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Abstract. We consider a class of identification algorithms for distributed 
parameter systems. Utilizing stochastic optimization techniques, sequences of es­
timat.ors are constructed by minimizing appropriate functionals. The main effort 
is to devel<?p weak and strong invariance principles for the underlying algorithms. 
By means of weak convergence methods, a functional central limit theorem is 
established. Using the Skorohod imbedding, a strong invariance principle is 
obtained. These invariance principles provide very precise rates of convergence 
results for parameter estimates, yielding important information for experimental 
design. / 
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1. Introd l1ction. In a wide range of applications, various 
problems have been formulated by using partial differential equa­
tions with appropriate boundary and initial conditions. Quite fre­
quently, the underlying systems involve some unknown parameters, 
typically in the form of coefficients in the equation. As a conse­
quence, distributed parameter identification, in which parameters 
are estimated from observed data, has witnessed rapid progress in 
recent years. To illustrate, we consider the following examples. 
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EXAMPLE 1. The following differential equation models fluid 
tl"ansport in cat brain tissue: 

Here u represents' fluid concentration, and the parameters V and 1) 

are c')nvectio,n and diffusion coefficients; respectively. Banks and 
Kareiva (1983) (sce also Banks and Fitzpatrick, 1989) used least 
squares techniques to fit this model to observed data, and went on 
to apply ANOVA-type' hypothesis tests for V = 0, in order to verify 
conjectures concerning the role of convection in grey and white 
matter. 

EXAMPLE 2. The determination of damping terms in flexible 
st.ructures is crucial to modeling and control objectives. Banks 
et. al. (1987) applied an Euler-Bernoulli model with viscous and 
Kelvin-Voigt damping terms: 

where El is the stiffness, f is the forcing function, and cDl and 'Y 

are the Kelvin-Voigt and viscous damping coefficients, respectively. 
The functionu represents di&placement of the beam. Accelerome­
ter data (Utt) is used to determine the parameters. In Banks and 
Fitzpatrick (1989) statistical tests based on asymptotic normality 
results were applied to examine the importance of the viscous and 
Kelvin-Voigt damping models. 

EXAMPLE 3. This model describes the predator-prey interac­
tions in size structured populations: 

In most experimental situations, one has observations of the nu~­
ber and sizes of individuals at various times (that is, one observes 
the solution of the differential equation) rather than values for the 
parameters V, 1) and >.. Using the model to predict population size 
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for resource management requires fitting data to determine the pa­
rameters. 

To recover or identify the parameters in any of these examples, 
one needs to use observations. More often than not, such obser­
vations are corrupted with noise. In Fitzpatrick (1988) and Banks 
and Fitzpatrick (1990), a general nonlinear least squares type of al­
gorithm was proposed for the distributed parameter identification 
problems. II;l Banks and Fitzpatrick (1989), Fitzpatrick (1988), 
Banks .and Fitzpatrick (1990), the effects of noisy observations on 
the class of stochastic optimization and parameter estimation pro­
cedures w~reanalyzed. In particular, consistency and asymptotic 
normality were established, with a primary objective of developing 
appropriate statistics for hypothesis tests. 

This work complements the papers of Fitzpatrick (1988), 
Banks and Fitzpatrick (1990) by developing weak and strong func­
tional invariance principles of the least squares algorithms for dis­
tributed parameter identification. Our main concerns are to inves­
tigate further the asymptotic properties and to develop rate of con­
vergence result~. The importance of these results for applications is 
obvious: the a;nount of data required to achieve s~me specified es­
timation accu~acy would be very helpful information for designing 
experiments. i 

Functional central limit theorems and functional laws of iter­
ated logarithms 'have played important roles in statistical estima­
tion theory involving large samples. In (Heyde, 1981), Heyde gives 
an extensive survey on the usefulness and recent pmgress in these 
invariance theorems, which both use and extend the interplay be­
tween statistical estimation and stochastic processes. 

The results to be presented in the sequel deal with the conver­
gence of functions constructed out of the sequence of least squares 
estimators (suitably scaled), and provide portmanteau forms from 
which other limit theorems may be obtained. A wide range oflimit 
distribution results involving functionals of the sequence of estima­
tors can be inferred by employing the weak invariance principle. 
and the "with probability one" convergence rate of the algorithm 
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can be derived by virtue of the strong invariance theorem. These 
results provide us with further insight on the behavior of the nonlin­
ear least squares type of stochastic optimization and identification 
algorithms. 

The rest of. the paper is organized as follows. In the next 
section, we set up the notations, and summarize some previous 
results. Section 3 is devoted to the weak convergence issue. Un­
der suitable conditions, we show an appropriately scaled sequence 
converges weakly to a Brownian motion. Exploiting this function 
space setting further, we derive an almost sure estimate on the er­
ror bound in Section 4. As a consequence, the functional law of 
iterated logarithm holds. 

To proceed, a brief explanation about the notations is in order. 
We shall use" I" to denote the transpose of a matrix and use J{ to 
denote a generic positive constant; its value may change from time 
to time. The short hand notion "w.p.P is meant to be "with 
probability one". 

2. The general least squares problem. We begin this sec­
tion by setting up the least squares identifica.tion problem. Let X 
be a compa.ct subset of Rm , 9 : X -+ R be an unknown continuous 
function. Wc make a sequence of observations {li} with 

(2.1) 

where {;cd (with Xl< E X, 1 ~ k ~ n) is a collection of settings at 
which the measurements are made. Also, we have a parameterized 
function f(x.q) (called the model function) to which we wish to fit 
our observations. As in the examples ~bove, this parameterized 
function often arises from a parameter depeIJ,dent differential equa­
tion of a system under consideration. In what follows, we assume 
q E Qad, where Qad C Q c Rr : The set Qad is referred to as the ad­
missible parameter set: it incorporates various constraints on the 
parameters, such as maintaining positive diffusion coefficients.. in 
Examples 1 and 3. 

To carry out the identification task, we set this as a stochastic 
optimiz.ation problem and use the following mea.n square objective 
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function 
1 n 

J,,(q) = ;; L(Yk - f(Xk, q»2. 
k=1 

(2.2) 

This objective function is of the long run average type. The iden­
tification task can be stated as follows: find a sequence of esti­
mates {qn} that converges to q* (the true parameter) and yields 
the "best" approximation of g() via the function f(·). What we 
mean by "best" will become clear below. 

Define another functional J~(. ) as 
. n 

J~(q) = (1'2 + ~ L(9(Xk) - f(xi:> q»2. 
k=1 

(2.3) 

In many situations, especially those in parameter identification 
problems for distributed systems, f(·) is not a function we can 
compute explicitly. Thus, approximating f(-) is necessary. We 
shall denote an approximating sequence of 1(-) by {IN(.)} in the 
sequel. Corresponding to this sequence, we define J:! (q) and J~,N (q) 
by replacing f(·) in (2.2) and (2.3) by fNe), respectively. Along 
the same line, ,{q;;} and {q~,N} are the corresponding minimizers 
for IN and JOf', respectively. . 

Unless otllerwise indicated, we shall make use of the following 
assumptions throughout this paper. 

(Al) The sequence {cd is composed of independent and iden· 
tically distributed random variables with ECk = 0, Eci = (1'2 < 00. 

(A.2) The functions I, fN: Q -> C(X), are continuous, where 
C(X) denotes the space of continuous functions defined on X and 
Qc W. The set Qad is a compact subset of Q. For each x, f(x,·), 

pV (x,.) are twice continuously differentiable. The function g: X-+ 
R is continuous. Moreover, IN -;. I, iP IN /8q2 -+ 02f/oq2 as N -+ 00 

and the convergence is uniform on any compad subset of Q. 
(A3) The sequence {Xk} is taken in X in such a way that there 

exists a finite measure Jl on X, such that for each bounded and 
continuous function h, 
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(A4) The functional 

(2.4) 

has a unique minimizer q* E Int qad C lnt Q, where Int G denotes the 
interior of th~ set G. J~(q) defin~d in (2.3) has a unique minimizer 

q~ E Qad. In addition, 

T = (Pr (q*)/o(l and V = 0-2 f o/(x,q*) 8f'(x, q*) dp(x) (2.5) 
Jx 8q oq 

are positive definite. 

REMARK: The above conditions are essentially those employed 
in Banks and Fitzpatrick (1989), Fitzpatrick (1988), Banks and 
Fitzpatrick (1990). (AI) requires {C:k} to be an LLd. (independent 
and identically distributed) sequence with mean zero and finite 
variance. In the literature, this is often referred to as 'white' noise. 
(A2) can be viewed 'as a regularity condition on /, g, {IN} and (A3) 
is an ergodic type of assumption. The assumption (A4) gives the 
meaning of the phrases "true parameter" and "best fit of 9 via f." 
The requirement of q* E Int Qad is essential. As pointed out in Fitz­
patrick (1988), without this assumption, the desire4 asymptotic 
properties cannot be obtained. In fact, several counterexamples 
were given in Fitzpatrick (1988). 

We are now in a position to state some limit theorems obtained 
previously in Banks and Fitzpatrick (1989), Fitzpatrick (1988), 
Banks and Fitzpatrick (1990). These results will be used in the 
subsequent development. 

Theorem 2.1. Under the above conditions, 
(1) for each q E Q, P(limn In(q) = r(q» = 1 and the conver­

gence is uniform on each compact sUQset of Q. 
(2) P(limn qn = q*) = 1. . 
(3) P(limn,N J: = r) = 1 and the convergence is uniform on 

. any compact subset ofQ. 
(4) P(limn,N <In' = q*) = 1. 
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Theorem 2.2. Under the above conditions, 
(1) ';»8J: (q~.N)/8q ~ N(O, V) in distribution. 
(2) ..;n(~ - q~,N):::!N(O,4T-lv'T-l) in distribution. In the 

above N(O, S) denotes a normal distribution with mean 0 
and covariance S . 

. . 
REMARK: In. proving each of the statement in the above theo­

rems, only a subset of the assumptions is needed. For the ease of 
presentation, we stated the results in an integrated fashion here, 
.however. 

Theorem 2.1 is a convergence or consistency result. It indicates 
that under suitable conditions, the algorithm for the minimization 
task is a strongly consistent one. Theorem 2.2 derives the asymp­

. t6tk 'normality and provides a ground for further work such as 
testing hypothesis and 'parameter space reduction' (cf. Fitzpatrick 
(1988) for more details). 

In what follows, we will devote our attention to the investiga­
tion of the asymptotic 'properties of the estimators obtained by this 
least squares procedure. 

.... . ~-
a. A \Ve;tk invariance principle. In Fitzpatrick (1988), 

IJanks .. and. Fitzpatrick, (1990) asymptotic normali'ty was obtained. 
In vi~w of T~eorem 2.2, .wehave 

The notation Zn = Op(l.) is meant to be 'bounded in probability', 
i,.e., tor every 'f} > 0, there is a Kl(q) and a K2(q) such that 

Thus, it gives u.s an error bound in probability. 
This section·is an extension of Theorem 2:2. We shall obtain a 

functional invariance principle (or functional central limit theorem) 
'. for t~e estimators from the identification algorithm discussed in 
Section 1. The main technical framework is the method of weak 
convergence. 
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• In order to study the least squares algorithm with the approxi­
mating sequence of model functions {IN}, the objective function J~ 
is needed. In the sequel, we shall let N = Nn , i.e., N is a function of 
nand Nn ~oo. However, for notational·simplicity, throughout the 
paper, we will still write N instead. By virtue of the convergence 
of IN to I, (~.3) and Theorem 2.1, it is easily seen that J~,N ~ J" 
.and that the convergence is uniform on any compact subset of Q. 
In addition, q~,N ~ q* as n __ 00. . 

For each T <. 00, define 

1\1 (t)· __ 1_ ~ 81(:l:k, q[~~) 
n - In ~ 8 ek, t E [0,1']. 

V" k=1 q 
(3.1) 

It is readily seen that Mn (·) E U[O, 00), where Dr[O, 00) denotes the 
space of Rr -valued functions that are right continuous and have left­
hand limits, endowed with the Skorohod topology (cf. Ethier and 
Kurtz (1986) and the references therein for definitions and further 
details). vVith the above definition, the first thing we want to show 
IS: 

Lemma 3.1. Under the conditions (Al) - (.~.4),. the following 
holds. 

(3.2) 

where 

_ 1 [ntJ 81(xTc, q*) 
Mn(t) = In L 8 el:, t E [0,1'] 

v,. 1:=1 q 
(3.3) 

and 0(1) ~O in probability uniformly in t E (0,1']. 

Proof. To establish this assertion, we examine the difference 
.L1-fn(t) - iVn(t). In view of the definitions of MnC') and Mn(·), and 

. the orthogonality of {el:}, the compactness of X and the convergence 
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of q[~~ to q- imply that for all t E [0,1], 

EIM,,(t) - Mn(t)12 

=E(~ E (8!(Xj,q[~~) _ O!(Xj,q-»)' 
n . L-l oq aq 

J,"-

Thus, (3.2) holps. The lemma is proved. 
A very sirrilar argument gives us 

j 
I 

n 
(3.4) 

The lemma ahoye indicates that in order to study the asymptotic 
behavior of M,,(·), it is enough to consider ';\1,.(.). In this sense, they 
are" asymptotically equivalent". 

Let F,. denote the IT-algebra generated by {et, k ~ n}. To pro­
ceed, define 

(3.5) 

and 
Llif,.(t) = Mn(t) - Mn(C) = Mn(t) - Hm Mn(s). (3.6) 

$-:-
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.The second line in (3.5) follows from the Li.d. assumption on {€/J. 
In view of the assumptions (A3) and (A4), An(t)..!:.. A(t) = tV, 

where V is given by (2.5). Observe that An(t)-An(s) is nonnegative 
definite for t > s ~ o. 

Lemma 3.2. Under the hypotheses of Lemma 3.1, 

limE( sup ID.Mn(tW) = o. 
n O~t";T· 

(3.7) 

Proof. Due to the fact that {€k} is a sequence of i.i.d. ran­
dom variables with 0 mean, Mn(t) is a martingale and it is square 
integrable. By using a familiar martingale inequality, we have 

(3.8) 

Thus, to verify the lemma, we need only show that the right-hand 
side of (3.8) tends to 0 as n -+ 00. By virtue of the L2 boundedness 
of {€k} together with (A3), direct computation yields that 

EID.Mn(T)12 

=!:. I: 81'(xl:,q*) 8f(xl:,q*) Ed 
n k=[nT-] 8q 8q 

= u2 [nI1_1_ I:. 81'(xI:, ~*) 8f(xl:, q*) 
n [nT] 1:=1 8q 8q 

u2 [nT-] 1 II:] 8f'(xl:,q*) 8f(xl.:,q*) ..!:..O. 
n [nT-] 1:=1 8q 8q 

The proof is concluded. 
Lemma 3.3. Under the same condition~ as in Lemma 3.1, the 

following hold: 
(1) limn(suPO(t(T lA;! (t) - A:f (t-)I) = 0, i, j = 1, ... ,r. 
(2) £"f~(t)M~(t)-A;?(t) are martingales, where Mi(.), M~(· ) and 

Aij(.), A:f(.) denote the i-th component of M(.), li1n (·) and 
- the ij-th entry of A(· ), An{-), respectively. 
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Proof. (1) follows from the convergence of An (.) and the con­
tinuity of A(- ). As for (2), we note for s ~ t, 

E( ~f!(t)i\{~(t) - A~ (t» l.rin'J) 

=~ ~ (Of(~Ie' q*)r (O/(~/c,q*))i E(f% IF[n,]) 
Ie=l q q 

_ u2 ~ (o/(:CIe,q*»)i(O/(:CIe,q*))i 
n Ie=l oq oq 

=! ~ (O/(X~, q*»)i (o/(xl;,t»)i (f2 _ 0'2) 
n ~ oq . oq le 

=M~(s)M~(s) - A~(s). 

The martingale property is verified. 
We now recall a general result concerning weak convergence to 

a Gaussian limit, from which we can obtain our weak invariance 
principle. 

Propositiq,n 3.4. (Ethler and Kurtz, 1986) Let m..(-) be a mar­
tingale witb sJmpJe patbs in .0'"[0,00) and m(O) =.0. Let Gn (·) be 
a symmetric r{x r matrix-valued process sucb that Dj (- ) bas sam­
ple paths in Dr[o,oo) and Gn(t) - Gn(s) is nonnegative definite for 
t > s ~ O. Assume tbat for each T> 0, and i, j = 1,2, ... , r, 

limE( sup Icj(t) - Cj(r)l) = 0, 
n O-ot-oT 

limE( sup Imn(t) - mn(cW) = 0, 
n O(;t-oT . 

and for i, j = 1,2, ... ,r, t ~ 0, 

are martingales. Suppose that for eacb t ~ 0, Gn(t) ~ Gn(t) in 
probability such that G(t) is symmetric nonnegative definite and 
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ha,ving continuous paths. Then, 1ltn (·) converges to a process'm(') 
• with independent Gaussian increments and continuous paths. 

REMARK: Combining Lemma, 3.2 and Lemma 3.3, all conditions 
in the above proposition are satisfied. By virtue of Proposition 3.4, 
MnC) converges weakly to a process M(.) which has independent 
Gaussian in'crem~nts and continuous paths. In view of Lemma 3.1, 
the same conclusion also holds for the process Mn( ). 

Theorem 3.5. Assume (AI) - (A4) are satisfied. Then, Mn (·) 

converges weakly to a Brownian motion M(.) with con variance ma­
trix F given by (2.5). 

Proof. In view of Proposition 3.4 and the above remark, we 
need only show that the increments of M(· ) are stationary. Since 
they are Gaussian, the stationarity will be implied if we can show 
that the covariance function E(t, s) satisfies (cf. Breiman (1968) 
Proposition 11.17) 

1;(t,s) = 1;(t - s,O) for all t > s ~ 0, (3.9) 

i.e., the underlying process is wide sense (or second order) ,station­
ary. Equation (3.9) can be verified fairly easily along the same line 
as the proofs of Lemmas 3.2 and 3.3. , 

Theorem 3.5 is our weak invariance result. To illustrate its 
utility, we define 

1 [ntJ ~fN(XL qO.N) 
.. "" v ." [ntJ 

Mn(t) = In L.J a ~k· 
V" J:=l q 

(3.10) 

With an argument analogous to that of Lemma 3.1, we have 

(3.11) 

where 0(1) ~O in probability. Theorem 3.5 then implies that Mn (·) 

converges weakly to a Brownian motion M(·). In addition, as In 

Fitzpatrick (1988), by using (3.11), 
~JN(qO,N) oJO,N{qO,N) 

..;nv n Oqn = -2;\1n(1) + v'n n oq n 

. _ oJO,N (qO,N) 
= -2Mn(1) + v'n n oq + 0(1), (3.12) 
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where 0(1) ~ 0 in probability. Note that the interior condition in 
. 8JO.N (qO.N) 
(A4) gives us that n aq == 0 for sufficiently large n. Taking 

a truncated TayJor's expansion with if: denoting the vector that 
haS components between the corresponding components of q: and 
gO.N we have n , 

..;n(q~ - q~.N) =2(1':)-1 Afn (l) + Vn(1':)-18J~~q:) 
8JO.N(qO.N) 

- vn(1'rtV)-1 n 8q n + 0(1), (3.13) 

where T~v = 82J'J.;N (if:)/8q2. The assumption q* E lnt Qad yields 
that qn E lut Qad and hence for sufficiently large n, the second and 
third terms on the right side above are O. 

In view of the ahove paragraph, in particular (3.12) and (3.13), 
we have 

Vn(q~;l - q[~~) = 2(1[~)-1 Mn(t) + 0(1), (3.14) 

where 0(1) ~O in probability. Now, define 

(3.15) 
, 

In lieu of loo~ing at the sequence y'n(q: - q~.N), we emphasize the 
stochastic process aspects of the problem. As a result, more far 
reaching "dyramical~ properties of the estimation procedures are 
obtained. . 

Theorem 3.6. Assume (AI) - (A4) are satisfied. Then, Qn(·) 
converges weakly to a Brownian motion Q(.) such that Q(t) = 
21'-1 M(t), where M(.) is given by Theorem 3.5. 

As a. consequence, we rediscover the asymptotic normality of 
Theorem 2.2. 

COROLLARY 3.7. y'n(q: - q~.N) "" N(O, 47- 1 V7- 1) with -V and 
7 defined by (2.5). 

Proof. Simply set t = 1 in Theorem 3.6. 
We remark that the weak functional invariance results l~ The­

orem 3.5 and 3.6 are a generalization of the central limit theorem to 
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a function space and gives more details about the process involved. 
Using this theorem, one can generalize the asymptotic results fur­
ther in many ways. For example, one could incorporate random 
numbers of observations (that is, to replace n by a random vari­
able) into the formulation. For a related problem in stochastic 
approximati~m, see the work Yin (1990) and the references therein. 

Furthermore, the scaling and properties of the Brownian mo­
tion give the rates of convergence, and much interesting informa­
tion. We treat the behavior of the asymptotic part of {q~ _ q~,N} 
as a dynamical process. This enables us to exploit the (stochastic) 
structure of the least squares algorithm. It seems that the tech­
niques used here can easily be ,generalized to other noise processes. 
It should also be pointed out that the dynamic behavior of the iter­
ates cannot be obtained by using the ordinary central limit theorem 
type of results alone. Thus, the invariance principles are necesl'ary 
and indispensable in this regard. Furthermore, to the best of our 
knowledge, for the distributed parameter identification problem via 
use of the least squares algorithm, relatively little has been known 
concerning the'stochastic process' aspects. 

4. A strong inva.ria.nce theorem. In this section, we derive 
almost sure error bounds and obtain a functiollal law of the iter­
ated logarithm, which gives us rates of convergence in the almost 
sure sence. Interest in the law of iterated logarithm and related 
asymptotic fluctuation results has renewed since the mid-70's, due 
primarily to the celebrated work of Strassen (1964). In his paper, 
Strassen derived a functional law of iterated logarithm by using 
the Skorohod imbedding or Skorohod representation (cf. Skorohod, 
1956). In this work, we shall closely follow the approach presented 
in Philipp and Stout (1975), which is a refinement of Strassen's 
invariance principle. The main idea is of "martingale approxima­
tionj" the block sums of dependent r~ndom variables constitute ap­
proximately a martingale difference sequence; to which Skorohod 
imbedding can be applied. This is especially suited in our case due 
to the fact that the underlying sums are ther'nselves martingales. 

We.remark that, since {cd is a sequence of real-valued random 
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variables, it appears to be simplest to work componentwise, treat­
ing each component of q;: _q~,N as a real-valued stochasticprocess. 
To deal with vector-valued processes, a different approach has to 
be taken. For example, in dealing with prediction error estimators 
in Heunis (1988), the framework developed in Berkes and Philipp 
(1979) for vector-valued processes was employed. 

To begin, we observe tha.t by (3.13), 

(4.1 ) 

for sufficiently large n, where Rn = ~Ji1n(l), o(n-l/2) is in the sence 
of "in probability" as before. 

By means of the Skorohod imbedding, corresponding to the 
original probability space (O,F, P), there is another one (Q, j, P) 

r.; -N - !-i -N -with ij;.. ,Tn ,R-n defined on it such that q;.. , Tn , Rn have the same 
distribution as q~, T:, Rn and 

where o,(n- 1/;) is in the sence of "with probability one" (with re­
spect to the Flrobability measure P). For notatioqal simplicity, and 

j 

without loss pf genera1ity, we shall drop the symbol "tilde" and the 
phrase "with respect to the probability measure P" in the sequel. 
'When we say, 'on a richer ptoba.bility space,' we are indicating the 
use of the Skorohod imbedding, changing the probability space but 
preserving the distributions of the random varia.bles involved. 

The desired asymptotic behavior will be based on the sequence 
R-n. To proceed, we quote a theorem from Philipp and Stout (1975), 
which is developed for nonstationary mixing processes. 

Proposition 4.1. (Philipp and Stout, 1975) Let {zd be a se­

quence of random varia.bles sa.tisfying SUPA- EIZk /2+6 < 00 for some 
o < fJ ~ 2. Suppose that there exists a monotonically increasing 
func~ion F(· ) such that 

I: Emlzk /2+b ~ F (E ( I: Zk) 2), 'rip, 'rIn. (4.2) 
I:=p+ 1 1:=1'+1 
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!vloreover, assume that 

( 
n ).2 

S~=E L>l: ~oo 
k=1 

(4.3) 

and {S~} is strictly increasing; {Zl:} is a mixingsequence with mix­
ing rate' 

(4.4) 

Define S(t) = Ek~tZl:' t ~ O. We can ta.ke {S(t); t ~ O} on a richer 
probability space, together with a Brownia,n motion {w(t); t ~ O}, 
such that 

S(t) - w(t) ,= O{t3- W ) w.p.l, 

for each w < 0/588. 

Now, we come back to our identification problem. Let R~ be 
the i-th component of Rn. Then, we have 

ni _ ~ (O/(Xk,q*))i 
fin - ~ ° el:. 

£=1 q 
(4.5) 

In addition to (AI) - (A4), we shall assume that Elel:12+6 < 
00, for some 0 < c ~ 2. We identify e'I(~~!q")yE'£ with Zl: as in 

Proposition 4.1. Since {ek} is a sequence of Li.d. random variables 
with 0 mea!), the mixing condition is automatically satisfied. It ie 
easily seen that 

by the orthogonality. Clearly, for each i, {E(,Rin)2} is an increasing 
sequence in n. It either tends to a finite limit as n -+ 00 or grows 
without bound. In view of (A4), the first al~ernative cannot hap­
pen. Hence, (4.3) is verified. Due to the orthogonality again, we 
have that 



114 On invariance principie& 

Choose "0 such that 

This can be done by the continuity of &/(~~,q.) and the compactness 
of X x Qad. Let 

Under this choice of F(· ), we have 

Thus, (4.2) i8 <1:1so verified. Therefore, all conditions of Proposition 
4.1 are fulfilled. We have: 

Theorem 4.2. Suppose the assumptions (AI) - (A4) are sat­
isfied and EI€A:12+6 < 00 for some 0 < 6 ~ 2. For i = 1,2, ... , r, define 

Without changing the distribution, we can define {.P(t); t ~ O} 
on a richer probability space, together with a Brownian motion 
{Wi(t); t ~ O}, such that for each i = 1,2, ... ,r, 
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for each tv < C /588 . 

Next, let 

Set) = (Sl(t),S2(t), ... ,sr(t»' 

Wet) = (Wl(t}, W2(t), ... , wr(t))'. 

REMARK: W(.) is a Brownian motion. Due to the fact that 
{cd is a sequence of real-valued random variables, roughly, WC· ) is 
an one-dimensional Brownian motion multiplied by a deterministic 
vector. This can be seen by noting the weak convergence of last 
section and the fact 

In view of Theorem 4.2, the following holds. 

COROLLARY 4.3. S(t)-W(t) = O(tt-w ) w.p.1 for each w < 6/588. 
Proof. Owing to Theorem 4.2, 

r 

IS(t) - W(t)1 ~ L: IS(t) - Wi(t)1 = O(t!-W) ;w.p.1. 
.=1 

Let q(t), qO(t) and T(t) be the piecewise constant interpolations 
of q:r;, q~,N and TnN , respectively; that is, for n ~ t < n + 1, we define 

Theorem 4.4. Suppose the conditions of Theorem 4.2 are sat­
isfied. Without changillg the distribution, w~ can redefine {q(t); t ~ 
} on a richer probability space, together with the Brownian motion 
Wet) (as in Theorem 4.3), such that . 

p( lim t(q(t) - qO(t)) - 2:--1W(t) = 0) = 1. (4.6) 
t-oo (t loglogt)2 
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Proof. We use (4.1) with the understanding that the equation 
holds with proba.biiity one. We have 

t(q(t) - qO(t» - 2T-IW{t) Ct - [t])(q(t) - qO(t)) 
= 

~loglogt)i (tloglogt)i 
2(T(t))-1 - T-l)W(t) . 2(T(t))-1(S(t) - Wet)) 

+ 1. + 1. (t log logt) 2 (tlog log t) 2 

0(t 1/2) ,+ .I. • (4.7) 
(t log logt) ~ 

Due to the convergence of q~ and q~.N, the interpolations q(t) and 
q0(t) are bounded. The first term on right-hand side of (4.7) thus 
tends to 0 w.p.1. Since Wet) is a Brownian motion, by virtue the 
law of iterated logarithm for WC· ), 

( Wet) ) p .I. = 0(1) = l. 
(t log log t) 2 

(4.8) 

In view of the assumptions (A3) and (A4), and Theorem 2.1, we 
have that (TVt))-l -+ T- 1 w.p.1., so that the second term on the 
right-hand sWe of (4.7) also goes to 0 w.p.l. In addition, the t~ird 

j 

term approathes 0 by the almost sure boundedness of (T(t»)-1 and 
Corollary 4.3. Finally, the last term is of the order o(1/(log log t) ~) 
w.p.l. The theprem thus follows. 

REMARK: The above theorem provides a bound (in the sense 
of w.p.l) on the order of magnitude of the estimation error by the 
well-known Brownian motion. It exploits the intrinsic behav:,ior of 
the estimation procedure and relates the normalized sequence to a 
standard random process which we know quite a ,)it about. 

We have that q~ - q~.N ~ 0 w.p.l. The following question is 
in order. How fast does the convergence take place? What. is the 
rate of convergence in the sense of w.p.f? Owing to the strong 
consistency and the asymptotic normality, it is possible to derive 
tha.t as n -,. 00, for v < 1/2, -
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This, however, is only a rather coarse estimate. Is it possible to 
obtain sharper bounds? This question can be answered by employ­
ing the above theorem. In fact, the solution is a by-product or 
corollary of Theorem 4.4. 

In view of (4.6) and (4.8) and noticing the interpolation, we 
have 

p( lim .,;n(q~ - q~;) = 0(1)) = l. 
11.-00 (loglogn)1 2 

(4.9) 

As a consequence, we have as n -400, 

q~ _ q~,N = o( Cog~gn) 1/2) w.p.l. (4.10) 

Eq. (4.10) gives precise order of the speed of convergence and places 
a tighter bound on the estimation error. By computing the esti­
mates for n = n} and n = n2 > nl, one can use this ra.te of con ver­
gence result to estimate the error of the estimator, and determine, 
for example, if more data. is needed. 
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