this section, we will use rationalization of fairness as a means for optimality, which
means we will represent fairness as a relations between states of choice. Before doing so,
a few comments about the general idea of fairness are in place. Actually, fairness refers to
several concepts. In social sciences, three such concepts are: distributive fairness, which
is about the modality of a distribution of (dividable or individable) goods; procedural
fairness as judgement of a decision making process; and interactional fairness, with regard
to the perceptionof interpersonal treatment (Azar and Darvishi, 2011; Hack and Lammers,
2007). In all cases, we can find an aspect of “empathy” in the judgement about fairness, by
one agent virtually taking the position of another one to compare states (a sloppy way of
paraphrasing this is the common washing room motto: “Please leave the room the way you
would like to find it!”). Thus, if there would be only one agent in the universe, there would
be no fairness (as well as no unfairness), but also, the empathies here are not cycling, that
means an agent will not take the virtual position of the virtual position of another agent
easily. Nevertheless, we use fairness for comparison.

If we want to represent fairness as a relation between states, we can consider some
properties of such relations (in an axiomatic sense). This will be introduced in the follow-
ing:

1To be formally correct, we have to consider the function as providing a pre-ordering relation between the
elements of its domain, and we are looking for the maximum set of this pre-order.
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Definition 1. A relation R between elements of a set X is non-cyclic or cycle-free if
there is no finite sequence of elements xi with i = 1, . . . , n such that

x1 >R x2 >R x3 >R · · ·>R xn >R x1. (7)

Following Suzumura, there a various concepts of cyclicity of a relation, according to
various needs and with and without reference to the asymmetric part of a relation. In any
case, cycle-freeness is a weakened form of transitivity. As mentioned before, with regard
to fairness, we may consider one agent justifying by taking the position of another agent,
but usually it is hard to take the position of a taken position by a third agent. Therefore, a
formal representation of fairness is not necessarily transitive. By cycle-freeness we ensure
two things: (1) even if we cannot conclude from x >R y and y >R z that also x >R z, but at
least we do not have z >R x; (2) for finite X, the relation will have a non-empty maximum
set.

We also need some relational “bounds” to ensure that a fairness relation is still a rela-
tion acknowledging global improvements.

For vector relations, where X ⊆Rn, we recall Pareto-dominance.

Definition 2. For any pair of vectors x, y ∈Rn we say that x (weakly) Pareto-dominates
y (x >p y) if and only if for all i = 1, . . . , n, xi > yi .

Note that often there is the additional requirement that for at least one index j , xj > yj .
This is actually the asymmetric part of the just defined Pareto-dominance, so using the
notation x >p y to refer to this variant (also called strong Pareto-dominance) should avoid
any confusion. As said, we are not so much interested into equality when looking for
extreme elements.

By using Pareto-dominance, we define another property of a vector relation.

Definition 3. A vector relation R between elements of a subset X of Rn is called right-
Pareto-transitive (RPT), if for all x, y, z ∈X from x >R y and y >p z also follows x >R z.

By RPT we refer to the fact that for x >R y , the aspect is that of x “looking at” y and
not the other way. If this is the case, any deterioration of y should preserve the relation.
We do not consider the dual property of left-Pareto-transitivity (LPT, x >p y∧y >R z→

x >R z), as this would result to the rather complex situation to take the viewpoint of an
agent y taking the viewpoint of z while changing x at the same time. Nevertheless, we
will have relations with this property as well.

As a last comment, we will define antisymmetric relations >R but practically only
focusing on their symmetric part >R , to have a clear distinction in any case. Then:

Definition 4. A vector relation between elements of a subset X of Rn is a fairness rela-
tion if and only if it is antisymmetric, cycle-free, and right-Pareto-transitive.

We hope that foregoing comments hopefully supported the reasoning behind this def-
inition. We will provide some examples for fairness relations.
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(1) As the simplest case, the >-relation between real numbers is a fairness relation.
From a > b and b > a we conclude that a = b. As a transitive relation it is necessarily
cycle-free, and also RPT.

(2) Pareto-dominance is a fairness relation as well: it is transitive and antisymmetric,
and RPT is just another reading of the transitivity condition.

(3) Any vector relation using a scalar comparison with a monotone scalar function is
a fairness relation. Scalar comparison here means to justify whether x >R y or not by
using a (scalar) mapping f :X→ R and testing f (x)> f (y). Specific examples here are
comparison by the average of components, or any other power means.

(4) Maxmin fairness appears as the characteristic of a stable state in traffic rate alloca-
tion in wired networks (Bertsekas and Gallager, 1992). It is given as a state where an agent
can only become better off if another agent, already equally or worse off, becomes even
more worse off. This gives raise to the following definition of a maxmin fairness relation:

Definition 5. Given a feasible space X ⊆ Rn. For two elements (vectors) x and y from
X it is said that x maxmin fair dominates y (x >mmf y) iff for each i with yi > xi there is
at least one j 6= i such that (1) xi > xj and (2) xj > yj .

This relation is a little bit hard to comprehend at the beginning. Also from a practical
point of view, we may simplify the evaluation whether x >mmf y or not as follows: separate
the set {1, . . . , n} of indizes of x into three groups. Group A are all indizes where xi > yi ,
set B all indizes where xi = yi , and set C all indizes where xi < yi . Then, x >mmf y if
and only if min(A) 6 min(C).2 We can also say that A are the “looser” (if x takes the
y-perspective) and C are the “winner” in the comparison. Then, it is considered at least
as fair if the status of the looser (represented by their minimum allocation) is not larger
than the status of the winner.

It is not so much effort to see that maxmin fairness is a fairness relation. Without a
detailed proof, we just give the main reasoning. From x >mmf y follows that y >mmf x

is not possible. From x >mmf y follows min{xi | xi > yi} 6 min{xi | xi < yi} and thus
min{yi | yi < xi} < min{yi | yi > xi}, i.e. the condition for maxmin fairness between y

and x is not fulfilled and maxmin fairness is antisymmetric. It requires a little bit formal
effort to also see that maxmin fairness is cycle-free, the proof will be presented in a future
communication. When reducing the elements of y to another vector z (Pareto-dominated
by y) the new set A′ for the comparison of x with z will be a superset of A while the new
set C′ will be a subset of C. Thus, the inequality min(A′) 6 min(C′) will still hold and
maxmin fairness has the RPT property as well. However, maxmin fairness does not have
the LPT property.

(5) Proportional fairness was introduced with regard to an optimization problem of
traffic rate allocations, and to overcome some problems with maxmin fairness with regard
to maxmin fairness’ least element preference. Given a routing for end-to-end user traffic in
a wired network with link-capacity constraints (so-called elastic traffic), then user evaluate
allocated traffic rates by their utility function, and manipulate traffic rates by payments.

2In the case that one of these sets is empty, continue the evaluation with∞ instead of min.
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The total of utilities minus payments should be maximized. In Kelly (1997) it was shown
that generally a price model exists such that the so-called proportional fairness state x can
be achieved (and is the one maximizing the objective), where for any other feasible state y

I (x, y)=
∑

i

yi − xi

xi

6 0 (8)

holds. This is direct representation of a relation: x >pf y if and only if I (x, y)6 0. Note
that the domain of the relation needs to be Rn

+. From the fact that x >pf y implies
∏

i xi >
∏

i yi (for the implicator function I (x, y)= 0 is actually the tangent to the curve
∏

i xi =

const) follows antisymmetry and cycle-freeness, and RPT can be easily seen from the fact
that the indicator function I (x, y) is monotone with regard to the second argument (by
anti-monotony with regard to the first argument, also the LPT property follows).

An extension of proportional fairness to α-fairness was proposed in Mo and Walrand
(2000). Here, the indicator function changes to

Iα(x, y)=
∑

i

yi − xi

xα
i

(9)

for some α > 0. For α→∞ α-fairness approximates maxmin fairness. Also here, x >α y

implies a corresponding>-relation between the (1−α) power means of the corr. elements,
and directly gives antisymmetry and cycle-freeness, while RPT can be directly seen from
monotony of the indicator function with regard to the second element.

(6) Leximin relation is another fundamental ordering relation. If the subscript nota-
tion (i) indicates the i-th smallest element of an ordered set of values, then we compare
two vectors x and y by the smallest j such that x(j) 6= y(j). It is said that x leximin domi-
nates y (x >lm y) if either x = y or x(j) > y(j). The relation is transitive and thus cycle-
free, also proving antisymmetry and LPT is simple. It is also a complete multi-variate
relation.

An important property of all fairness relations is the fact that Pareto-dominance implies
fairness. This can be easy seen: if x >p y then RPT property and antisymmetry give that
from x >R x and x >p y also x >R y follows. Thus, as a general result, the maximum
set of a fairness relation is a subset of the maximum set of the Pareto-dominance relation.
Due to cycle-freeness, this maximum set is never empty (for finite sets). So, a fairness
relation can also be seen as the decision maker in multi-objective optimization, excluding
the border elements of the Pareto front, where only a few objectives are maximal, other
objectives minimal.

There are two limitations that have to be taken into account when using fairness rela-
tions for decision making and efficient state selection. (1) The components of the vector
need to be commensurable. They should not have different “semantic” meaning (like com-
ponent 1 being a delay, component 2 a traffic rate) since fairness relations usually also
compare between components of a vector. If their components represent different modal-
ities, then we either need to introduce utilities (equity, commodity), which can become a
daunting task, or we might use multi-vectors to represent all aspects. (2) Then, maximum
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sets of fairness relations can contain more than one element. If the question about a final
decision comes up, all the elements in the maximum set are indifferent with regard to the
chosen fairness criterion. Nevertheless, the choice according to global optimality (for ex-
ample the state with maximal sum of elements) can still be done, so it still can be a rather
simple task.

4. Parabolic Fairness: From Fair Routing to Fair Wireless Channel Allocation

In this section, we want to demonstrate the concept of universal rationalizability to de-
fine a fairness concept for wireless network control. The starting point will be a wired
network, where we know about an algorithm (BFC: Bottleneck Flow Control) commonly
understood to allocate traffic rates in a fair manner. Then, we use a fairness relation to
characterize the final state of the algorithm as the maximum set of that fairness relation.
So, we can use the same fairness relation in the context of wireless networks (where the
task becomes of discrete nature), without thinking about the transition of the algorithm
itself (for example, there is no need to introduce a concept of “bottlenecks”). Since there
are several relations able to represent the final state of the Bottleneck Flow Control, we
will presents a few results of Monte Carlo simulations for comparing the maximum sets
for these relations.

4.1. Bottleneck Flow Control

We assume a traffic network congestion avoidance problem. A network for carrying traffic
is given as an un-directed graph G with nodes N and links L. Also, a maximum capacity
is assigned to each link. Then, there are a number of users that want to send traffic units
through this network. Thus, also a set of n triples (5i, si , ri) of sender-receiver pairs and
paths connecting them is given, where si represents the sending node, ri the receiver node
for user ui . Paths 5i are given as a sequence of joined links starting from si and ending
at ri . We also consider the union of all links li used by all paths, each link with a multi-
plicity wi according to the number of paths using the link li . Then the Bottleneck Flow
Control algorithm, which was initially proposed in Jaffe (1981) assigns traffic amounts ti

to all users ui in the following way:

Bottleneck flow control

1. Set the remaining paths to the set of all paths. Set the traffics ti for users ui along their corr. paths
5i to 0.

2. While the remaining paths set is not empty, perform the following steps.

3. For all links li used by the remaining paths, get the number wi of paths that pass through this link.

4. Find the links with minimum value of mi = ci/wi .

5. Add mi to the traffics for all users through the links with minimal mi .

6. Remove the paths of all users of links, for which mi is minimal, from the remaining paths.

7. Set new capacities of network links ci→ ci −mi ∗wi .
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We consider a simple example for the BFC algorithm. Given a network with 7 nodes
and links between these nodes as indicated in the figure. It is assumed that the link con-
necting nodes 3 and 4 has a maximum capacity of 200 units, and the link connecting
nodes 4 and 7 has a maximum capacity of 100 units. All other links will have some higher
maximum capacity. Three users wants to send traffic through this network: user 1 sends
traffic t1 via the nodes 1, 3, 4 and 7; user 2 sends traffic t2 via the nodes 2, 4 and 7;
and user 3 sends traffic t3 via 5, 3, 4 and 6. It means that some users have to share links
for their traffic: users 1 and 3 share the link between nodes 3 and 4, and users 1 and 2
share the link between nodes 4 and 7. The BFC algorithm now will assign specific values
for the traffic amounts t1, t2 and t3, starting with amount 0, and increasing equally for
a subgroup of users. At the beginning (Level 0) the amount will increase for all users.
In some later stage, for example at Level 20, the traffic amount assignment of 20 (units)
to all users is still feasible. However, at Level 50, the link between nodes 4 and 7 has to
transport a total traffic of 100: 50 from user 1, and 50 from user 2. This gives a so-called
bottleneck. Any attempt to further increase the traffic for either user 1 or user 2 will re-
sult in exceeding the maximum capacity of this link. Thus, the BFC algorithm stops to
further increase the traffic amount for users 1 and 2, and fixes the assignment t1 = 50 and
t2 = 50.

However, user 3 is not affected by this bottleneck, since her traffic is not using the
link between nodes 4 and 7. So, the BFC algorithm continues. Later on, for example at
Level 70, the traffic assignment t3 = 70 (while keeping t1 = t2 = 50) is still feasible. This
level increase will continue until Level 150. Now, the total traffic for the link between
nodes 3 and 4 becomes 200: user 1 was fixed before at the level t1 = 50, and t3 = 150 for
user 3.

Any further increase of traffic is not possible, and the BFC algorithm stops. Thus,
the final traffic assignment is t1 = 50, t2 = 50, t3 = 150. In the implementation of this
algorithm, of course, there are no increasing level sets, as the values of bottlenecks can
be directly inferred from the network configuration and the values of maximum capaci-
ties.

Given an instance of a network routing problem with maximum capacities, the BFC
algorithm will always assign a unique traffic state to all users. It can be seen that this
state corresponds with the maximum set of maxmin fairness, as well as leximin fairness –
where in both cases, the maximum sets contain exactly one element, and this element is
also the single greatest element for these relations (of course, this only holds in the link-
capacity constrained feasible space, i.e. a space with linear inequality constraints). But
then, the question comes up if there is also a scalar function of the traffic amounts that
is directly maximized by the BFC algorithm. This was shown to be true in Koeppen et

al. (2011a). We define a special case of the ordered weighted averaging (OWA) operator.
As a reminder, the OWA of a point x of Rn, given a weight vector w ∈ Rn, is defined
as

∑

wix(i). In this expression, x(i) indicates the i-th smallest element of all coordinates
of x . We specialize the OWA by also requiring the weights to be sorted in the opposite
order:
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Definition 6. Given a point x from Rn and a set of weights w ∈ Rn, the Ordered-Ordered
Weighted Averaging (OOWA) of x by w is defined as

OOWAw(x)=

n
∑

i=1

w(i)x(n−i+1). (10)

Thus, in the OOWA, the largest value is multiplied with the smallest weight, the
second-largest value with the second-smallest weight etc. As a special case of the OOWA,
we also introduce the exponential OOWA. The additional requirement here is w(k) >
∑k−1

i=1
w(i), so that the weights itself are exponentially increasing. A possible choice is

wi = 2
(i−1) for any i ∈N .

Based on this, in Koeppen et al. (2011a) it was shown:

Theorem 1. Given a weighted graph G of a network, a routing (i.e. a set of linking paths
between nodes), then among all feasible traffic allocations to the users, the BFC algorithm
gives the state with the maximum value of the exponential OOWA (for any fixed choice of
weights).

We also recall two extensions of the result (Koeppen et al., 2011d). The requirement
of an exponential increase of the weights is a result of link sharing. The worst case, where
the condition of exponential weight increase has to be fulfilled, is where a single user
shares traffic with all other users. If there is no link sharing at all, any OOWA will be
maximized by the BFC algorithm. So we also consider a linear OOWA with weight-growth
law wi > wi−1 for any i > 1. In case that its maximum coincides with the maximum for
the exponential OOWA, we can see this as an indication that “link sharing” does not occur,
or only to a small degree with low influence on related results. This is a statement without
direct reference to the traffic rate allocation problem.

If a link never shares traffic with more than one other user, the requirement of expo-
nential increase of the weights can be relaxed to the requirement wi > wi−1 +wi−2 for
i > 2 and w2 > w1. One possible choice for such weights is wi = Fi+2 − 1, where Fi is
the i-th element of the Fibonacci series (F1 = 1, F2 = 1 and for i > 3 Fi = Fi−1+Fi−2).
From wi−1 +wi−2 = Fi+1 + Fi − 2 = Fi+2 − 2 = wi − 1 < wi it can be seen that this
choice fulfills the relaxed weight increase requirement. We will call an OOWA computed
with these weights a Fibonacci OOWA. The exposition can be extended by using more
than two weights in a straightforward manner. We consider such special versions of the
OOWA as a convenient tool for probing implicit sharing issues in any domain, where these
expressions can be computed.

For convenience, in the following we will also write expOOWA (for “exponential
OOWA”), linOOWA (for “linear OOWA”), FibOOWA (for “Fibonacci OOWA”) for these
operators with the fixed choice of weights wi = 2

i−1 for the exponential OOWA, wi = i

for the linear OOWA, and wi = Fi+2 − 1 for the Fibonacci OOWA, and introduce rela-
tions >eo, >lo and >f o by size comparison of the corresponding operator values. Since
the OWA operator in general is monotone, all three relations are also fairness relations.
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4.2. Wireless Channel Allocation

Now we want to turn our attention to a completely different domain, and demonstrate
how we can establish a concept of fairness there as well. In Wireless Channel Allocation
(WCA), a blank matrix B of channel-timeslot pairs with a total of M cells bi , a set U =

(ui) of N user and an M ×N matrix C of channel coefficients of real values from [0,1]

are given. The task is to enter at most one user into each blank cell in B , i.e. to provide
an allocation a : B→U of cells to user with |{u ∈U | a(b)= u}|6 1 for all cells b ∈B .
Each entry cij of the matrix C represents the utility for user ui in case of assignment of
cell bj , as a model abstraction of all the physical and logistic circumstances of the wireless
access. For a given allocation a, the performance for each user is given by

p(ui)=
∑

j,a(bj )=ui

cij (11)

i.e. the sum of channel coefficients for all channels allocated to the user. Channel allo-
cation has to be performed such that, in some sense, all user are “satisfied” with their
individual performances as good as possible. The actual problem is to specify the mean-
ing of “satisfied” in an efficient way. For example, considering maximization of the sum
of all performances is not a good way to satisfy all users: the optimization problem could
be easily solved by selecting for each cell one of the user with maximum channel coeffi-
cient. But this way it can happen that then some user will never get any channel allocated,
and these users are exempted from wireless access. Therefore, the economics of WCA
becomes relevant, especially aspects of fairness.

So the approach is to use expOOWA maximization for the WCA allocation. We have
seen that this is indistinguishable from maxmin fairness in fair traffic rate allocation, so
it is a “valid” concept for fairness as well, with the additional advantage of being a func-
tional that can be directly computed from performance vectors and do not need pairwise
comparisons. Parabolic fairness then is the transfer of this concept of fairness to other
domains in the sense of an analogy, as the literature style of a parable does, by imposing
expOOWA maximization as the means of efficient state allocation. Then, if we consider
the user performance vector, we can introduce a concept of maxmin fairness in the WCA
problem as well.

As a small demonstration, we will utilize four relations to random settings of the WCA
problem (i.e. all channel coefficients are uniform random samples from [0,1]) . We select
the maximum set Mmmf of the maxmin fairness relation, where the relation domain are all
possible allocations of users to cells, and compare with the allocations meo with maximal
expOOWA value. Since the number of allocations is growing exponentially, we can do
this for small problem scales only. For such problem scales, results are shown in Table 1.

It can be seen that the maximum sets of the maxmin fairness relations are comparable
with the number of cells, and that the chance that these maximal elements also include the
maximum expOOWA state are increasing with increasing problem scale (with one excep-
tion). We can extrapolate that the chances are more than 90% for realistic problem scales.
Table 1 also shows the comparison between the maximum states of expOOWA, linOOWA,
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Table 1
Comparison of maximum set selections by the different relations.

(u, c) |Mmmf |, (Quant.) meo ∈Mmmf ? mlo =meo? mfo =meo?

(2,3) 1.73 (1,2) 0.53 1.0 1.0
(2,4) 1.6 (1,2) 0.7 1.0 1.0
(2,5) 1.87 (2,2) 0.8 1.0 1.0

(3,4) 2.6 (2,3) 0.63 0.83 1.0
(3,5) 2.93 (2,3) 0.53 0.87 1.0

(4,5) 3.37 (2,4) 0.87 0.7 1.0

For space reasons, column titles are abbreviated: column 1 shows the scale of the problem, i.e. number of user
and number of cells; column 2 the average size of the maximum set of maxmin fairness, along with 25% and 75%
quantiles; column 3 the probability that the allocation with maximal expOOWA is contained in the maximum
set of maxmin fairness; columns 4 and 5 then the probabilities that maximum allocation for linOOWA and
FibOOWA resp. are equal to the maximum allocation for expOOWA. All values where computed from 30 random
samples of the channel coefficients.

and FibOOWA. This allows for a judgement of the “sharing” aspects in this distribution
problem, and implicit “bottlenecks.” We can see that pairwise sharing is present, since
linOOWA and expOOWA differ for larger problem scales, but FibOOWA and expOOWA
did not differ in any case in the sample. Remember that for the BFC algorithm final state,
the maximum linOOWA would be equal to the maximum expOOWA if there would be
no link sharing, and expOOWA and FibOOWA would be equal if there would be at most
pairwise link sharing. So we can consider a similar reasoning here, and see that in the
WCA problem domain, increased performance for one user will usually need to reduce
performance for at most one other user. In WCA, head-to-head competition prevails.

5. Conclusions and Related Work

In this paper, a relational framework for utilizing fairness in different domains was intro-
duced. Also a small number of fairness relations have been introduced, but not so much
was said with regard to two other main questions. We will shortly comment on them and
provide some references.

(1) Are there other fairness relations? The answer is definitely Yes. We may consider a
few particular aspects of the fairness relations considered here (esp. maxmin fairness and
proportional fairness) in order to see generic aspects. For example, while maxmin fairness
is relating different components of the same vector to each other, this is not the case for
proportional fairness. It might be seen as an disadvantage, and in fact, proportional fair-
ness can be achieved with arbitrary small components, as long as they are compensated by
increasing other components. To achieve a bounded trade-off for proportional fairness, or-
dered proportional fairness was introduced in Koeppen et al. (2011c). There, the indicator
expression changes to

I (x, y)=

n
∑

i=1

y(i) − x(i)

x(i)

6 0 (12)
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(remember that the subscript (i) indicates the i-th smallest component). It can be shown
that this is a fairness relation as well.

(2) How can we find the maximum sets of fairness relations? This is in fact a hard
question. Even for discrete problems like the WCA, the size of feasible spaces grows ex-
ponentially, and exhaustive searches are impossible. This is worsened by the fact that tests
for maximum sets needs pairwise comparison, as soon as the relation is not just the com-
parison of functional values (as for parabolic fairness). So, this is the order of magnitude
of the square of feasible space sizes. On the other hand, exact algorithms like Bottleneck
Flow Control are not (yet?) known. This gives a good reason to consider the use of meta-
heuristic approaches. It has happened that over the last few years, a large number of algo-
rithms have been developed to approximate Pareto fronts of multi-objective optimization
(MO) problems. The main structural design aspect here is to employ Pareto-dominance
instead of direct numerical comparisons (e.g. of fitness, cost, or quality function values).
Thus, there is already the laid foundation to impute relations into the algorithmic frame-
work at all. In Koeppen et al. (2010) several meta-heuristic MO algorithms, modified by
replacing the role of Pareto-dominance by maxmin fairness, have been compared, and es-
pecially the SPEA2 algorithm (Zitzler et al., 2002) appeared to be a good candidate algo-
rithm to handle maximum set approximations in general. However, issues of the relations
itself also play a role, and the same algorithm can show strongly differing performances
when using different relations. Moreover, in Koeppen et al. (2011b) it was shown that the
search for a good relational optimizer is not futile, as the No Free Lunch theorems do not
apply to the case of such relational optimization.

5.1. Related Work

This work is not the first to consider a formalization (“computable”) fairness, and it will
not be the last. In fact, the majority of papers evaluating fairness, for example in network
simulations, is referring to Jain’s fairness indicator (or index) (Jain et al., 1984), computed
as

J (x)=
(
∑n

i=1
xi)

2

n ·
∑n

i=1
x2

i

. (13)

This is essentially a measure how strong the components of vector x deviate from equality.
Very similar is the Gini index (Gini, 1997). The discussion whether equality is the only
acceptable fairness, as it ensures envy-freeness, for example, is still open. It might be so
in simple circumstances. As soon as users justify their benefits differently, equality would
start to become unfair. This is the main idea of equity. But the main problem with the
indicator approach might be seen in the fact that it allows to assign an absolute eternal
level of fairness to any vector. As said before, fairness is a matter of comparison, and a
state appearing fair in a context of states might appear unfair, if the set of context state
changes and new knowledge comes in. There is no way of modeling such a situation with
a numerical value alone.
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This argument seems to be in conflict with the parabolic fairness that was introduced
before – also here, a numerical value is computed. But by virtue of usage and definition,
this expOOWA cannot be considered as a fairness indicator, as its numerical size will
strongly depend on the WCA problem at hand. Thus, the only means of using the function
value is to compare it with other function values for the same set of channel coefficients.
Moreover, the choice of weights is not unique and just needs to follow a weight growth
rule.

The same as for fairness indicators can be said about fairness measures (Lan et al.,
2010). Also here, some sets of axioms have been provided, with more or less good inten-
tions. Here, we have substantially extended such concepts by basing fairness on compa-
rability of states beyond numbers. In fact, the relational framework allows even symbolic
states to be processed, where numeric computations are not possible at all.

As a final comment, much needs to be done with regard to fairness relations and re-
lational optimization. Besides practical and application aspects, also the mathematical
foundations need polishing. A main problem is the relation of fairness to topology, i.e. if
and how we can consider a system of open neighborhoods of relations, in order to handle
limits of relations and other convergence and approximation aspects in a rigid framework.
This is one of the topics of ongoing research.
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Sąryšinis optimizavimas ir jo taikymai: nuo srauto siaurame praėjime
valdymo iki belaidžio ryšio kanalų paskirstymo

Mario KÖPPEN

Sąryšių matematika, kuri yra studijuojama tokiose disciplinose kaip matematinė ekonomika ir
socialinio pasirinkimo teorija, suteikia turtingus ir bendrus principus bei atrodo natūralus ir tiesiogi-
nis būdas performuluoti optimizavimo tikslus, aprašyti vartotojų pageidavimus, pagrįsti sąžiningu-
mo kriterijus, vertinti paslaugų kokybę ar naudą. Čia mes sutelkiame dėmesį į konkrečius formaliųjų
sąryšių taikymo aspektus tinklų projektavimo ir valdymo uždaviniuose bei pateikiame bendrą są-
ryšinio optimizavimo idėją. Sąryšiniame optimizavime uždavinys aprašomas formaliuoju sąryšiu,
o sprendinys maksimalių (arba nedominuojamų) sąryšio elementų aibe. Tai atrodo natūraliu stan-
dartinio optimizavimo išplėtimu, ir taip pat apima kitas optimumo sąvokas. Kartu mes pateiksime
teisingumo sąryšių, kurie gali būti naudojami kaip maksimizuojantys sąryšiai pagal įvairius taiky-
mo poreikius, aibę ir aprašysime maksimumų aibių aproksimavimo metaeuristinį metodą, išvestą iš
evoliucinių daugiakriterio optimizavimo algoritmų.


