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Abstract. The paper is devoted to goodness of fit tests based on probability density estimates gener-

ated by kernel functions. The test statistic is considered in the form of maximum of the normalized

deviation of the estimate from its expected value or a hypothesized distribution density function.

A comparative Monte Carlo power study of the investigated criterion is provided. Simulation re-

sults show that the proposed test is a powerful competitor to the existing classical criteria testing

goodness of fit against a specific type of alternative hypothesis. An analytical way for establishing

the asymptotic distribution of the test statistic is proposed, using the theory of high excursions of

close to Gaussian random processes and fields introduced by Rudzkis (1992, 2012).
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1. Introduction

In practice it is often necessary to test whether a given sample Xn := (X1, . . . ,Xn) was

drawn from a certain density f0(x) or not, i.e., to test the hypothesis H0: f (x) = f0(x),

where f (x) is the actual distribution of Xi , i = 1, . . . , n. How well the data is modeled

by that distribution is known as goodness of fit and can be measured by several differ-

ent types of test statistics. Classical approaches to solve this goodness of fit problem use

the empirical process theory. Most of the popular tests such as the Kolmogorov–Smirnov,

Cramer–von Mises, and Anderson–Darling statistics are based on the empirical distribu-

tion function Fn(x). In this paper, we consider another type of tests based on the kernel

density estimator. The idea of using nonparametric kernel density estimators for good-

ness of fit tests goes back to Bickel and Rosenblatt (1973, 1976). Further the studies

were extended by Kim et al. (1997), Ahmad and Cerrito (1993), Cao and Lugosi (2005),

Bowman (1992), Fan (1994, 1998), Louani (2005), Nadaraya (2009) and others. Most of

these papers base their tests on the Lp , p = 1,2 distance between the density estimate

f̂ (x) = f̂ (x,Xn) of the underlying density f0(x) and its expected value under the null

hypothesis. Thereby much less attention in practice were devoted to a consideration of the

deviations in the uniform metric as the loss function for f̂ (x), which is an object of this
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work. The choice of uniform metric could be justified by investigation of specific type of

alternative hypothesis

H1: f (x) = (1 − ǫ)f0(x) + ǫg(x),

where ǫ is small and the distribution g(x) is concentrated on a small interval. Such alter-

natives are of a particular interest in some social and economic studies, e.g., determination

of small high income clusters of people, in population income distribution.

In this paper, we consider the test statistic in the form of maximum of the normalized

deviation of the estimate f̂ (x) from its expected value E0f̂ (x). Efficient use of kernel

estimators requires the choice of an appropriate kernel and a bandwidth parameter. It is

well-known that selection of the smoothing parameter rather than the form of the kernel

is critical, as under- or over-smoothing can substantially reduce precision. In this work,

a certain method to avoid the problem of selection of a bandwidth parameter is proposed.

In practice the critical region of the test is established by means of Monte Carlo sim-

ulations. The problem of analytical approximation of the distribution of the test statistic

under the null hypothesis is discussed, using the theory of high excursions of Gaussian

(and, in some sense, close to Gaussian) random processes and fields developed by Rudzkis

(1992, 2012). Besides some of the already mentioned researchers, the asymptotic distri-

butions of deviations of kernel density estimators in uniform metric were also considered

by Piterbarg and Konakov (1982, 1983), Muminov (2011, 2012).

At the end of the paper a comparative Monte Carlo power study of the pro-

posed criteria is presented. Analyzed test is compared with classical criteria: Bickel–

Rosenblatt, Kolmogorov–Smirnov, Cramer–von-Mises, Anderson–Darling, Shapiro–

Wilk and D’Agostino (for the normality case) using the stated type of alternative hy-

pothesis. The results of simulations show that the proposed test is a powerful competitor

to the existing classical ones.

2. Statement of the Problem

Let X1, . . . ,Xn be a sample of independent observations of a random variable X with an

unknown probability density function f (x), x ∈ R. Using the given sample, it is required

to test a simple hypothesis of goodness of fit

H0: f (x) = f0(x)

against the complex alternative

H1: f (x) = (1 − ǫ)f0(x) + ǫg(x),

where f0(x) is a given probability density function, ǫ is small enough and g(x) is an arbi-

trary distribution concentrated on a small interval, e.g., σ 2
g ≪ σ 2

f0
, where σ 2

f is a variance

of distribution f .
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We consider a test statistic based on the well-known Parzen–Rosenblatt kernel density

estimator of f , defined for any x ∈R by

f̂h(x) =
1

nh

n∑

i=1

K

(
x − Xi

h

)
, (1)

where K(·) is a probability kernel and h = h(n) is a bandwidth parameter. The form of the

alternative hypothesis motivates us to consider the deviation with respect to the uniform

distance as a loss function for f̂h.

Thus, it is natural to consider the following functional as a test statistic for H0

ζh = max
x∈I

∣∣ξh(x)
∣∣, (2)

where

ξh(x) =
f̂h(x) −E0f̂h(x)√

D0f̂h(x)

, (3)

and I is a fixed interval. Here E0 and D0 denote a mathematical expectation and variance

defined in the case of null hypothesis. The normalized deviation of f̂h from its expected

value is considered to avoid the bias in estimation. The case of deviation of f̂h from a

hypothesized distribution density function is straightforward.

There is a wide range of kernels K commonly used in practice, e.g., uniform, trian-

gular, Epanechnikov, Gaussian, and others. It is well-known that the loss of efficiency is

small for the kernels listed above, therefore further in our empirical study we restrict to

the usage only of the Epanechnikov kernel

K(x) =
3

4

(
1 − x2

)
I|x|<1,

as a kernel optimal in the minimum variance sense.

In comparison with the kernel selection problem, the problem of selecting an opti-

mal bandwidth h, which controls the degree of smoothing applied to the data, is crucial.

Bandwidth selection procedures have been widely studied over the past decades and sev-

eral optimal, in different senses, procedures have been proposed, see for example Loader

(1999), Jones (1991) and references therein. However in practice the usage of fixed band-

width h for kernel density estimation, even selected optimally, in a certain sense, still does

not solve the problem. On one hand the form of an alternative hypothesis, including the

condition σ 2
g ≪ σ 2

f0
, induces us to use a smaller smoothing parameter h to detect a distri-

bution cluster g. On the other hand, this could bring to overestimation of the hypothesized

distribution f0 and a lower power of the test. This fact suggests us to consider the test

statistic ζh with different choices of a smoothing parameter h and thereby make the de-

cision of rejecting the null hypothesis, based on the maximum of ζh values with respect
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to h. This leads us to the following form of the test statistic

M = max
h∈J

[
maxx∈I |ξh(x)| − µ(h)

γ (h)

]
, (4)

where

µ(h) = E0 max
x∈I

∣∣ξh(x)
∣∣, γ 2(h) =D0 max

x∈I

∣∣ξh(x)
∣∣, (5)

and maximum with respect to h is calculated in a certain interval J defined by a researcher.

We should reject the null hypothesis in the case of large values of our test statistics,

that is if M > cα , where cα can be found from the equation

P0(M > cα) = α, (6)

where P0 is a probability distribution corresponding to the null hypothesis and α is a pre-

specified size of the test.

In practice, the functions µ(h) and γ (h) instead of formula (5) could be defined using

the approximations obtained in Rudzkis (1992) applied to the random function f̂h(·).

3. Analytical Approximation of the Null Distribution of the Test Statistic

This section is devoted to the analytical approximation of the null distribution of statistics

(2) and (4) to determine the critical region of the tests. First we will be concerned with

the asymptotics of the probability

Ph(u) = P0

{
max
x∈I

∣∣ξh(x)
∣∣ < u

}
, (7)

as n → ∞. Note that f̂h is a consistent estimator, its finite dimensional distributions are

asymptotically normal, and

cor
(
f̂h(x1), f̂h(x2)

)
→ 0,

if x1 6= x2 and n → ∞. The fact that f̂h is close to the Gaussian random process in

a certain sense suggests us to apply the results from the theory of high excursions of

Gaussian processes introduced in Rudzkis (1992) to approximate the probability Ph(u).

Rudzkis has shown that, under some smoothness and regularity conditions, the probability

P{−µ1(x) < ξ(x) < µ2(x), x ∈ [a, b]}, where ξ(x) is a differentiable in the mean square

sense Gaussian random process with zero mean, unit variance and continuous trajectories,

and µi(x), i = 1,2 are smooth enough functions, could be approximated by

P
{

− µ1(x) < ξ(x) < µ2(x), x ∈ [a, b]
}
∼= G(µ1,µ2), (8)
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where

G(µ1,µ2) =
[
8

(
µ1(a)

)
+ 8

(
µ2(a)

)
− 1

]
exp

{
−

2∑

i=1

b∫

a

q(µi(t)) dt

}
, (9)

here

q
(
µi(t)

)
= φ

(
µi(t)

)[
β(t)φ

(
µ′

i(t)

β(t)

)
− µ′

i(t)8

(
−

µ′
i(t)

β(t)

)]
, (10)

where 8(·) is a probability distribution function of the standard normal distribution,

φ(x) = 8′(x) and β2(x) =Dξ ′(x).

Consider the empirical random process ξh(x). Using approximation (8) we have

Ph(u) ∼=
[
28(u) − 1

]
exp

{
− exp

(
− u2/2

)
/π

∫

I

β(z) dz

}
=: P̂h(u). (11)

From the definition of f̂h(x) by means of easy calculations we obtain the following exact

expression for β(x)

β2(x) =
D0f̂

′
h(x)

σ 2(x)
−

[(σ 2(x))′]2

4σ 4(x)
, (12)

where

σ 2(x) =Df̂h(x),

σ 2(x) =
1

nh

∞∫

−∞

K2(z)f0(x + hz) dz −
1

n

[ ∞∫

−∞

K(z)f0(x + hz) dz

]2

,

D0f̂
′
h(x) =

1

nh3

∞∫

−∞

[
K ′(z)

]2
f0(x + hz) dz −

1

nh2

[ ∞∫

−∞

K ′(z)f0(x + hz) dz

]2

,

(σ 2(x))′ =
2

nh
m(x)

∞∫

−∞

K ′(z)f0(x + hz) dz −
2

nh2

∞∫

−∞

K(z)K ′(z)f0(x + hz) dz,

m(x) =

∞∫

−∞

K(z)f0(x + hz) dz.

Further we provide some graphical examples of the accuracy of proposed approximations,

considering the case where f ∈ N(0,1) and different values of the bandwidth h.

A comparison of the empirical distribution function of statistic ζh (2) and the distribu-

tion function (11) is shown in Figs. 1, 2. The empirical distribution of ζh was simulated
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Fig. 1. Empirical and asymptotic distribution of the statistic M, n = 200, h = 0.8.

Fig. 2. Empirical and asymptotic distribution of the statistic M, n = 500, h = 0.6.

by generation of 400 samples of sizes 200, 500 from the standard normal distribution.

The simulation results show that proposed asymptotic distributions (11) provide a really

good approximation to the null distribution of the statistic ζh even for small and moder-

ate sample sizes. However practical experiments showed that the choice of the smoothing

parameter could play a crucial role on the goodness of approximation especially for small

sample sizes.

Coming back to the approximation of the null distribution of statistic (4), we will be

interested in the asymptotics of the probability
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P(u) = P0

{
max
h∈J

[
maxx∈I |ξh(x)| − µ(h)

γ (h)

]
< u

}
, (13)

as n → ∞.

First it follows from the stated results (11) that the functions µ(h) and γ (h) could be

approximated using the formulas

µ(h) =

∫
udP̂h(u), γ 2(h) =

∫
u2dP̂h(u) − µ2(h).

After that the following obvious inequality could be used to determine the critical region

of test (4)

P(u) 6 max
h∈J

Ph(u). (14)

Produced Monte Carlo simulations show that suggested estimate provide sufficiently

good approximation for the null distribution of M test for small sizes of the test.

Another approach to obtain the required approximation for P(u) is connected with

application of the theory of high excursions of Gaussian fields. Further consider an em-

pirical field ξh(x) with respect to x ∈ I and h ∈ J . The required approximation for

P(u) could be obtained by applying the results of Rudzkis and Bakshaev (2012). It has

been shown that if a differentiable (in the mean square sense) Gaussian random field

{η(t), t ∈ T } with Eη(t) ≡ 0,Dη(t) ≡ 1 and continuous trajectories defined on the m-

dimensional interval T ⊂R
m satisfies certain smoothness and regularity conditions, then

P{−v(t) < η(t) < u(t), t ∈ T } ∼= e−Q, as ∀t ∈ T u(t), v(t) > χ, χ → ∞, where v(·)

and u(·) are smooth enough functions and Q is a certain constructive functional depending

on u, v, T and the matrix function R(t) = cov(η′(t), η′(t)).

Stated result leads to the following approximation of probability P(u)

P (u) = P0

{∣∣ξh(x)
∣∣ < uγ (h) + µ(h), (x,h) ∈ I × J

}
∼= e−2Q(u). (15)

To define the functional Q, first introduce some additional notation. Let R = R(x,h) =

cov(ξ ′
h(x), ξ ′

h(x)) be the covariance matrix of the random field ξ ′
h(x) with elements Ri,j =

Ri,j (x,h), i, j = 1,2. Assume that I = [a1, b1] and J = [a2, b2]. Then

Q(u) =

∫

I×J

dx dh

∞∫

v(x,h)

φ(z)φ(v′|R)det(zR) dz

+

∫

I

dx

0∫

−∞

dy

∞∫

v(x,a2)

φ(z)φ
(
0, v′

h + y|R(x, a2)
)
zR1,1(x, a2) dz
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+

∫

I

dx

∞∫

0

dy

∞∫

v(x,b2)

φ(z)φ
(
0, v′

h + y|R(x, b2)
)
zR1,1(x, b2) dz

+

∫

J

dh

0∫

−∞

dy

∞∫

v(a1,h)

φ(z)φ
(
y, v′

h|R(a1, h)
)
zR2,2(a1, h) dz

+

∫

J

dh

∞∫

0

dy

∞∫

v(b1,h)

φ(z)φ
(
y, v′

h

∣∣R(b1, h)
)
zR2,2(b1, h) dz,

where v(x,h) = uγ (h) + µ(h), v′ = v′(x,h) = (v′
x , v′

h) = (
∂v(x,h)

∂x
,

∂v(x,h)
∂h

). Here by

φ(·, ·|R) we denote the probability density functions of the bivariate normal distribution

N(0,R) with covariance function R.

As a result for large sample sizes the critical value of the test cα (6) could be approxi-

mately found from the equation

e−2Q(cα) = 1 − α.

The investigation of the precision level of proposed approximations for different sam-

ple sizes will be provided in our further research.

4. Simulation Study

4.1. Empirical Power Comparison

Let us switch to a comparative Monte Carlo power study. Let F0 be a distribution function

of a random variable X, and f0 a corresponding density function. By means of the well-

known data transformation algorithm Y = 8−1(F0(X)), the initial problem is reduced to

the case f0 = φ, where 8(x) and φ(x) are distribution and density functions of the stan-

dard normal distribution respectively. Therefore, in our empirical representative analysis,

we consider a simple hypothesis of normality, i.e., H0: f (x) = φ(x) against an alternative

H1: f (x) = (1 − ǫ)φ(x) + ǫg(x), where g ∈ N(m,σ 2), σ ≪ 1 and ǫ is small. It is worth

noting, that suggested transformation may change the structure of alternative densities,

however in this study it is not considered.

The proposed test M (in graphs and tables denoted as RB) is compared with the clas-

sical criteria: Anderson–Darling (AD), Cramer–von Mises (CM), Kolmogorov–Smirnov

(KS), Shapiro–Wilk (SW), D’Agostino (DAG) and Bickel–Rosenblatt (BR). The smooth-

ing parameter in the Bickel–Rosenblatt test is optimally chosen in the minimum mean

integrated square error sense.

4.2. Simulation Design

In all the cases we investigate the behavior of above mentioned tests for sample sizes

n = 200, 500, 1000 and the significance level α = 0.05. The maxima with respect to x
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and h in test statistic (4)

M = max
h∈J

[
maxx∈I |ξh(x)| − µ(h)

γ (h)

]
,

where µ(h) = E0 maxx ξh(x), γ 2(h) =D0 maxx ξh(x) are calculated using the following

intervals I = [−3.5, 3.5] and J = [0.1, 1]. Considered interval J for the selection of the

smoothing parameter in the kernel density estimator includes a wide range of choices of

the bandwidth h, obtained from application of the most common optimality criteria, i.e.,

the expected L2 and uniform loss functions.

The critical region of the test was established using the finite sample null distribution

of M , obtained by the Monte Carlo method using the following procedure:

1. Generate repeatedly i.i.d. random samples X1, . . . ,Xn from the distribution f0. In

our study, 400 samples of hypothesized distribution f0 were simulated.

2. For each sample evaluate the statistic M using expression (4).

3. Calculate the empirical distribution function Fn(x) on the basis of computed M val-

ues

4. For a chosen significance level α > 0, find cα from the equation

cα = inf
{
c: Fn(c) > 1 − α

}
.

In the study the functions µ(h) and γ (h) were replaced by their empirical analogs,

calculated from the generated samples of the null distribution. The power of the tests was

estimated from a simulation of 400 samples of alternative distributions (1 − ǫ)φ(x) +

ǫg(x), where g ∈ N(m,σ 2), ǫ ∈ [0.005,0.1]. The following characteristics of the mixing

distribution g were considered:

• m ∼ Unif(0,3),

• σ1 ∼ Unif(0,0.5), σ2 ∼ Unif(0,0.25), σ3 ∼ Unif(0,0.15).

Proposed alternatives under stated form gave us a wide range of departures from the

null hypothesis and allowed us to test the sensitivity of criteria to each of them.

4.3. Simulation Results

Empirical results summarized in Tables 1–3 illustrate that the proposed criterion is a pow-

erful competitor to classical tests in the goodness of fit problem against the considered type

of alternative hypothesis.

For small sample size n = 200 the proposed test performance is very similar to the

Bickel–Rosenblatt criterion being more powerful in comparison with all the other tests,

including the normality specific criteria such as Shapiro–Wilk and D’Agostino. In general,

the Bickel–Rosenblatt criterion, as a test also based on the kernel density estimator, is

considered to be the main competitor in our study.

The graphical representations of the power functions of RB, Bickel–Rosenblatt and

Shapiro–Wilk tests for different sample sizes are presented in Figs. 3–5. Detecting a small
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Table 1

Empirical power of tests, σ ∼ Unif(0,0.5).

N ǫ AD CM KS SW DAG BR RB

200 0.01 5.0 5.0 5.0 5.0 8.8 7.8 8.0

200 0.03 9.5 6.0 7.5 15.0 13.0 30.0 28.8

200 0.05 22.3 14.8 13.5 19.5 13.8 34.5 35.3

200 0.1 60.3 52.3 57.0 48.5 27.0 55.5 63.3

500 0.01 7.0 6.5 5.3 6.3 5.3 14.8 15.3

500 0.03 24.8 11.5 9.3 26.5 17.0 43.3 42.5

500 0.05 57.0 41.5 37.8 43.0 27.0 55.8 59.8

500 0.1 80.3 79.3 82.0 74.3 53.0 81.0 86.5

1000 0.01 5.0 5.0 5.0 12.3 6.8 16.3 24.0

1000 0.03 36.3 20.5 23.3 39.0 22.5 49.0 51.5

1000 0.05 67.3 57.0 68.3 59.3 37.5 67.8 72.8

1000 0.1 92.3 92.8 95.0 86.5 66.0 93.0 94.8

Table 2

Empirical power of tests, σ ∼ Unif(0,0.25).

N ǫ AD CM KS SW DAG BR RB

200 0.01 6.3 5.0 5.0 5.0 5.8 7.8 7.5

200 0.03 11.3 6.8 6.5 16.8 15.0 30.5 26.3

200 0.05 28.8 14.0 13.5 26.8 16.3 41.5 43.3

200 0.1 67.8 55.3 63.5 59.8 34.0 63.8 71.3

500 0.01 5.0 5.0 5.0 7.5 5.5 12.8 19.0

500 0.03 25.5 16.5 12.8 28.8 11.0 38.0 50.3

500 0.05 54.3 39.3 37.5 49.0 23.0 56.3 67.3

500 0.1 88.5 88.5 92.3 90.5 56.5 87.3 95.8

1000 0.01 5.0 5.0 7.5 16.0 11.0 21.0 25.3

1000 0.03 42.0 21.8 25.5 45.8 30.3 53.8 62.5

1000 0.05 67.3 57.3 71.8 67.8 38.8 73.0 87.0

1000 0.1 97.0 97.0 98.3 98.3 78.3 98.3 99.3

Table 3

Empirical power of tests, σ ∼ Unif(0,0.15).

N ǫ AD CM KS SW DAG BR RB

200 0.01 5.0 5.0 5.0 6.0 7.3 7.5 9.8

200 0.03 7.5 6.0 7.8 16.8 9.8 25.3 30.8

200 0.05 22.0 14.0 13.8 29.0 16.0 40.0 48.0

200 0.1 60.3 50.5 60.8 58.3 32.8 61.0 78.0

500 0.01 8.5 8.0 7.3 7.0 7.8 20.3 19.3

500 0.03 28.0 15.8 14.8 29.0 16.8 43.3 49.0

500 0.05 56.3 37.8 38.5 55.0 27.3 62.3 74.3

500 0.1 90.5 91.5 95.0 92.5 60.5 92.3 99.8

1000 0.01 10.3 8.8 9.8 16.0 10.5 26.5 30.3

1000 0.03 49.5 32.0 27.3 49.3 27.3 59.3 65.3

1000 0.05 74.5 68.8 76.0 75.3 41.0 78.0 93.0

1000 0.1 99.8 99.0 99.0 99.0 76.8 99.8 100.0
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Fig. 3. Empirical power comparison of RB, BR and SW tests, n = 200, ǫ ∈ [0.005, 0.1].

Fig. 4. Empirical power comparison of RB, BR and SW tests, n = 500, ǫ ∈ [0.005, 0.1].

Fig. 5. Empirical power comparison of RB, BR and SW tests, n = 1000, ǫ ∈ [0.005, 0.1].
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tight distribution cluster, using kernel estimators in uniform metrics, implies strong and

expectable tendencies in increasing of the comparative power of the RB test, while either

sample size is growing and/or mixing distribution g becomes more concentrated for all

mixing probabilities ǫ ∈ [0.005, 0.1]. As a result for large sample size n = 1000 RB test

was the most powerful in our comparative analysis for all considered variants of alternative

hypothesis.
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Suderinamumo hipotezių tikrinimas, naudojant branduolinius
pasiskirstymo tankio įverčius

Rimantas RUDZKIS, Aleksej BAKSHAEV

Straipsnis yra skirtas suderinamumo hipotezių tikrinimui, naudojant branduolinius pasiskirs-

tymo tankio įverčius. Pasiūlyto kriterijaus galingumas, palyginus su klasikiniais testais, yra ištir-

tas, naudojant Monte Karlo metodą. Modeliavimo rezultatai rodo, kad siūlomas statistinis kriterijus

yra galingas esamų kriterijų konkurentas, tikrinant nulinę hipotezę prieį specifinės formos alter-

natyvą. Remiantis R. Rudzkio (1992, 2012) pasiūlytų Gauso atsitiktinių procesų (ir procesų tam tikra

prasme artimų Gauso) maksimumo skirstinių analizės metodika, darbe pateiktas siūlomų statistikų

asimptotinių skirstinių aproksimacinio skaičiavimo metodas.


