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Abstract. The optimal financial investment (Portfolio) problem was investigated by leading financial
organizations and scientists. Nobel prizes were awarded for the Modern Portfolio Theory (MPT) and
further developments. The aim of these works was to define the optimal diversification of the assets
depending on the acceptable risk level.

In contrast, the objective of this work is to provide a flexible, easily adaptable model of virtual
financial markets designed for the needs of individual users in the context of utility theory. The aim is
to optimize investment strategies. This aim is the new element of the proposed model and simulation
system since optimization is performed in the space of investment strategies; both short term and
longer term.

The new and unexpected result of experiments with the historical financial time series using
the PORTFOLIO model is the observation that the minimal prediction errors do not provide the
maximal profits.
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1. Introduction

The problem of optimal investment was discussed in many well-known publications. Re-
cently, the practical importance of the problem has been increasing when major investors
are accompanied by millions of small stockholders which decide how to use their savings
better without financial education and experience.

The traditional approach is represented by the Modern Portfolio Theory (MPT). MPT
authors Markowitz (1959, 1952), Merton (1972) and Sharpe (1994) who developed meth-
ods of reflecting the investment risk (Sharpe Ratio) were awarded the Nobel prizes.

The recent developments and applications of MPT are discussed in A number of in-
vestment organizations are making decisions using the software based on the theoretical
results of Black F, Scholes (1972). Some limitations of these theories and their applica-
tions have been noticed during the recent financial crisis when the investors experienced
considerable losses (Krugman, 2009).
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In Brunnermeier and Pedersen (2007), the authors provide a model that links an assets
market liquidity, i.e., the ease with which it is traded, and traders’ funding liquidity, i.e.,
the ease with which they can obtain funding. The model explains the empirically docu-
mented features that the market liquidity can suddenly dry up.

The paper Brunnermeier and Julliard (2006) describes a formal model explaining how
a reduction in inflation can fuel run-ups in housing prices, if people suffer from money
illusion. The paper of Brunnermeier (2007) studies portfolio holdings and asset prices.
The paper of Brunnermeier and Yogo (2009) shows by examples that, when a company
is unable to rollover its debt, it may have to seek more expensive sources of financing or
even liquidate its assets. In Brunnermeier and Nagel (2006), data from the Panel Study of
Income Dynamics (PSID) was used to investigate how households’ portfolio allocations
change in response to wealth fluctuations.

Financial market simulators are developed to satisfy the needs of small individual in-
vestors. The examples are the “StockTrak global portfolio simulator”, the “MarketWatch,
virtual stock exchange”, and the “Stock Simulator” of Investopedia. Some banks offer their
own investment simulators such as the “Barclays Fantasy Investment Game”. Users of
these simulators working with “Virtual Stocks” are informed about the results. The graph-
ical user interfaces are friendly. However, the theoretical basis of these models and com-
puting algorithms remains unknown. So the users cannot grasp the reasons why they win
and why they experience losses.

To present the individual stockholders with a tool where everything is open is one of
the aims of the PORTFOLIO model introduced in this paper. To accomplish this task,
we deviate from the traditional portfolio models since this model is for defining the best
investment strategies but not just the best diversification of assets. Thus, PORTFOLIO is
just a conditional name for short. The second aim is to apply the utility theory (Fishburn,
1964) in the risk assessment and to investigate the relation of virtual and real financial
markets to the Nash equilibrium (Nash, 1951). These are new elements of this work.

In contrast to well-known results, this work not only simulates traditional results of
utility and portfolio theories, but also complements them by various investment proce-
dures and renders a possibility to users to develop and implement their own investment
strategies.

This is important for individual users with different approaches to risk. Thus, the model
can be used in financial studies and scientific collaboration. For example, the model can
be applied in the experimental investigation of the Nash equilibrium by simulating both
virtual and real financial markets at the same time. This can provide some additional data
for discussions about the rationality of investors behavior. It is important for theory. For
example, the Nobel prize winner John Nash assumes rational behavior (Nash, 1951) where
another Nobel winner Krugman (2000, 2008, 2009) is critical of this assumption.

Thus, the model can be useful to studies, to scientific collaboration, and to stockholders
who are solving optimal investment problems and regard risk in an individual way. This
can be explained by some new elements of the paper such as application of individual
utility functions that define the personal preferences and investigation of Nash equilibrium
by simulating and comparing different investment strategies in virtual and real financial
markets.
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Risk evaluation by individual utility functions is basically different from the traditional
evaluation by the return variance. The reason is that individual investors are risk-prone re-
garding small sums and risk averse while investing large sums thus. In such cases we need
to solve the problems of global optimization, since the utility functions are not convex.
This is not considered in MPT ant its developments. In this work. the correspondingglobal
optimization procedures are developed and implemented. In addition, the algorithms and
software for testing the personal utility functions are created. These new tools are intended
to help individual stockholders to select investment strategies according to their personal
preferences.

The market prediction and portfolio optimization were regarded in most of the financial
market research. The investigation of different investment strategies including those which
are close to the Nash equilibrium is the feature of this work.

The investment problems were investigated in many publications. Let us mention
some examples. In Raudys and Raudys (2011, 2012), decisions of portfolio management
are considered in the context of artificial intelligence. In the paper of Ramanauskas and
Rutkauskas (2009), an artificial stock market is simulated by learning agents. The visual
analysis of data sets (Medvedev et al., 2011) could be applied, too.

In Mockus (2012), a preliminary investigation of the virtual stock exchange of a single
stock is discussed. The results of these papers helped to initiate this work that simulates
the optimal investment problem in the multi-stock market. Therefore we just refer to paper
of Mockus (2012) for a mathematical description of the singe stock model and describe
only the specific expressions of multi-stock models. However, some definitions and ex-
pressions that describe the buying–selling strategies and investors’ profit are repeated for
convenience of reading.

2. The PORTFOLIO Model of a Virtual Financial Market

2.1. Buying and Selling Strategies

We consider a virtual market of I major players i = 1, . . . , I and j = 1, . . . , J stocks.
The following notation is used:

z(t, j) = z(t, i, j) is the price of stock j at time t , predicted by the player i ,
Z(t, j) is the actual2 price at time t ,
U(t, j) = U(t, i, j) is the actual profit accumulated at time t by the player i buying–

selling stock j ,
δ(t, j) is the dividend of stock j at time t ,
α(t) is the yield at time t ,
γ (t) is the bank interest at time t ,
β(t, i) = β(t, i, j) is the relative stock j price change at time t as predicted by the

player i

β(t, i, j) =
(

z(t + 1, i, j) − Z(t, j)
)/

Z(t, j). (1)

2The term ‘actual’ means simulated.
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Expected profitability3 (relative profit) p(t, i, j) of an investment at time t depends on
the predicted change of stock prices βi(t, j), dividends δi(t, j), the yield α(t), and the
interest γ (t)

p(t, i) =
{

β(t) + δ(t) − γ (t), investing borrowed money,
β(t) + δ(t) − α(t), investing own money.

(2)

The aim is profit, thus a customer i will buy some amount nb(t, i, j)> n(t, j) of stocks j ,
if profitability is greater comparing with the relative transaction cost τ (t, n); p(t, i, j) >

τ(t, n), and will sell stocks, if the relative loss (negative profitability −p(t, i, j)) is
greater as compared with the transaction cost p(t, i, j) < −τ (t, n), or will do nothing,
if −τ (t, n) 6 p(t, i, j) 6 τ (t, n). Here the relative transaction cost is defined as the rela-
tion

τ (t, n) =
τ0

n(t, j)Z(t, j)
, (3)

where τ0 is the actual transaction cost and n = n(t, j) is the number of transaction stocks.
It follows from the equality τ (t, n) = p(t, i, j) that the minimal number of stocks to cover
transaction expenses is

n(t, j) =
τ0

p(t, i, j)Z(t, j)
. (4)

Therefore, the buying–selling strategy S(t, i, j) of stock j by the customer i at time t in
terms of profitability levels is as follows

S(t, i, j) =







buy nb(t, i)> n(t, j) stocks, if p(t, i, j)> τ (t, n) and n6 nmax
b ,

sell ns(t, i, j)> n(t, j) stocks, if p(t, i, j)6 −τ (t, n) and n6 nmax
s ,

wait, if |p(t, i, j)|6 τ (t, nmax).

(5)

Here nmax = max(nmax
b , nmax

s ), where nmax
b is the maximal number of stocks to buy, and

nmax
s is the maximal number of stocks to sell. If

nb(t, i, j) = nmax
b and ns(t, i, j) = nmax

s , (6)

then this buying–selling strategy reflects the behavior of risk-neutral stockholders which
invest all available resources if the expected profitability is higher than the transaction cost.
If the expected losses are greater, then all the stocks are sold. It means that stockholders
may tolerate a considerable probability of losses, if the expected profits are positive. In
this way, the maximal expected profit is provided. However, the probability to get losses
instead of profits could be near to 0.5.

3The term “profit” can define losses if negative terms prevail.
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From expressions (1) and (2), the buying–selling strategy S(t, i, j) in terms of stock
price levels is

S(t, i, j) =



























buy nb(t, i, j)> n(t, j) stocks,
if Z(t, j)6 zb(t, n, i, j) and n6 nmax

b ,

sell ns(t, i, j)> n(t, j) stocks,
if Z(t, j)> zs(t, n, i, j) and n 6 nmax

s ,

wait, otherwise.

(7)

Here the price level of the player i to buy at least n = n(t, j) stocks at time t is

zb(t, n, i, j) = z(t + 1, i, j)
/(

1 − δ(t) + α(t) + h(t) + τ (t, n)
)

. (8)

The price level of the player i to sell at least n = n(t, j) stocks at time t is

zs(t, n, i, j) = z(t + 1, i, j)
/(

1 − δ(t) + α(t) + h(t) − τ (t, n)
)

, (9)

where z(t + 1, i, j) is the stock j price predicted by the investor i at time t + 1.
The market buying price at time t is the largest buying price of players i = 1, . . . , I ,

zb(t, n) = zb(t, n, i, jmax), where imax = argmaxi zb(t, n, i, j).
The market selling price at time t is the lowest selling price of players i = 1, . . . , I ,

zs(t, n) = zb(t, n, i, jmin), imin = argmini zs(t, n, i, j).

2.2. Price Simulation

2.2.1. Buying–Selling Price

The market buying price of stock j at time t is the largest buying price of players
i = 1, . . . , I , zb(t, n, j) = zb(t, n, i, jmax), where imax = argmaxi zb(t, n, i, j).

The market selling price at time t is the lowest selling price of players i = 1, . . . , I ,
zs(t, n, j) = zs(t, n, i, jmin), imin = arg mini zs(t, n, i, j).

The number of stocks j owned by the player i at time t + 1 is

N(t + 1, i, j) =











N(t, i, j) + nb(t, n, i, j), if Z(t, j) < zb(t, n, j),

N(t, i, j) − ns(t, n, i, j), if Z(t, j) > zs(t, n, j),

N(t, i, j), if no deal.

(10)

Here nb(t, n, i, j) and ns(t, i, j) are the numbers of stocks j for buying and selling oper-
ations by the player i at time t .

2.3. Investors Profit

The product N(0, i, j) Z(0, j) is the initial investment to buy N(0, i, j) shares j using an
investors’ own capital at the initial price Z(0, j). The initial funds to invest are C0(0, i)

and the initial credit limit is L(0, i).
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L(t, i), t = 1, . . . , T is the credit available for a customer i at time t . The investors’
own funds in cash C0(t, i) available for investing at time t are defined by the recurrent
expression

C0(t, i) = C0(t − 1, i) −
∑

j

(

N(t, i, j) − N(t − 1, i, j)
)

Z(t, j), (11)

where t = 1, . . . , T . Here the product (N(t, i, j) − N(t − 1, i, j))Z(t, j) defines the
money involved in buying–selling stocks.

Stocks are obtained using both investor’s own money C0(t, i) and the funds b(t, i)

borrowed at the moment t . The borrowed sum of the stockholder i accumulated at time t

is

B(t, i) =
t

∑

s=1

b(s, i), (12)

the symbol b(t, i) shows what the user i borrows at the moment t .
The general borrowing expenses are

Bsum(t, i) = B(t, i) +
t

∑

s=1

B(s, i)γ (s, i), (13)

where the first term denotes the loan accumulated at time t and the second term shows the
interest.

An investor i gets a profit as the difference between the income from selling and buying
stocks D(t, i) and expenses for the borrowing funds Bsum(t, i)

U(t, i) = C0(t, i) + D(t, i) − Bsum(t, i), (14)

where

D(t, i) =
∑

j

N(t, i, j)Z(t, j) − N(0, i, j)Z(0, j). (15)

The investors i profit at the end of investment period is denoted by

Ui = U(T , i). (16)

The funds available for the investor i at time t are

C(t, i) = C0(t, i) + L(t, i) − Bsum(t, i). (17)

An investor is trying to maximize gains by borrowing money to invest in shares that ap-
preciate more than what it costs him by way of interest. It means leveraging shares for an
investment.
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The number nb(t.j ) of stocks j to buy at the time t is restricted by the following
inequalities

∑

j

n(t, j)Z(t, j)6 C(t, i) (18)

and

n(t, j) 6 nb(t, i, j), (19)

where the last inequality restricts the transactions costs. The stockholder will be insolvent
at the time t = t∗i if the loan exceeds the assets

Bsum(ti , j) > C0(ti, j) + L(ti , j) +
∑

j

N(t, i, j)Z(t, j), (20)

since there will not be enough money to pay back all the borrowing expenses Bsum(t∗i , i).
This can happen without buying additional stocks, because the interest Bsum(t, i) accu-
mulates automatically.

Part of Profit by Stock j . In longer term investment strategies using the Sharpe ratio,
the general profit should be divided between different stocks. Denote by C0(0, i, j) 6

L(0, i, j) the initial funds to be invested in the stock j = 1, . . . , J , where L(0, i, j) is the
initial credit limit for stock j and

∑

j

L(0, i, j) = L(0, i). (21)

For example, the initial funds may be divided into equal parts

∑

j

C0(0, i, j) = C0(0, i)/J. (22)

The investors’ own funds in cash C0(t, i, j), accumulated buying–selling stocks j and
available for investing at time t in the stock j , are defined by the recurrent expression
below

C0(t, i, j) = C0(t − 1, i, j) −
(

N(t, i, j) − N(t − 1, i, j)
)

Z(t, j), (23)

where t = 1, . . . , T . Here the product (N(t, i, j) − N(t − 1, i, j))Z(t, j) defines the
money involved in buying–selling stocks j .

Stocks are obtained using both investors’ own money C0(t, i, j) and the funds b(t, i, j)

borrowed at the moment t . The borrowed sum of the stockholder i for the stock j accu-
mulated at time t is

B(t, i, j) =
t

∑

s=1

b(s, i, j), (24)
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where

∑

j

B(t, i, j) = B(t, i). (25)

The symbol b(t, i, j) shows what the user i borrows at the moment t for the stock j .
The general borrowing expenses for stock j are

Bsum(t, i, j) = B(t, i, j) +
t

∑

s=1

B(s, i, j)γ (s, i), (26)

where the first term denotes the loan accumulated at time t , the second term shows the
interest, and

∑

j

Bsum(t, i, j) = Bsum(t, i). (27)

The investor i gets a profit as the difference between the income from selling and buying
stocks D(t, i, j) and expenses for the borrowing funds Bsum(t, i, j)

U(t, i, j) = C0(t, i, j) + D(t, i, j) − Bsum(t, i, j), (28)

where

D(t, i, j) = N(t, i, j)Z(t, j) − N(0, i, j)Z(0, j). (29)

The investor’s i profit from the stock j at the end of investment period is denoted as

Ui.j = U(T , i.j), (30)

where

∑

j

Ui.j = Ui . (31)

If for some reason equalities (25), (27), and (31) are violated, then the normalization of
components may be applied to restore them.

The bank profit expressions are the same as in the single stock market model of Mockus
(2012).

2.4. Multi-Level Operations

In the opinion of some professional brokers we have interviewed, one needs at least three
buying profitability levels pb(t, i, j, l), l = 1,2,3, where

pb(t, i, j, l + 1) > pb(t, i, j, l), pb(t, i, j,1) = τ (t), (32)
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and three selling profitability levels ps(t, i, j, l), l = 1,2,3, where

ps(t, i, j, l + 1) < ps(t, i, j, l), ps(t, i, j,1) = −τ (t),

pb(t, i, j, l) > ps(t, i, j,1).
(33)

to explain the behavior of major stockholders. The level l = 1 means to buy-sell the min-
imal number of stocks. The level l = 3 means to buy-sell as much stocks as possible, and
the level l = 2 is in the middle. Details of multi-level operations are in Mockus (2012).

3. Price Prediction

In this model, two versions of AutoRegressive models (AR(p) and AR-ABS(p)) and a
version of AutoRegressive Moving Average (ARMA-ABS(p, q)) model are considered
for stock rate predictions. AR(p) uses traditional least squared approach. AR-ABS(p)

and ARMA-ABS(p, q) minimize the absolute errors.
The development and implementation of ARMA-ABS(p, q) is a new feature of this

work. The common disadvantage of both the new ARMA-ABS(p, q) and traditional
ARMA(p, q) models is that estimation of moving average parameters q needs global
optimization and the exact value of global minimum remains unknown, only some ap-
proximation is obtained after lengthy calculations.

Thu, we use ARMA-ABS(p, q) just for comparison with the simple AR-ABs(p)

model which can be efficiently used for daily predictions directly in the PORTFOLIO
model. No significant improvement of prediction accuracy was noticed. The AR-ABS
model was described in Mockus (2012). The description of ARMA-ABS follows.

3.1. ARMA-ABS(p, q) Model

3.1.1. Definition of Residuals

Denote by Z(s) the stock price at time s 6 t . Denote by a = (a1, . . . , ap) a vector of auto-
regression (AR) parameters, and by b = (b1, . . . , bq) a vector of moving-average (MA)
parameters. When describing these models, we omit the user index i , for simplicity. Then
the residual

ǫs = Z(s) −
p

∑

k=1

akZ(s − k) +
q

∑

j=1

bjǫs−j . (34)

3.1.2. Optimization of AR Parameters

The optimal prediction parameters a = a(b) as a function of b are defined by the following
condition

ak = arg min
ak

t
∑

s=1

|ǫs |. (35)

To solve (35) we apply linear programming.
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3.1.3. AR-ABS(p) Model Using Auxiliary Variables u,v, ǫ

min
u,v,ǫ

t
∑

s=1

us, (36)

us > Z(s) −
p

∑

k=1

vkZ(s − k) +
q

∑

j=1

bjǫs , s = 1, . . . , t, (37)

us > −Z(s) +
p

∑

k=1

vkZ(s − k) −
q

∑

j=1

bjǫs , s = 1, . . . , t, (38)

us = us1 − us2, s = 1, . . . , t, (39)

ǫs = Z(s) −
p

∑

k=1

vkZ(s − k), (40)

ǫs = ǫs1 − ǫs2, s = 1, . . . , t, (41)

vk = vk1 − vk2, k = 1, . . . , p, (42)

where us1 > 0, us2 > 0, vk1 > 0, vk2 > 0, yj = yj1 > 0, yj2 > 0, ǫs1 > 0, ǫs2 > 0 are the
auxiliary variables. The scale parameters ak.bj are obtained by solving the LP problem
as the corresponding auxiliary variables ai

k = vk , bj = yj .

3.1.4. Optimization of MA Parameters

The sum of absolute residuals is a multimodal function of parameters b with the number
of extrema depending on the length of the time series. Thus, we have to use the global op-
timization algorithms. Figure 1 illustrates how the Mean Absolute Error (MAE) depends
on ARMA-ABS(p, q) parameters (b1, b2) ∈ [0.5,05] using historical Microsoft data.

In particular, the figure shows that MAE, as a function of two parameters has several
local minima. In general, the number of local minima depends on the length of observer.
Denote

f (b) = logS
(

a(b), b
)

, (43)

where

S
(

a(b), b
)

=
t

∑

s=1

|ǫs |, (44)

a = (a1, . . . , ap) and b = (b1, . . . , bq).
Here a(b) is in (35) at the fixed parameter b. Denote

b0 = arg min
b

f (b). (45)
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Fig. 1. MAE as a function of parameters b1 and b2 by historical Microsoft data.

The simplest global optimization algorithm is Monte Carlo. A number of global optimiza-
tion methods are implemented as web-based Java applets (Mockus, 2006).

4. A Set of Investment Strategies

In this section, we first consider four heuristic investment strategies representing personal
opinions of some real stockholders with different approaches to risk. An advantage is the
simplicity of these procedures that allow daily updates. It is important in the short-term
investment.

Considering longer term investment, two additional strategies are described. The first
one estimates the risk using bankruptcy probabilities. The second longer term strategy
maximizes the Sharpe ratio. An advantage of these strategies is some theoretical base.
A disadvantage is the long computing time. Therefore, the strategies are suitable for longer
term investment. In the longer term experiments, the data set is divided into the learning
and testing sets where the efficiency of investment strategies is tested.

4.1. Short Term Investments

Consider operations that involve different stocks denoted by indexes j = 1, . . . , J . Denote
by p(t, i, j) the profitability of the j th stock for a customer i at time t . Denote by jmax

the stock with the highest profitability:

jmax = arg max
j

p(t, i, j), (46)
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4.1.1. Strategy No. 1: Risk-Averse Stockholders: Buying the Best – Selling the Losers by

Three Profitability Levels

First, the stockholder i sells all nonprofitable stocks

ps(t, i, j)6 −τ (t, i, j), (47)

and then invests all the available funds to buy the most profitable stock. The stock-
holder i does not sell the stock j , if the expected loss is smaller than the transaction cost
|p(t, i, j)| < τ(t, i, j). We assume that transaction costs τ are the same for all stocks and
do not depend on time. However, extending expression (3) of relative transaction costs to
multi-stock case we use indexes (t, i, j) instead of (t, n), since these costs depend on the
numbers n of stocks j involved in the operation at time t by the stockholder i .

This selling strategy reflects risk-aware users which keep some less profitable stocks
to avoid possible losses if predictions happen to be wrong.

Note that the risk-neutral users sell all the stocks with profitability lower then maximal
and then invest all the available funds in the stock jmax which provides the maximal return.
This way they maximize the expected profit. Details are in the next section.

The investors’ i own funds at time t , including the income from selling unprofitable
stocks, are expressed as the sum

C0(t, i) =
∑

j

C0(t, i, j), (48)

where C0(t, i, j) is defined by the following recurrent expression

C0(t, i, j) = C0(t − 1, i, j) −
(

N(t, i, j) − N(t − 1, i, j)
)

Z(t, j). (49)

The investors’ funds available for investing are

C(t, i) = C0(t, i, j) + L(t, i) − Bsum(t, i), (50)

here t = 1, . . . , T , L(t, i) is the credit limit at time t , and Bsum(t, i) is the borrowed sum.
Then we invest all available resources to buy the most profitable stock jmax. It means

that we sell stocks as the risk aware user but we buy stocks as the risk-neutral one. Thus,
the feasible number of stocks j = jmax to buy at time t is as follows

nb

(

t, i, jmax
)

= int
(

C(t, i)
/

Z
(

t, jmax
))

, if p
(

t, i, jmax
)

> τ
(

t, i, jmax
)

. (51)

4.1.2. Strategy No. 2: Risk-Aware Stockholders: Selling all Unprofitable Stocks – Buying

the Best Ones

First, the stockholder i sells all the nonprofitable stocks

ps(t, i, j)6 −τ (t, i, j) (52)
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and then invests all the available funds to buy the most profitable stock. The stock-
holder i does not sell the stock j , if the expected loss is smaller than the transaction cost
|p(t, i, j)| < τ(t, i, j). We assume that transaction costs τ are the same for all stocks and
do not depend on time. However, extending expression (3) of relative transaction costs to
the multi-stock case we use indexes (t, i, j) instead of (t, n), since these costs depend on
the numbers n of stocks j involved in the operation at time t by the stockholder i .

This selling strategy reflects risk-aware users which keep some less profitable stocks
to avoid possible losses if predictions happen to be wrong.

Note that the risk-neutral users sell all the stocks with a profitability smaller than max-
imal and then invest all the available funds in the stock jmax which provides the maximal
return. This way they maximize the expected profit. Details are given in the next section.

The investors’ i own funds at time t , including the income from selling unprofitable
stocks, are expressed as the sum

C0(t, i) =
∑

j

C0(t, i, j), (53)

where C0(t, i, j) is defined by this recurrent expression

C0(t, i, j) = C0(t − 1, i, j) −
(

N(t, i, j) − N(t − 1, i, j)
)

Z(t, j). (54)

The investors’ funds available for investing are

C(t, i) = C0(t, i, j) + L(t, i) − Bsum(t, i), (55)

here t = 1, . . . , T , L(t, i) is the credit limit at time t , and Bsum(t, i) is the borrowed sum.
Thus, the feasible number of stocks j = jmax to buy at time t is as follows

nb

(

t, i, jmax
)

= int
(

C(t, i)
/

Z
(

t, jmax
))

, if p
(

t, i, jmax
)

> τ
(

t, i, jmax
)

. (56)

4.1.3. Strategy No. 3: Risk-Neutral Stockholders: Buying the Best Stocks and Selling all

the Rest

The risk-neutral stockholders use all available resources to buy the stock jmax which pro-
vides the highest expected profit:

jmax = arg max
j

p(t, i, j). (57)

Denote by J (τ) a subset of stocks with profitability lower or equal to the best minus the
relative transaction cost:

J (τ) =
{

j : p(t.i.j )6 p
(

t, i, jmax
)

− τ
(

t, ns(t, i, j)
)}

, (58)

where ns(t, i, j) is the number of stocks j for sale at time t by the stockholder i . Here, to
define the relative transaction cost, we use a longer symbol τ (t, ns(t, i, j)) instead of the
shorter one τ (t, i, j) to show the number of stocks ns(t, i, j) directly.
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First, the risk-neutral stockholder is selling the stocks j ∈ J (τ) to raise funds for buy-
ing the single most profitable stock jmax.

Stockholders do nothing, if the maximal expected profit is smaller than the transaction
cost C(t, i)p(t, i, jmax) < τ(t, nb(t, j

max)) and they do not sell if the maximal expected
losses are lower than C(t, i)p(t, i, jmin) < τ(t, ns(t, j

min)). Thus, the number of stocks
j = jmax to buy at time t is as follows

nb

(

t, jmax
)

= int
(

C(t, i)
/

Z
(

t, jmax
))

, if p
(

t, i, jmax
)

> τ
(

t, nb

(

t, jmax
))

. (59)

They also do not sell, if the maximal expected losses are smaller than the transaction cost
N(t, i, jmin)Z(t, i)p(t, i, jmin) < −τ (t, ns(t, j

min)), where N(t, i, j) is the number of
stocks j available at time t . The feasible number of stocks j to sell at time t

ns

(

t, i, jmin
)

= N(t, i, j), if p(t, i, j)6 ps(t, i, j). (60)

4.1.4. Strategy No. 4: Risk-Averse Stockholders: Selling and Buying in Proportion to

Profitability

Denote by J+ a set of stocks with a positive profitability, and by J− the stocks with a
negative profitability. Denote Jb = |J+| and Js = |J−|.

jmax
+ = arg max

j∈J+
p(t, i, j), (61)

and

jmin
− = arg min

j∈J−
p(t, i, j). (62)

First, we sell stocks in proportion to l = 1, . . . , jmin
− selling profitability levels ps(t, i, l) =

p(t, i, j = l), l = 1, . . . , jmin
− . Then we use all accumulated resources to buy stocks in pro-

portion to l = 1, . . . , jmax
+ profitability levels pb(t, i, l) = p(t, i, j = l), l = 1, . . . , jmax

− .

4.2. Longer Term Investment

4.2.1. Estimates of Portfolio Profits in Real Market

In the previous sections, we analyzed short term investing by daily decisions, for exam-
ple. using different investment strategies. So, the search was in the strategy space. In this
section, the best proportion of assets is defined using different approaches.

The traditional portfolio problem considers the optimal longer term diversity by defin-
ing optimal sharing of available resources among different assets (Markowitz, 1959, 1952;
Merton, 1972).

The utility function approach is regarded in Strategy No. 5. In Strategy No. 6, we
consider the maximization of the Sharp Ratio (Sharpe, 1994).

In the longer term investing models, the time series are split into learning and testing
sets. In the learning stage, the mean and variance of portfolio P(x) profit are estimated
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using the first part of observations 1 6 t0 < T , where x = (xj , j = 1, . . . , J ). Usually
t0 is about T/2. and the initial funds are equally divided among the stocks, meaning that
x0
j = C0(0)/J . Here C0(0) denotes initial funds of a single user.

Note that in virtual markets, the stock prices are generated by the interaction of differ-
ent virtual investors.

In Strategy No. 5, the search for the optimal distribution of funds is performed by max-
imization of the utility function. In Strategy No. 6, the Sharpe Ratio is maximized. During
the testing stage the profits of optimized portfolios are calculated using the remaining ob-
servations s: t0 < s 6 T .

The data of the learning stage are used to estimate average deviations and variances.
The sample mean of portfolio P(x) that contains stocks with weights xj , j = 1, . . . , J is
as follows

mu(x) =
∑

j

xj

/

x0
j muj , (63)

where

muj =
1

t0

t0
∑

t=1

U(t, j). (64)

Here U(t, j) follows from (28) by omitting the investor’s index i . The estimator of vari-
ance of the portfolio P(x) is

(

su(x)
)2 =

1

t0 − 1

∑

j

∑

k

t0
∑

t=1

xj

/

x0
j

(

U(t, j) − muj
)

xk

/

x0
k

(

U(t, k) − muk
)

. (65)

4.2.2. Strategy No. 5: Definition of Risk by Survival Probabilities

An important part of optimal investment is a definition of individual utility functionsφ that
determine particular investor’s profit-to-risk relation (Fishburn, 1964). Now we consider
an example how to invest some fixed capital.

The problem is to maximize the average utility of wealth. It is obtained by the opti-
mal distribution of available capital among different assets with uncertain market prices.
Denote by xj the part of the capital invested into the object i . The returned wealth is
ui = cixj . Here ci = 1 + αi and αi > 0 is the interest rate. Denote by pi = 1 − qi the
reliability of investment. Here qi is the insolvency probability. φ(u) is the utility of the
wealth y . Denote by 8(x) the expected utility function. 8(x) depends on the capital dis-
tribution x = (x1, . . . , xn),

∑

i = 1, xi > 0 and the individual utility function φ(u). If the
wealth is discrete u = uk , k = 1, . . . ,M , the expected utility function

8(x) =
M
∑

k=1

φ
(

uk
)

p
(

uk
)

, (66)
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where M is the number of discrete values of wealth yk . px(uk) is the probability that the
wealth yk will be returned, if the capital distribution is x . We search for such a capital
distribution x that provides the greatest expected utility of the returned wealth:

max
x

8(x), (67)

J
∑

j=1

xj = 1, (68)

xj > 0. (69)

Real utility functions φ(u) are not convex, as usual, since investors tend to behave as risk-
prone if small sums are involved. They are risk-averse when the funds are large. Thus, in
order to maximize the utility functions 8(x), defined by expressions (69) and (66), the
global optimization methods should be applied.

Investing in stocks, apart from reliability pi , i = n + j , j = 1, . . . ,m of companies,
their future stock rates are uncertain, too. Denote the relative returned wealth of stock i

as ai . Then

a,i =

{

βi + δ − γ investing borrowed money,

βi + δ − α investing own money,
(70)

where βi is the predicted change of stock prices , δ are dividends, α is the yield, and γ is
the bank interest

Suppose that one predicts L different values of relative stock rates al
i , l = 1, . . . ,L

with the corresponding estimated probabilities pl
i ,

∑L
l=1 pl

i = 1, pl
i > 0.

Assuming that bankruptcy probabilities pi of different stocks i are independent,
one may define the probabilities p(ui) of different discrete values of the wealth yi ,
i = 1, . . . , n + m by exact expressions.

This approach includes not only the profit prediction, but also the prediction of
bankruptcy probabilities. The bankruptcy probabilities are considered in Hillegeist et al.
(2004). For the profit predictions we use simplest autoregressive models AR(p) and AR-
ABS(p). The ARMA-ABS(p, q) model was used just for testing autoregressive moving
average models, since it demands to much of computing time.

4.2.3. Strategy No. 6: Diversification by Maximizing the Sharpe Ratio

MPT is a mathematical formulation of diversification in investing, with the view of se-
lecting a collection of investment assets that has collectively of lower risk than any in-
dividual asset. The diversification lowers risk even if the assets are positively correlated
(Markowitz, 1959, 1952; Merton, 1972).

MPT models an asset’s return as a stochastic function and defines risk as the standard
deviation of return. MPT defines a portfolio as a weighted combination of assets, so that
the return of a portfolio is the weighted combination of the assets’ returns. By defining the
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weights of different assets, MPT seeks to reduce the total variance of the portfolio return.
A risk-free asset can be included in the portfolio, as well.

In 1966, William Forsyth Sharpe developed what is now known as the Sharpe Ratio.
In Sharpe (1994), the Sharpe Ratio is defined as:

S =
E[Ra − Rb]

σ
=

E[Ra − Rb]√
var[Ra − Rb]

, (71)

where Ra is the asset return, Rb is the return on a benchmark asset, such as the risk free
rate of return or an index such as the S&P 500. E[Ra − Rb] is the expected value of
excess of the asset return over the benchmark return, and σ is the standard deviation of
this expected excess return.

The influence of banks is directly included into the expressions of investors profit (14)
and (28). Therefore, using the expressions (63) and (65), a sample estimate of the Sharpe
Ratio of portfolio P(x) can be expressed as

S(x) =
mu(x)

su(x)
, (72)

and the optimal portfolio xS is defined by maximizing of S(x)

xS = arg max
x

S(x). (73)

5. Results of Experiments

The general aim of the experiments is to indicate similarities and differences of the virtual
and real stock markets. The specific aim is to evaluate the profitability of different invest-
ment strategies in both the virtual and real markets, which involve well-known companies.
Important task is to explore the relation between the accuracy of prediction and the prof-
its of ten different investment strategies. In the experiments, the profits and SE of eight
players using different prediction models: AR(1), AR(3), AR(6), AR(9), AR-ABS(1),
AR-ABS(3), AR-ABS(6), and AR-ABS(9) were tested.

Historical data was obtained automatically using the Yahoo data base. The historical
prices of the following eight stocks were used: Microsoft (MSFT), Apple (AAPL), Google
(GOOG), Nokia (NDK), Toyota (TM), Bank-of-America (BAC), Boeing (BA), and Nike
(NKE). The time series start 1/30/2009 and end 12/17/2010.

Exploring the virtual data, the time period was 360 days (virtual working days). This
represents approximately 18 months of real time. The average daily and final (at the end
of tested period) values are estimated by 100 samples. The first four investment strategies
were tested in the virtual environment including eight stocks of virtual companies.

The Table 1 shows average profits in real and virtual markets for different investment
strategies and prediction methods at the end of time period. In real markets, the symbol
R1 means the first strategy. In virtual markets, the first strategy is denoted as V1.



258 J. Mockus et al.

Table 1
The average of profits in virtual and real markets at the end of investment period.

Strategy
No.

Virtual market

AR-ABS1 AR-ABS3 AR-ABS6 AR-ABS9 AR1 AR3 AR6 AR9 Average

Real market
R1 1059.36 2565.77 −518.07 7151.94 3864.07 3340.51 20258.2 7669.38 5673.89

R2 6181.79 −524.03 −2334.40 4908.25 5291.30 589.08 1962.95 525.94 2075.11

R3 1287.35 −431.64 −3013.07 −2459.46 42.58 −1169.67 8182.93 2665.21 638.03

R4 3806.22 3777.34 5629.49 7151.88 5579.59 4114.89 2456.41 4637.71 4644.19

R5 98.32 255.59 76.36 80.44 76.61 84.03 55.19 126.96 106.69

R6 104.74 172.13 106.81 147.21 78.54 155.51 76.37 169.17 126.31

R7 215.75 246.59 226.74 −151.71 275.74 182.30 456.44 −118.56 166.66

R8 157.95 189.20 125.61 187.59 175.38 99.35 502.59 158.26 199.49

R9 152.44 276.33 145.04 −19.42 292.92 55.86 178.46 −239.02 105.33

R10 212.88 217.46 224.92 127.27 153.77 154.98 278.39 73.39 180.38

Virtual market
V1 3381.62 −3024.88 17577.00 −2795.87 739.39 1347.49 13689.31 833.36 3968.43

V2 −29.04 901.90 13596.29 2433.08 −388.54 1010.48 435.09 4590.43 2818.71

V3 −290.64 16527.23 4541.02 5683.21 −402.59 8273.67 39088.07 61273.55 16836.7

V4 −182.83 9262.32 3262.83 640.00 −311.73 −404.88 −202.49 −198.74 1483.06

Fig. 2. Average profits of eight prediction models using Strategy No. 1 in the real market.

In the real markets, the maximal profit was achieved using the strategy No. 1 by the
prediction model AR(6). Figure 2 shows average profits of eight players using strategy
No. 1 in the real market. In this and other average profit diagrams, the columns show the
profits and the lengths of 95% confidence intervals (as the vertical dashes in the middle of
columns). Here, the maximal profit was achieved using prediction model AR(6). In con-
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Fig. 3. Daily profits of eight prediction models in the real market.

trast, prediction model AR-ABS(6) provides some losses.This is unexpected result, since
model AR-ABS(6) predicts asset prices considerably better, as compared with AR(6), see
Fig. 5. In Fig. 3, the eight lines show the daily profits of eight players using strategy No. 1
in the real market

In thus figure, the graph of the best profits is similar to that of fastest growing stock
rates. In the investigated period these were Bank-of-America (BAC) stocks recovering
after the deep depression.

Figure 4 shows average profits of eight players using strategy No. 2 in the real market.
Using this trading rule, maximal profit was achieved by prediction model AR-ABS(1).

Prediction model AR(6) which was the best using trading rule No. 1 did show rather poor
results. This indicates that trading rules are at least as important for profits as the prediction
models.

Figure 5 shows the estimates of the Standard Error (SE) and the Mean Absolute Error
(MAE) of eight real stocks in 360 days.

Comparing errors in Figs. 5 with profits in Fig. 2, we see that the minimal prediction
errors and the maximal profits both are achieved using the AR(1) model with minimal
memory, this is in line with the Efficient Market Theory (Fama, 1995). However, compar-
ing stock price prediction errors with profits in Fig. 4 we see different result where the
greatest profit was provided by the model AR(6) with the memory parameter 6. Compari-
son of the prediction errors with profits by the both of trading rules Nos. 1 and 2, show that
maximal profits are not necessarily achieved by the models with minimal price prediction
errors

In Fig. 6, the most profitable portfolio in real stock market, defined using Strategy
No. 1 and prediction model AR-ABS(6) is illustrated.



260 J. Mockus et al.

Fig. 4. Average profits of eight prediction models using Strategy No. 2 in the real market.

Fig. 5. SE and MAE of real stock market.

The dominant position of BAC stocks in the portfolio, is explained by the rapid recov-
ery of these stocks after the depression.

In the virtual markets, the maximal profit was achieved using the strategy No. 3 by
the prediction model AR(6). Figure 7 shows average profits of eight players using strategy
No. 3 in the virtual market.
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Fig. 6. The most profitable portfolio in real stock market, defined using Strategy No. 1 and prediction model
AR-ABS(6).

Fig. 7. Average profits of eight prediction models using Strategy No. 3 in the virtual market.

6. Software of the PORTFOLIO Model

The PORTFOLIO model is a part of the general on-line system for graduate studies and
scientific collaboration (Mockus, 2006).

The initial web site (last modified in June, 2013) is at:
http://optimum2.mii.lt.
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The mirror sites are at:http://mockus.org/optimum,http://fmf.vgtu.
lt/~mockus, http://pilis.if.ktu.lt/~jmockus, http://kopustas.
elen.ktu.lt/~jmockus, All the examples are in the form of Java applets and can
be started by any browser with Java support (assuming that both Java and Javascript are
enabled).

The PORTFOLIO model is in the web section “Global Optimization” and can be
started by opening ‘index.html’ in the project “PORTFOLIO”. The exception is Linux
browsers which will be corrected in the future. The prediction model can be started by
opening ‘Starting original program’ in the project “AR-ABS” of the same section.

In the Internet environment, we need platform-independent languages for running the
software on remote computers. Java is more efficient for scientific calculations among
such languages. Java applets provide a unique possibility for student-teacher interac-
tions. Students can run the programs remotely and teachers can test students’ results on-
line.

7. Concluding Remarks

The Game Theory is a suitable framework to model financial markets because the future
market price of financial assets depends on predictions (and subsequent actions) of the
market participants with conflicting interests.

The idea that a financial market is a “casino” game was expressed in Keynes (2008).
In Krugman (2000, 2008, 2009), the unpredictability of asset prices is explained by the
irrational behavior of participants.

According to the model of this paper, the seemingly irrational behavior of market par-
ticipants can be considered as rational under the specific conditions of decision making
and the available information. From this standpoint, the differences between the Efficient
Market Theory (Fama, 1995), assuming the rational behavior of market players and the-
ories based on the irrational behavior (Krugman, 2000, 2008, 2009) are not so signifi-
cant.

The proposed financial market model PORTFOLIO is designed as a tool for simulating
market processes in response to different changes of market parameters and for estimating
the expected profits of different investment strategies using both the historical and virtual
data. Convenient user interactions are providedby implementing the model as a Java applet
and publishing it in an open web-site (Mockus, 2013).

Since PORTFOLIO may be too simplistic for practical investing, it can serve as a
useful tool for studies of market behavior by providing an easy way of simulating different
scenarios of player strategies.

Thus, the PORTFOLIO model helps students of business informatics to understand
better financial disasters that we are witnessing at present.

The new and unexpected result of experiments with the historical financial time series
of the PORTFOLIO model is the observation that the minimal prediction errors do not
provide the maximal profits. This is an important problem for further research.
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Apie investavimo strategijų optimizavimą virtualios finansų rinkos
kontekste vertinant riziką individualiu požiūriu

Jonas MOCKUS, Igor KATIN, Joana KATINA

Optimalaus finansų investavimo (Portfelio) uždavinys buvo tiriamas pagrindinių finansinių organi-
zacijų ir įžymių mokslininkų. Už modernios portfelio teorijos (MPT) sukūrimą buvo suteikta Nobe-
lio premija. Šių darbų tikslas buvo sukurti priemones aktyvų įvairinimui priklausomai nuo priimtino
rizikos lygio.

Skirtingai nuo MPT bei kitų investavimo modelių, šio darbo praktinis tikslas yra sukurti lengvai
pritaikomą finansų rinkos modelį įvertinant individualius vartotojo poreikius bendros naudingumo
teorijos kontekste. Šis tikslas yra naujas darbo elementas išskiriantis jį iš kitų panašių darbų nes
čia optimizavimas vykdomas strategijų aibėje. Eksperimentai parodė, kad minimali prognozavimo
paklaida nebūtinai maksimizuoja pelnus. Tai yra antras darbo naujumo elementas.


