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Abstract. We consider the Multilevel Uncapacitated Facility Location Problem (MLUFLP) and
propose a new efficient integer programming formulation of the problem that provides optimal so-
lutions for the MLUFLP test instances unsolved to optimality up to now. Further, we design a parallel
Memetic Algorithm (MA) with a new strategy for applying the local search improvement within the
MA frame. The conducted computational experiments show that the proposed MA quickly reaches
all known optimal and best known solutions from the literature and additionally improves several
solutions for large-scale MLUFLP test problems.
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1. Introduction

There are many papers in the literature dealing with multilevel location problems, due to
numerous areas of their applications. Multilevel facility location models are adequate for
networks in which facilities to be located have certain common properties, but also some
important differentiating feature (for example, a different kind of service that they offer),
which allows us to group them into levels. These facilities interact with each other, so that
it is not possible to locate facilities in each level independently from other levels.

Multilevel location problems often arise when modeling supply chains, transportation
networks, postal or other delivery networks, energy distribution networks, etc. In these
problems, it is necessary to design a hierarchical distribution network, i.e. to locate ware-
houses, suppliers or distribution centers on different network levels and to assign a supply
path to each user, such that the network’s efficiency is maximized and transportation (or
other) costs reduced to a minimum. Therefore, these problems are often named hierar-
chical location problems in the literature. Multilevel networks also appear in the public
sector, for example in education system, health service system, multilevel organization of
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bank units, etc. Telecommunicationsare another important application area of hierarchical
location problems, i.e. designing mobile communication networks, computer networks,
Internet and satellite communication, etc. In these networks, different sets of facilities
are required, equipped with different devices and carrying out different tasks. Traffic (e.g.
data, signals) is routed via facilities located on different network levels in order to reach
an access node.

The Multilevel UncapacitatedFacility Location Problem is a generalization of the well-
known simple plant location problem, which is one of the fundamental and most stud-
ied models in facility location theory (Drezner and Hamacher, 2002; ReVelle and Eiselt,
2005).

The MLUFLP considers a set of facilities F (|F | = m) partitioned into k levels
F1, . . . ,Fk and a set of clients D (|D| = n). Transportation costs cij for each (i, j) ∈
⋃k−1

l=1
(Fl+1×Fl)∪ (D×Fk) are given and fixed costs fi for establishing a facility i ∈ F

are assumed. A feasible solution is evaluated as a sum of the fixed costs of the located fa-
cilities, plus the clients’ transportation costs. A client’s transportation costs are calculated
as the sum of the transportation cost from the client itself to the first assigned facility i ,
i ∈ Fk , and the transportation costs between successive facilities in the sequence of facil-
ities assigned to the client. The objective of the MLUFLP is to minimize the sum of the
total transportation costs and the fixed costs for establishing the facilities.

The MLUFLP is NP-hard, since it represents a generalization of the simple plant lo-
cation problem that is proven to be NP-hard (Krarup and Pruzan, 1983). Improved in-
approximability results and hardness factor for the MLUFLP were recently presented in
Krishnaswamy and Sviridenko (2012).

Most of the papers that deal with different variants of MLUFLP consider theoretical
analysis, such as the works of Aardal et al. (1999), Bumb and Kern (2001), Ageev (2002),
Ageev et al. (2005) and Zhang (2006). These papers contain mainly theoretical aspects
of the problem and provide no computational results. In the paper of Edwards (2001),
the authors construct a shortest path-based algorithm (SP) for solving the MLUFLP and
implement it. They also benchmark several previously proposed approaches for the MLU-
FLP: a linear program solution rounding 3-approximation algorithm MLRR in Aardal et

al. (1999), a path reduction of the k-level facility location problem to a single-level prob-
lem (PR-RR) in Chudak and Shmoys (1999) and a local improvement 3-approximation
algorithm for the path reduction PR-LI, in Charikar and Guha (1999). In the paper of Es-
pejo et al. (2003), the authors treat the maximal covering two-level location problem. In
Galvão et al. (2002) a 3-level facility location model is considered, with an upper bound
on the maximum number of facilities to locate at each level; two heuristic methods are
proposed for solving the problem.

Capacitated variants of the two-level facility location problem are extensively studied
in the literature (Bloemhof et al., 1996; Tragantalerngsak, 1997; Pirkul and Jayaraman,
1998; Charikar and Guha, 1999; Klose, 1999; Tragantalerngsak et al., 2000; Klose, 2000).
In the paper (Eitan et al., 1991), the authors propose a mixed integer linear programming
model of the capacitated variant of the MLUFLP with different hierarchical relationships
between the nodes and assume both fixed and variable costs in the model.



Memetic Algorithm for Solving the Multilevel Uncapacitated Facility Location Problem 441

Table 1
Fixed costs for establishing facilities.

f1 f2 f3 f4 f5 f6 f7 f8

3 2 2 4 4 1 1 1

Table 2
Transportation costs from facilities on the first level to facilities on the second level.

f1 f2 f3

f4 9 6 8
f5 8 6 5
f6 9 5 9
f7 7 7 7
f8 8 9 5

The two-level location problem with modular node capacities has been recently studied
in Addis et al. (2012), where a new formulation and an exact branch-and price algorithm
are proposed for solving this problem. Several dynamic capacitated and uncapacitated
variants are considered in Hinojosa et al. (2000), Melachrinoudis and Min (2000), Canel
et al. (2001), Dias et al. (2008) and Lunday and Sherali (2010).

In the paper of Marić (2010), an evolutionary-basedapproach for solving the MLUFLP
is presented. A binary encoding scheme is used with a corresponding objective function
that implements a dynamic programming approach for finding the sequence of located
facilities on each level to satisfy clients’ demands. The proposed genetic algorithm (GA)
reached all known optimal solutions for smaller size test instances and provided solutions
for large-scale problem dimensions with up to n= 2000 clients and m= 2000 facilities.
Moreover, all optimal/best known solutions are obtained by the GA for a single-level vari-
ant of the problem (simple plant location problem).

The MLUFLP is also studied in Gabor et al. (2010). The authors propose a new integer
programming formulation for the multilevel uncapacitated facility location problem and a
novel 3-approximationalgorithm based on LP-rounding. In the case of a one-level problem
(k = 1), this algorithm reduces to the 3-approximation algorithm described in Chudak and
Shmoys (2003). For multiple levels, the algorithm must provide a path of open facilities
for each demand node. It exploits the level structure preserved by the integer program:
if one knows which facilities should be opened at the lowest r levels (r > 1) in order to
ensure optimality, the problem is reduced to a facility level problem on k − r levels. On
each level, the facilities are opened according to a procedure similar to the one used in
Chudak and Shmoys (2003) for the one-level problem. However, the authors provide no
computational results in order to compare the effectiveness of the proposed formulation
and the performance of the proposed 3-approximation algorithm.

Let us consider an example of the MLUFLP network with n= 10 clients, m= 8 po-
tential facilities located on k = 2 levels. The first level F1 contains 3 potential facilities,
while the second level F2 includes 5 potential facilities. The fixed costs for establishing
facilities f1, . . . , f8 are given in Table 1, while Table 2 shows transportation costs from
facilities f1–f3 on the first level to facilities f4–f8 on the second level. The transportation
costs from facilities on the second level to clients c1–c10 are presented in Table 3.
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Table 3
Transportation costs from facilities on the second level to clients.

f4 f5 f6 f7 f8

c1 5 6 6 8 7
c2 5 9 9 7 9
c3 5 6 8 9 7
c4 7 6 5 6 8
c5 6 5 6 7 7
c6 7 8 5 8 8
c7 9 6 6 7 7
c8 6 7 7 8 5
c9 9 5 8 8 6
c10 8 8 9 9 8

Fig. 1. Optimal solution for a network with 2 levels, 8 facilities and 10 clients.

The optimal solution is presented in Fig. 1, which shows that the established facilities
are f2 and f3 on Level 1 and f4, f6 and f8 on Level 2. The sequences of facilities (r, s),
r ∈ F2, s ∈ F1, assigned to each client can be seen from Fig. 1. The objective function
value of the optimal solution is 119.

2. Mathematical Formulations of the MLUFLP

2.1. Previous Mathematical Formulations

In this section we first present the standard integer programming formulation of the
MLUFLP from Edwards (2001). This formulation, denoted as the MLUFLP-1, consid-
ers the assignment of a client j ∈D to a valid sequence p ∈ P of facilities, where the set
of all valid sequences of facilities is defined by P = Fk × · · · × F1. The transportation
cost of the assignment of a client j ∈D to a sequence p = (ik, . . . , i1), p ∈ P is equal to
cpj = cjik + cik ik−1

+ · · · + ci2i1 .
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The MLUFLP-1 involves the following binary decision variables:

yi =

{

1, if i ∈ F is open,
0, otherwise,

i ∈ F,

xpj =

{

1, if client j is assigned to the sequence p,
0, otherwise,

p ∈ P, j ∈D.

Using the notation mentioned above, the problem can be written as (formulation
MLUFLP-1):

min

∑

i∈F

fiyi +
∑

p∈P

∑

j∈D

cpjxpj , (1)

∑

p∈P

xpj = 1, for each j ∈D, (2)

∑

∀p:i∈p

xpj 6 yi, for each i ∈ F, j ∈D, (3)

xpj ∈ {0,1}, for each p ∈ P, j ∈D, (4)

yi ∈ {0,1}, for each i ∈ F. (5)

The objective function (1) minimizes the sum of overall transportation costs and the
fixed costs for establishing facilities. Constraints (2) ensure that every client is assigned to
a sequence of facilities, while constraints (3) guarantee that any facility in a sequence used
by some client is paid for. Constraints (4) and (5) reflect the binary nature of variables xpj

and yi .
Another mathematical formulation of the MLUFLP was proposed in Gabor et al.

(2010). We will refer to it as the MLUFLP-2. In Gabor et al. (2010), authors use a no-
tation slightly different from the MLUFLP-1. In the original formulation of MLUFLP-2,
which we will also use, the facility levels are reversed, so that a client d ∈D is assigned to
a facility i ∈ F1 and then successively to facilities from F2,F3, . . . ,Fk . Accordingly, the
transportation costs cij are given for each (i, j) ∈

⋃k−1

l=1
(Fl ×Fl+1)∪ (F1×D). Another

minor difference is that the MLUFLP-2 involves the demands for each customer k ∈D,
denoted as wk . Therefore, in the objective function calculation, the transportation costs
per unit of flow cij are multiplied with these demands. Since our research is focussed on
the variant of the MLUFLP with no clients’ demands, by putting wk = 1 for all k ∈ D

in the MLUFLP-2, this formulation becomes equivalent to the MLUFLP-1, which was
confirmed by computational experiments in Section 5.1. Note that in our testings of the
MLUFLP-2 formulation, we needed to re-numerate the levels to ensure the consistency,
i.e. F1 becomes Fk , F2 becomes Fk−1, . . . ,Fk becomes F1.

The binary decision variables of the MLUFLP-2 are:

yi =

{

1, if facility i is open,
0, otherwise,

i ∈ F,
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xdi =

{

1, if demand point d is assigned to facility i,
0, otherwise,

i ∈ F1, d ∈D,

zdij =

{

1, if demand point d uses edge (i, j),
0, otherwise,

(i, j) ∈ Fl × Fl+1, l = 1, . . . , k − 1, d ∈D.

The mathematical formulation MLUFLP-2 is as follows:

min

∑

i∈F

fiyi +
∑

j∈D

∑

i∈F1

wjcijxji +
∑

d∈D

k−1
∑

l=1

∑

i∈Fl

∑

j∈Fl+1

wdcij zdij , (6)

∑

i∈F1

xdi = 1, for each d ∈D, (7)

∑

j∈F2

zdij 6 xdi, for each i ∈ F1, d ∈D, (8)

∑

j∈Fl+1

zdij 6
∑

j ′∈Fl−1

zdj ′i , for each i ∈ Fl, d ∈D, l = 2, . . . , k − 1, (9)

xdi 6 yi, for each i ∈ F1, d ∈D, (10)
∑

j∈Fl−1

zdji 6 yi, for each i ∈ Fl, d ∈D, l = 2, . . . , k, (11)

xdi ∈ {0,1}, for each d ∈D, i ∈ F1, (12)

zdij ∈ {0,1}, for each (i, j) ∈ Fl × Fl+1, l = 2, . . . , k, d ∈D, (13)

yi ∈ {0,1}, for each i ∈ F. (14)

Constraints (7) ensure that each demand point d ∈D is connected to exactly one facil-
ity on the first level. Constraints (8) say that a demand point d uses an edge (i, j) ∈ F1×F2

only if d is assigned to facility i ∈ F1. Constraints (9) ensure that a demand point d uses an
edge (i, j) ∈ Fl×Fl+1, l = 2, . . . , k−1 only if d uses an edge (j ′, i), for some j ′ ∈ Fl−1,
but for the same i . Finally, constraints (10) and (11) respectively indicate that a demand
point d will be assigned to a facility i ∈ F1 and will use an edge (j, i) ∈ Fl−1 × Fl ,
l = 2, . . . , k, only if facility i is open. All variables used in this model are binary by con-
straints (12)–(14).

Note that the number of variables in the MLUFLP-2 has decreased from an exponential
one in the MLUFLP-1

|D| · |F1| · |F2| · · · |Fk| + |F |

to a polynomial one:

|F | + |D| · |F1| + |D| ·

k−1
∑

l=1

|Fl | · |Fl+1|.
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The number of constraints in the MLUFLP-2 is polynomial. However, it is greater than
the number of constraints in the MLUFLP-1:

|D| + 2|D| ·

k−1
∑

l=1

|Fl | + |D| · |Fk|

constraints versus |D| + |F | · |D| in the MLUFLP-1 from Edwards (2001).

2.2. New Mathematical Formulation

A new mathematical formulation, named MLUFLP-3 uses the same notation as the
MLUFLP-1. Let’s observe the set of clients D as a new level, a level of the k + 1-th
order, i.e. let’s introduce the identity D ≡ Fk+1. Instead of the binary variables xpj , the
new formulation uses integer variables zl

is > 0 representing the number of clients from
D that are supplied via link (i, s), where i ∈ Fl and s ∈ Fl−1 belong to two adjacent lev-
els l and l − 1 and l = 2, . . . , k + 1. Since we defined D ≡ Fk+1, we allow a client’s
node to be the left side node of the considered link, i.e. i ∈ Fl+1. The binary variables
yi ∈ {0,1}, i ∈ F remain, indicating whether a facility is established at a location i or not.
The transportation costs cij are given as in MLUFLP-1.

The new integer programming formulation of the MLUFLP-3 is as follows:

min

m
∑

i=1

fiyi +

k+1
∑

l=2

∑

i∈Fl

∑

s∈Fl−1

cisz
l
is , (15)

∑

i∈Fk

zk
ji = 1, for each j ∈D ≡ Fk+1, (16)

∑

s∈Fl−1

zl
is =

∑

r∈Fl+1

zl+1

ri , for each i ∈ Fl, l = 2, . . . , k, (17)

zl+1

ri 6 nyi, for each i ∈ Fl , r ∈ Fl+1, l = 1, . . . , k, (18)

zl
is ∈N∪ {0}, for each l = 2, . . . , k + 1, i ∈ Fl , s ∈ Fl−1, (19)

yi ∈ {0,1}, for each i ∈ F. (20)

The objective function (15) minimizes the sum of overall transportation costs and
fixed costs for establishing facilities. Constraints (16) ensure that every client (at the level
Fk+1 =D) is supplied from exactly one facility at the level k. Constraints (17) guarantee
that for each facility i on each level l, the number of “incoming” client assignments in the
node i is equal to the number of “outgoing” assignments. By constraints (18) we make
sure that the clients are supplied via the established facilities only and that the number
of clients that use facilities on two subsequent levels does not exceed the total number
of clients. Constraints (19) imply that the variables zl

is take non-negative integer values,
while constraints (20) reflect the binary nature of the variables yi .
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The number of variables of the MLUFLP-3 is also polynomial, as in the MLUFLP-2:

|F | +

k+1
∑

l=2

|Fl | · |Fl−1| = |F | + |Fk+1| · |Fk| +

k
∑

l=2

|Fl | · |Fl−1|

= |F | + |Fk| · |D| +

k−1
∑

l=1

|Fl+1| · |Fl |.

By comparing the expressions for the number of variables in the MLUFLP-2 and
MLUFLP-3, we can notice that the sum that occurs in the expression for the MLUFLP-2
is additionally multiplied by |D|. Therefore, we conclude that the number number smaller
compared to the number of variables in the MLUFLP-2.

The number of constraints in the MLUFLP-3 is:

|D| +

k
∑

l=2

|Fl | +

k
∑

l=1

|Fl | · |Fl+1|

= |D| +

k
∑

l=2

|Fl | +

k−1
∑

l=1

|Fl | · |Fl+1| + |Fk+1| · |Fk |

= |D| − |F1| + |Fk | +

k−1
∑

l=1

|Fl | +

k−1
∑

l=1

|Fl | · |Fl+1| + |D| · |Fk|

= |D| + |D| · |Fk| − |F1| + |Fk| +

k−1
∑

l=1

(1+ |Fl |) · |Fl+1|.

This number of constraints in the MLUFLP-3 is smaller compared to the the MLUFLP-2,
as long as 2|D|> 1+ |Fl | and the number of facilities on the level Fk is not significantly
greater than on F1.

The conducted computational experiments confirmed that formulations MLUFLP-1
and MLUFLP-3 are equivalent (see Section 5.1) and the formal mathematical proof of the
equivalence is given in Appendix.

3. A Proposed Memetic Algorithm for Solving the MLUFLP

Evolutionary algorithms have proved to be robust and effective heuristics for solving vari-
ous optimization problems. However, there are many situations in which a pure evolution-
ary algorithm does not perform particulary well and various hybridizations of the EA with
other methods have been proposed (Misevičus, 2006; Fan et al., 2006; Chen et al., 2008;
Misevičus and Rubliauskas, 2009; Prestwich et al., 2009). Hybridizations of evolutionary
algorithms with local search methods are denoted as memetic algorithms in the literature
(Moscato and Cotta, 2003, 2007; Neri et al., 2012).
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The role of the evolutionary part in a memetic algorithm (MA) is to focus the search
on promising regions of the search space. Once the promising areas with high quality so-
lutions have been identified, local search methods are applied in order to determine the
best solutions in these areas. This type of hybridization showed to be very successful for
many optimization problems in the literature. The main idea of a basic memetic algorithm
(Moscato and Cotta, 2007) is to apply a local search method on the newly-generated in-
dividuals that are candidates for entering a new generation. Individuals that are improved
by the means of the applied local search will enter a new generation if they satisfy certain
criteria. However, it turns that for our problem, a basic MA approach is not so efficient in
finding good-quality solutions, especially for large-scale problem dimensions.

In this paper, we propose a modification in the strategy of combining the evolutionary
approach with a local search method. The idea is to apply the local search occasionally,
only in situations when the evolutionary method gives no improvement of the objective
function value through a significant number of iterations or when it converges extremely
slowly. Another difference from a basic MA method is that we do not apply the local
search on the whole population – we search for improvements in the neighborhoods of
a certain number of individuals only. In this way, we give a chance to individuals with
different quality of their genetic material to be improved. Even small improvements of
individuals with worse objective function values may direct the evolutionary method to
the global optimum through further applications of evolutionaryoperators and local search
procedures in the successive MA iterations.

The purpose of the described strategy is to give an impulse to the evolutionary al-
gorithm in cases when it would most probably converge to a local optimum trap. The
local search is applied only to some, not all, individuals in the population, which has a
twofold effect: it does not significantly decrease the diversity of the genetic material in
the population and it does not excessively increase the running time. The applied strategy
showed to be adequate for solving the MLUFLP efficiently, especially large-scale prob-
lem instances. Preliminary computational experiments show that the improvements of the
MLUFLP solutions by involving this strategy become more obvious as the problem di-
mension increases. In addition, we applied several parallelization techniques in order to
achieve speed ups, which are most conspicuous when solving larger MLUFLP instances.

The basic scheme of the proposed MA approach is presented in Algorithm 1.
An initial population, containing 150 individuals (chromosomes), is sequentially gen-

erated pseudo-randomly, thus providing a good initial diversity of the genetic material.
From the initial random seed for the current MA run, we generate 150 different random
seeds and assign one seed to each chromosome in the population. This step is performed
in order to ensure the same behavior of individuals, no matter if the algorithm is run in
parallel or sequentially.

Differently from a basic MA approach, we do not apply a local search in order to
improve our randomly generated initial population. For our problem, the use of a local
search method in this stage of the MA showed to be time-expensive, especially for larger
problem dimensions. Our computational experiments show that the absence of a local
search method for improving the initial population doesn’t affect solutions’ quality.
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Algorithm 1: Memetic algorithm.

randomly generate initial population;
while stopping condition not reached do

if in previous N generations there were no improvements then

select chromosomes for local search;
apply parallel local search on selected chromosomes;

end

apply evolutionary operators:
do parallel fitness calculation;
do selection;
do parallel two point crossover;
do parallel mutation;

parallel calculation of the objective function value for the current generation;

end

In each generation of the MA, the worst 1/3 of the population is replaced, while the
remaining 2/3 of the population is directly passed to the next generation. The chromosome
and the objective function value of the best individual are kept and updated every time an
improvement is achieved.

In each iteration, the algorithm checks whether or not there was some improvement
of the best individual in the previous N consecutive MA generations. If not, we apply the
local search procedure, but only on selected individuals from the MA population. Evo-
lutionary operators are further applied in each MA iteration: parallel fitness calculation,
selection, parallel crossover and parallel mutation. Finally, the objective function of newly
created individuals is calculated in parallel.

The proposed MA uses a combination of three stopping criteria, i.e. the algorithm
stops if one of the following conditions is satisfied:

• maximal number of 5000 generations;
• no improvement of the best individual is achieved through 2000 consecutive MA

generations;
• the MA reaches the time limit of 1 hour.

The encoding of the solutions and evolutionary operators used in the proposed
memetic algorithm are customized for the problem under consideration. Parallel program-
ming techniques are implemented in order to improve the efficiency of the algorithm. Sev-
eral strategies are applied to increase the diversity of individuals and keep the algorithm
away from the local optimal trap. In the following sections, all aspects of the proposed
memetic algorithm will be explained in details.

3.1. Encoding and Objective Function Calculation

The proposed algorithm uses a binary encoding, i.e. each solution is represented by a bi-
nary string (chromosome) of the length m= |F |. Each bit in the chromosome corresponds
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to one potential facility in the network. If the bit on the k-th position in the chromosome
takes the value of 1, it means that a facility is located at the k-th node. Zero on the k-th
position in the chromosome indicates that the k-th node is not chosen for establishing a
facility.

For example, chromosome 01110101 corresponds to the optimal solution presented in
Example 1. Facilities are established at nodes 2, 3, 4, 6 and 8 which gives us the values of
variables yi : y2 = y3 = y4 = y6 = y8 = 1 and y1 = y5 = y7 = 0.

The objective function is calculated in the following way. From the chromosome we
obtain the locations of the established facilities, and therefore, the values of the variables
yi , i = 1, . . . ,m. A chromosome is labeled “correct”, if it corresponds to a feasible so-
lution of the MLUFLP, i.e. if there exists at least one established facility at each level l,
l = 1, . . . , k. “Incorrect” chromosomes are corrected by randomly locating one facility at
each level with no previously established facilities. Since crossover and mutation opera-
tors may produce “incorrect” chromosome, the procedure of correcting newly generated
infeasible individuals is done in each MA generation. For good performance of the MA it
is important to preserve the property of “correctness” of chromosomes (i.e. feasibility of
solutions) in the MA population.

The main idea in calculating the objective function value for a given chromosome
is to decrease the number of potential paths. Considering all possible paths is time and
memory consuming, and in this case problems of practical size would remain unsolved.
The objective function is calculated by solving the subproblem of the MLUFLP, named
the FixedMLUFLP, obtained from the MLUFLP by fixing the established facilities, with
an additional condition that each level contains at least one located facility. Since each
(corrected) chromosome in every MA generation has this property, it may be used as a
starting point for the FixedMLUFLP. The FixedMLUFLP has polynomial complexity and
may be solved by using the dynamic programming approach, proposed in Marić (2010).
In the same paper, it was proven that the FixedMLUFLP has optimal substructure of so-
lutions, which was stated by the following theorem:

Theorem 1. The FixedMLUFLP can be polynomially reduced to the shortest path prob-

lem in a directed acyclic graph (DAG).

For the proof of Theorem 1, we refer to paper of Marić (2010).
After solving the FixedMLUFLP to optimality, the solutions obtained from the dy-

namic programminggive us the correspondingallocations and the objective function value
of the MLUFLP for the considered feasible solution.

3.2. Evolutionary Part of the MA

For evaluating the quality of individuals in the population, we apply parallel calculation
of the fitness function. A fitness value is assigned to every individual in the population
and it represents its chances to take part in producing the next generation. Therefore, it
is important that a fitness value reflects the quality of the individual in some “real” way.
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Fitted individuals in the population succeed in creating offspring, while the unfit ones are
removed from the population.

In the literature there are different ways to define a fitness of a individual, such as
direct mapping from the objective function, fitness ranking, fitness remapping, etc. Fit-
ness ranking and fitness remapping are often used in evolutionary algorithms, since they
are performed within a chosen selection operator in an efficient manner. In practice, fit-
ness ranking is realized within a rang-based selection operator, while fitness remapping
is implemented within a tournament-based selection.

In our algorithm, we use the strategy of fitness remapping within a tournament-based
selection operator. This strategy is not time consuming and it works well for both mini-
mization and maximization problems. The parallel fitness remapping used in our EA is
applied as follows. Chromosomes are searched in parallel in order to obtain the maxi-
mum and the minimum objective function values: maxobj and minobj respectively. In the
second parallel pass through the array of chromosomes, we calculate the fitness of each
chromosome fitness(chr) in the following way:

fitness(chr)=
maxobj−obj(chr)

maxobj−minobj

,

where obj(chr) is the objective function value of the current chromosome.
The applied strategy of fitness calculation follows the nature of evolutionary based

algorithms and gives good results in practice. By implemented fitness remapping, we in-
crease the effects of tournament-based selection as the algorithm progresses, which leads
the algorithm to high-quality solutions.

In order to ensure the diversity of individuals and prevent a premature convergence,
duplicate individuals are removed by setting their fitness to 0. Further, the number of
individuals with the same objective (fitness) value, but different chromosomes, is limited
to some constant parameter. This is also done by setting their fitness value to 0.

As a selection method, we used the fine grained tournament selection, described in
Filipović (2003). Instead of having an integer tournament size, as in the classic tourna-
ment selection, this selection operator is performed over 50 tournaments of different sizes
that are executed sequentially. Each of 150 individuals from the population may be ran-
domly chosen to participate in one of the tournaments. Individuals that are tournament
winners are further subjected to the parallel crossover and parallel mutation operators. In
our implementation, in 60% of the cases the tournament size is 5, and 6 otherwise.

In the initialization part of the MA, an array of two-point crossover operators is cre-
ated and random seeds for those operators are generated and assigned, one to each op-
erator. In each generation of the MA, pairs of parent-chromosomes that will exchange
their genetic material are chosen using the selection method described above. A differ-
ent crossover operator is applied to each pair of parent-chromosomes, producing two
offspring-chromosomes. The parents exchange genes after the crossover points, which are
chosen using the random seed of the operator. For these reasons the crossover step will
produce the same results, regardless of if it is performed in parallel or sequentially.
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In our MA implementation, the probability that a chosen pair of parent-chromosomes
will exchange their genes and create new chromosomes is set to 0.8. Otherwise, if no gene
exchange occurs, the offspring-chromosomes remain identical to their parents.

The main purpose of mutation is to counteract premature convergence and to maintain
enough diversity in the population. The diversity of genetic material is usually large at the
beginning of a run and decreases with time. The appearance of frozen bits (Stanimirović
et al., 2007) in later MA stages rapidly increases the possibility of premature convergence.
Therefore, we have used the concept of a mutation operator with frozen bits (Stanimirović
et al., 2007), which has been parallelized in our MA approach.

In the initialization part of the MA, we create an array of mutation operators. For each
individual in the population, we apply one mutation operator from the created array. Each
mutation operator works by changing a randomly selected bit in the chromosome (0 to
1, 1 to 0) with certain probability (mutation rate). Mutation rate depends only on length
of the chromosome m, and whether a bit to be mutated is frozen or not. The probability
of changing a non-frozen bit (basic mutation rate) is set to 0.5

m
, which means that one bit

(out of m) will be changed with the probability of 0.5. Frozen bits are mutated with 4
times higher probability, which helps in maintaining the diversity of genetic material in
the population.

The Parallel Frozen Bits Detector is applied in order to obtain the positions of frozen
bits in chromosomes. This procedure constructs two masks of the same length as an in-
dividual’s genetic code. One mask stores the positions of frozen zeros, and the other the
positions of frozen ones in the genetic code.

The conducted computational experiments showed that the parallelization techniques,
implemented in the proposed MA, ensure significant improvements in the sense of CPU
time. A comparison of the sequential and the enhanced, parallelized version of the MA
on a chosen subset of the challenging MLUFLP instances is presented in Section 5.3.

4. Local Search Improvement Procedure of the MA

An important question when designing a memetic algorithms is how to incorporate a local
search method so that a good balance between the global and a local search is achieved. If
the effect of local search is too strong, the algorithm may quickly converge to local optima
and the algorithm is likely to rediscover the same local optimum over and over again. In
addition, an excessive local search quickly leads to a loss of diversity within the population
(Neri et al., 2012).

The importance of this problem has been recognized by Hart in Hart (1994), who
posed four basic questions regarding the usage of a local search within MA frame:

• How often should a local search be applied? (local search frequency).
• On which solutions should a local search be used? (local search probability).
• How long should a local search be run? (local search depth).
• How efficient does a local search need to be? (local search efficiency).



452 M. Marić et al.

These four questions are directed to determining four local search parameters: local
search frequency, local search probability, local search depth and local search efficiency,
respectively. In concrete implementations of memetic algorithms, one can find different
combinations and different values of these parameters related to the use of local search,
which define various mechanisms for balancing global and local search. The list of mech-
anisms used in the literature is by far not complete, but the combination of local search
frequency and the local search depth are considered as the most typical ones (Neri et al.,
2012). In basic MA implementations, a local search is usually applied with a fixed fre-
quency on the whole population of individuals. Another strategy is to apply a local search
probabilistically with certain value of local search probability parameter, which is usually
fixed in basic MA implementations. Regarding the third question posed by Hart, the run-
ning time of a local search is often considered as the local search depth parameter. Other
balancing mechanisms define the local search depth parameter as the size of the neigh-
borhood of a solution that is subject to a local search. The local search depth parameter
may vary through MA iterations, but it is more often set to some fixed value. The quality
of the obtained improvement is usually used as a local search efficiency parameter, which
is related to the fourth question.

Differently from a basic MA concept (see Moscato and Cotta, 2003, 2007; Neri et al.,
2012), we use a variable local search frequency in designing our MA approach. More
precisely, we apply local search only in cases when there are strong indications that the
evolutionary algorithm would converge to a local optimum. Further, local search is applied
only to a portion of the search space, giving a chance to individuals with different fitness
values to be improved. The local search depth is restricted to an individual’s neighborhood
of size 1 in one local search iteration, i.e. we try to invert one bit in the chromosome at
a time, trying to obtain an individual with a better fitness value. Even small occasional
improvements provide a good impulse for the evolutionary algorithm to perform better
and escape from a local optimum trap. The results of preliminary experiments showed the
efficiency of the MA when only 10% of the population is subjected to the local search
procedure in cases when no improvement is obtained after 150 consecutive generations.
The conducted computational results confirm that such combination of a variable local
search frequency, fixed local search probability and fixed local search depth represent a
good mechanism for balancing the evolutionary (global) and the local search when solving
the MLUFLP.

Algorithm 2 describes the functioning scheme of the Local search procedure within
the memetic algorithm.

Local search procedure goes through a chromosome and inverts a single bit value
(0 to 1, 1 to 0), starting at the bit position 1, which corresponds to the binary variable y1,
i.e., opening/closing the facility 1. If the new chromosome is valid and its objective func-
tion is improved, the initial chromosome is replaced with the new one. The described
procedure is repeated until no further improvement is achieved. There is no time limit
imposed on the local search of an individual.

We have further implemented parallelization in the local search procedure. If the MA
obtained no improvement within N consecutive generations, we apply the parallel lo-
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Algorithm 2: Local search.

foreach R-th chromosome chr in population do

obj← objective value of chr;
improvement← true;
while improvement do

improvement← false;
k← 1;
while k 6 chromosme length and not improvement do

if inverting the k-th bit on chr gives a valid chromosome then

new_chr← chr with inverted k-th bit;
new_obj← objective value of new_chr;
if new_obj < obj then

obj← new_obj;
chr← new_chr;
improvement← true;

end

end

k← k + 1;

end

end

end

cal search procedure on every R-th individual in the MA population looking for an im-
provement in the neighborhood of one of the selected individuals. The local search pro-
cedure is completely deterministic and affects only the chromosome on which it is per-
formed.

5. Computational Results

In this section, computational results for the proposed MA and comparisons with existing
methods for solving the MLUFLP are presented. All three integer programming formula-
tions are implemented and tested by using CPLEX 12.1 solver in order to obtain optimal
solutions for considered MLUFLP instances and compare their effectiveness.

Computational experiments were carried out on an Intel Core i7-860 2.8 GHz (quad-
core processor) with 8 GB RAM memoryunder Windows 7 Professional operating system.
The MA method was implemented by using the .NET Framework.

In implementing parallelization elements in the MA, we followed the idea of threads
that are being executed on different processors. We adopted the concept of threads with
shared memory architecture and used it in our experiments. For creating threads on dif-
ferent processors, we used the .NET Task Parallel Library.
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Table 4
Data sets used in our computational experiments.

Data set Number of levels Dimension Description

ORLIB instances k = 1 50 6 n6 1000 Standard ORLIB data set (Beasley, 1996);
16 6m 6 100 Initially designed for the UFLP;

Contains small and medium size test problems.

M∗ instances k = 1 300 6 n6 2000 Large scale instances;
300 6 m6 2000 Introduced in Raidl and Gottlieb (2005).

Modified UFLP
instances

2 6 k 6 4 50 6 n6 1000 Based on standard UFLP instances;
16 6m 6 100 Generated from ORLIB instances (Beasley, 1996)

for the UFLP;
Introduced in Marić (2010).

Large-scale
MLUFLP
instances

2 6 k 6 5 300 6 n6 2000 Challenging large-scale data set for the MLUFLP;
300 6 m6 2000 Derived from the M∗ data set from (Raidl and

Gottlieb, 2005);
Introduced in Marić (2010).

Computational experiments in this study were carried out on a large number of the
MLUFLP instances from the literature. A brief description of data sets used in our tests
is given in Table 4.

For more detailed explanation on the benchmark data set for the MLUFLP we refer to
Marić (2010). Note that the instances from Edwards (2001) are not available and they are,
in most cases, based on standard ORLIB instances.

5.1. Experimental Comparisons of the MLUFLP Formulations

In Table 5 we present computational results of the three MLUFLP formulations on
instances from data sets described above. In the first column, an instance’s name is
given, which includes the information on the original instance, the number of lev-
els, the facilities on each level and the clients respectively. For example, the instance
capb_3L_12_25_63.1000 is created by modifying the ORLIB instance capb and involves
3 levels with 12, 25 and 63 facilities respectively, and 1000 clients.

The following two columns contain the results of the MLUFLP-3 model: solutions
on the tested data set obtained by the CPLEX 12.1 solver and the corresponding total
CPU times. The remaining columns show the results of the MLUFLP-2 and MLUFLP-1
models, presented in the same way as for the MLUFLP-3. In cases when a tested model
gave no solution, a dash “−” is written.

From the results given in Table 5, it is obvious that the MLUFLP-3 outperforms both
MLUFLP-1 and MLUFLP-2 formulations. It gives optimal solution for 27 tested instances,
providing optimal solution for 13 instances that were out of reach of previous two MLU-
FLP formulations. The average running time for the MLUFLP-3 is 1762.750 seconds,
which is less than half an hour. For the remaining instances from the MLUFLP data sets
mentioned above, no optimal solution is found due to time or memory limits. Comparing
the average running times of the three formulations on the first 14 instances in Table 5, we
notice that the MLUFLP-3 is slightly faster than the MLUFLP-1, while the MLUFLP-2 is
around three times slower compared to both MLUFLP-3 and MLUFLP-1.
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Table 5
Comparison of the MLUFLP formulations

Instance name Optsol MLUFLP-3 MLUFLP-2 MLUFLP-1

t (s) t (s) t (s)

cap71_1L_16.50 932615.750 0.025 0.020 0.010

cap71_2L_6_10.50 1813375.513 0.041 0.039 0.024

cap71_3L_2_5_9.50 4703216.306 0.030 0.054 0.041

cap101_1L_25.50 796648.438 0.028 0.029 0.031

cap101_2L_8_17.50 1581551.394 0.065 0.049 0.046

cap101_3L_3_7_15.50 3227179.813 0.048 0.100 0.123

cap131_1L_50.50 793439.563 0.027 0.105 0.041

cap131_2L_13_37.50 1592548.450 0.150 0.202 0.222

cap131_3L_6_14_30.50 3201970.463 0.131 0.363 1.262

cap131_4L_3_7_15_25.50 3630297.669 0.109 0.302 5.199

capa_1L_100.1000 17156454.478 1.866 5.787 4.043

capb_1L_100.1000 12979071.581 2.000 5.694 3.759

capc_1L_100.1000 11505594.329 29.796 43.477 29.956

mq1_1L_300.300 3591.273 275.684 876.944 284.198

Average 22.143 66.655 23.497

capa_2L_30_70.1000 31524957.410 2407.986 – –
capa_3L_15_30_55.1000 40725103.254 41.427 – –
capa_4L_6_12_24_58.1000 54643362.801 169.598 – –
capb_2L_35_65.1000 25224163.283 1197.128 – –
capb_3L_12_25_63.1000 34978486.506 34.164 – –
capb_4L_6_13_31_50.1000 53034149.833 191.909 – –
capc_2L_32_68.1000 22762468.838 548.607 – –
capc_3L_13_27_60.1000 35540649.433 332.641 – –
capc_4L_4_9_27_60.1000 57017358.038 322.868 – –
mq1_2L_100_200.300 8341.287 9627.119 – –
mq1_3L_30_80_190.300 12994.871 9943.663 – –
mq1_4L_20_40_80_160.300 17648.010 5236.609 – –
mq1_4L_18_39_81_162.300 18048.031 17230.518 – –
Average 1762.750 – –

5.2. Parameter Sensitivity Analysis

Before we ran computational tests for the MA, we had experimented with different values
of parametersN and R, which denote the number of MA generations with no improvement
and the portion of the MA population on which we apply local search heuristic respec-
tively. We had varied N and R in order to determine the most preferable combination for
further experiments. The computational experiments were first carried out on the instance
mr1_3l_55_120_325.500 with 500 clients and 500 potential facilities located on 3 levels.
We ran the parallel MA 20 times for each combination of parameters, but with different
random seeds. The same combination of stopping criteria defined in Section 3 was used
in these experiments.

In Table 6, for each combination of the parameters we present:

• best solution of the MA;
• running time (in seconds);
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Table 6
MA results on instance mr1_3l_55_120_325.500 for different values of N and R.

N R Best t (s) gen agap(%) σ (%)

50 3 10911.319 49.610 991.2 0.460 0.579
50 5 10911.319 29.040 959.65 0.733 0.726
50 8 10911.319 23.020 818.75 1.485 1.221
50 10 10911.319 17.890 873.3 1.378 1.117

100 3 10911.319 7.500 1015.45 0.950 0.781
100 5 10911.319 9.440 1043.3 0.966 0.799
100 8 10911.319 7.380 954.3 1.627 1.210
100 10 10911.319 7.540 980.6 1.472 1.118
150 3 10911.319 7.420 1094 0.866 0.759
150 5 10911.319 7.300 1078.2 0.969 0.781
150 8 10911.319 7.360 990.85 1.176 1.015
150 10 10911.319 7.370 978 1.336 1.121

Table 7
MA results on instance ms1_5l_25_55_120_250_550.1000 for different values of N and R.

N R Best t (s) agap(%) σ (%)

100 3 40070.037 311.770 0.636 0.536
100 5 40070.037 424.290 0.484 0.407
100 8 40070.037 290.560 0.844 0.470
100 10 40171.410 301.030 0.723 0.518
100 15 40070.037 432.260 0.869 0.542
100 20 40171.410 340.000 0.910 0.722
150 3 40070.037 283.200 0.611 0.517
150 5 40070.037 225.720 0.631 0.448
150 8 40171.410 170.990 0.813 0.562
150 10 40070.037 139.070 1.049 0.659
150 15 40070.037 134.000 0.543 0.514
150 20 40171.410 98.570 0.948 0.752

• number of MA generations;
• average gap from the best solution (in percents);
• standard deviation σ (in percents).

As it can be seen from Table 6, for each of the 12 tested combinations, the MA quickly
reached best solutions, which indicates good stability of the algorithm. As it was expected,
the combinations with N = 50 generations produce significantly longer MA runs on the
considered medium size instance, since we apply local search more often. Therefore, we
omitted these combinations from further experiments on larger data set.

In Table 7, we present the results of the MA with different parameter values on a large-
scale instance ms1_5l_25_55_120_250_550.1000 with 1000 clients and 1000 potential
facilities on 5 levels. We kept the values of N = 100 and N = 150 for the first parameter,
and for these values, we varied the second parameter R. The results are presented in the
same way as in Table 6.

The column “Best” in Table 7 shows that there is a difference in the quality of the ob-
tained solutions for different parameter combinations. The MA reached best-known solu-
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tion for combinations N = 100, R = 3,5,8,15 and N = 150, R = 3,5,10,15. Regarding
the columns avg(%) and σ(%) related to these parameter combinations, we notice that the
lowest values of the average gap and standard deviation were obtained for N = 100, R = 5

and N = 150, R = 15. Regarding the running times for these two combinations, we no-
tice that the MA is more than three times faster using the parameters N = 150, R = 15.
Therefore, based on short CPU times and good solution quality, we decided to use these
parameter values N = 150, R = 15 in further experiments.

5.3. The Impact of the Implemented Parallelization Techniques in the MA

In order to investigate the effects of the parallelization techniques implemented in the
proposed MA, we performed additional computational experiments. We benchmarked the
parallel MA and the sequential MA (without any parallelization) on all available MLUFLP
test instances, described above. In order to obtain fair comparisons, we ran both variants
of the MA with the same random seed. The stopping criterion was maximum number of
2000 MA generations. All experiments were carried out on the same platform.

In Table 8, we first give the MLUFLP instance’s name and the optimal solution (if it
is known). We further present the best solution obtained by both variants of the MA and
the number of MA generations used as the stopping criterion. Finally, we give the running
times of the parallel and the sequential variants of the MA in which they achieve the best
solution.

Regarding the way of implementing parallelization techniques in the MA (see Sec-
tion 3), and the fact that we used the same random seed for both the parallel and the se-
quential MA, it is clear that for each considered test instance, the best solutions obtained
by both variants of the MA will be the same. Therefore, we compare the running times
needed for the parallel and the sequential MA to obtain the best solutions. Note that for
both variants of the MA we used the same number of generations as the only stopping
criterion.

As it can be seen from Table 8, the maximal running times are produced in the case
of instance mt1_4L_120_250_520_1110.2000: the sequential MA needed 8120.320 s to
obtain the best solution, while the parallel MA needed only 2717.830 s. Regarding the av-
erage running times over the whole MLUFLP data set, we notice that the average running
time for the sequential MA is 742.970 s and 252.392 s for the parallel MA. Therefore, we
may conclude that the implemented parallelization techniques give significant contribu-
tion to MA’s computational efficiency. The running times presented in Table 8 show that
the parallel MA has almost 3 times better performance compared to sequential MA. Note
that all experiments are carried out on the same processor with four cores.

5.4. Computational Results of the MA on the MLUFLP Benchmark Set

In this subsection, we present the results of the MA on the MLUFLP instances introduced
in the literature so far. The MA results are compared with the results of the genetic algo-
rithm approach (GA) from Marić (2010), which was run on Intel 1.8 GHz with 512 MB
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Table 8
Comparisons of the parallelized and sequential MA.

Instance name Optsol MA Parallel MA Sequential MA

best gen t (s) t (s)

cap71_1L_16.50 932615.750 opt 2000 0.040 0.030

cap71_2L_6_10.50 1813375.513 opt 2000 0.040 0.030

cap71_3L_2_5_9.50 4703216.306 opt 2000 0.040 0.030

cap101_1L_25.50 796648.438 opt 2000 0.040 0.050

cap101_2L_8_17.50 1581551.394 opt 2000 0.040 0.040

cap101_3L_3_7_15.50 3227179.813 opt 2000 0.050 0.040

cap131_1L_50.50 793439.563 opt 2000 0.160 0.290

cap131_2L_13_37.50 1592548.450 opt 2000 0.070 0.110

cap131_3L_6_14_30.50 3201970.463 opt 2000 0.470 0.880

cap131_4L_3_7_15_25.50 3630297.669 opt 2000 0.070 0.110

mq1_1L_300.300 3591.273 opt 2000 7.820 23.800

mr1_1L_500.500 − 2349.856 2000 22.400 70.200

ms1_1L_1000.1000 − 4378.632 2000 240.170 737.820

mt1_1L_2000.2000 − 9176.509 2000 1197.490 3210.580

capa_1L_100.1000 17156454.478 opt 2000 6.200 17.840

capa_2L_30_70.1000 31524957.410 opt 2000 6.940 20.700

capa_3L_15_30_55.1000 40725103.254 opt 2000 3.730 10.520

capa_4L_6_12_24_58.1000 54643362.801 opt 2000 10.210 29.700

capb_1L_100.1000 12979071.581 opt 2000 14.650 42.930

capb_2L_35_65.1000 25224163.283 opt 2000 33.690 101.630

capb_3L_12_25_63.1000 34978486.506 opt 2000 1.050 2.920

capb_4L_6_13_31_50.1000 53034149.833 opt 2000 2.030 5.990

capc_1L_100.1000 11505594.329 opt 2000 33.380 100.040

capc_2L_32_68.1000 22762468.838 opt 2000 22.390 67.230

capc_3L_13_27_60.1000 35540649.433 opt 2000 5.260 14.710

capc_4L_4_9_27_60.1000 57017358.038 opt 2000 7.540 23.490

mq1_2L_100_200.300 8341.287 opt 2000 7.040 21.230

mq1_3L_30_80_190.300 12994.871 opt 2000 4.140 12.810

mq1_4L_20_40_80_160.300 17648.010 opt 2000 15.540 44.020

mq1_4L_18_39_81_162.300 18048.031 opt 2000 13.890 39.920

mr1_2L_160_340.500 – 6707.505 2000 76.400 203.680

mr1_3L_55_120_325.500 – 11113.620 2000 7.540 23.770

mr1_4L_30_65_140_265.500 – 15399.713 2000 82.330 237.970

ms1_2L_320_680.1000 – 13438.520 2000 22.840 74.110

ms1_3L_120_250_630.1000 – 22457.108 2000 332.990 963.130

ms1_4L_64_128_256_552.1000 – 31221.559 2000 535.470 1439.460

ms1_5L_25_55_120_250_550.1000 – 40171.410 2000 135.760 369.580

mt1_2L_650_1350.2000 – 27733.057 2000 1480.790 4646.470

mt1_3L_256_600_1144.2000 – 46828.626 2000 1181.110 3747.810

mt1_4L_120_250_520_1110.2000 – 65735.982 2000 2717.830 8120.320

mt1_5L_60_120_250_500_1070.2000 – 84263.579 2000 2118.430 6035.790

Average 2000 252.392 742.970

memory. To our knowledge, this is the most recent metaheuristic approach proposed in
the literature for solving the MLUFLP that provided solutions for large-scale MLUFLP
instances.

The first column of Table 9 contains the MLUFLP instance’s name. The optimal solu-
tion of the current instance Optsol, obtained by CPLEX 12.1 solver, is given in the second
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Table 9
Comparisons of the GA and MA approaches.

Instance Optsol GA MA

best t (s) gen agap(%) σ (%) best t (s) gen agap(%) σ (%)

cap71_1L_16.50 932615.750 opt 0.012 2010 0.000 0.000 opt 0 2009.5 0.000 0.000
cap71_2L_6_10.50 1813375.513 opt 0.006 2010 0.000 0.000 opt 0 2009.4 0.000 0.000
cap71_3L_2_5_9.50 4703216.306 opt 0.005 2010 0.000 0.000 opt 0 2006.9 0.000 0.000
cap101_1L_25.50 796648.438 opt 0.030 2026 0.000 0.000 opt 0.01 2035.3 0.000 0.000
cap101_2L_8_17.50 1581551.394 opt 0.018 2017 0.000 0.000 opt 0.01 2014.8 0.000 0.000
cap101_3L_3_7_15.50 3227179.813 opt 0.019 2018 0.000 0.000 opt 0.01 2013.9 0.000 0.000
cap131_1L_50.50 793439.563 opt 0.199 2140 0.000 0.000 opt 0.03 2137.1 0.000 0.000
cap131_2L_13_37.50 1592548.450 opt 0.118 2078 0.000 0.000 opt 0.03 2073.7 0.000 0.000
cap131_3L_6_14_30.50 3201970.463 opt 0.105 2108 0.125 0.084 opt 0.03 2257.1 0.071 0.087
cap131_4L_3_7_15_25.50 3630297.669 opt 0.071 2049 0.000 0.000 opt 0.03 2038.8 0.000 0.000
capa_1L_100.1000 17156454.478 opt 13.409 2319 0.000 0.000 opt 0.97 2352.9 0.000 0.000
capa_2L_30_70.1000 31524957.410 opt 8.380 2308 0.106 0.063 opt 1.07 2728.4 0.021 0.050
capa_3L_15_30_55.1000 40725103.254 opt 3.076 2120 0.000 0.000 opt 0.92 2342.5 0.000 0.000
capa_4L_6_12_24_58.1000 54643362.801 opt 4.688 2195 0.881 0.904 opt 1 2736.2 0.617 0.840
capb_1L_100.1000 12979071.581 opt 43.642 3047 0.060 0.186 opt 10.14 3317.9 0.170 0.286
capb_2L_35_65.1000 25224163.283 opt 18.414 2781 0.860 1.406 opt 5.26 3515.1 0.631 1.297
capb_3L_12_25_63.1000 34978486.506 opt 3.137 2090 0.000 0.000 opt 0.57 2111.0 0.000 0.000
capb_4L_6_13_31_50.1000 53034149.833 opt 4.652 2222 0.110 0.057 opt 1.1 2317.0 0.117 0.049
capc_1L_100.1000 11505594.329 opt 34.542 2907 0.073 0.135 opt 15.08 3054.1 0.026 0.013
capc_2L_32_68.1000 22762468.838 opt 22.625 3021 0.770 0.717 opt 2.56 3172.8 0.290 0.691
capc_3L_13_27_60.1000 35540649.433 opt 8.539 2406 0.675 1.176 opt 0.74 2340.1 0.182 0.793
capc_4L_4_9_27_60.1000 57017358.038 opt 4.601 2166 0.150 0.210 opt 1.55 2318.0 0.279 0.205
mq1_1L_300.300 3591.273 opt 14.288 2307 0.000 0.000 opt 2.22 2255.9 0.000 0.000
mq1_2L_100_200.300 8341.287 opt 19.313 2670 0.000 0.000 opt 0.61 2270.5 0.000 0.000
mq1_3L_30_80_190.300 12994.871 opt 16.980 2616 2.273 1.369 opt 0.87 2803.8 0.389 0.953
mq1_4L_20_40_80_160.300 17648.010 opt 17.423 2699 1.764 2.124 opt 1.92 3433.0 0.871 1.523
mq1_4L_18_39_81_162.300 18048.031 opt 14.876 2620 0.736 0.876 opt 3.68 3246.3 0.440 0.553
mr1_1L_500.500 – 2349.856 74.852 2595 0.000 0.000 2349.856 11.73 2452.3 0.000 0.000
mr1_2L_160_340.500 – 6707.505 83.116 2918 0.611 0.988 6707.505 5.73 2664.9 0.000 0.000
mr1_3L_55_120_325.500 – 10911.319 76.009 2858 1.341 0.814 10911.319 7.25 3245.6 0.734 0.788
mr1_4L_30_65_140_265.500 – 15311.469 61.234 2773 1.544 0.879 15237.2605 23 3819.5 0.871 0.418
ms1_1L_1000.1000 – 4378.632 534.888 2980 0.000 0.000 4378.632 29.4 2511.4 0.000 0.000
ms1_2L_320_680.1000 – 13416.805 540.534 3323 0.510 0.485 13361.3895 22.86 3226.1 0.303 0.346
ms1_3L_120_250_630.1000 – 21881.384 501.034 3228 2.260 1.312 21881.384 117.23 3376.8 1.128 0.871
ms1_4L_64_128_256_552.1000 – 30936.585 418.521 3225 2.258 1.019 30902.742 119.21 3438.6 1.355 1.024
ms1_5L_25_55_120_250_550.1000 – 40191.231 396.686 3105 1.738 1.118 40070.0365 136.01 4114.6 0.543 0.514
mt1_1L_2000.2000 – 9176.509 4134.325 3871 0.000 0.000 9176.509 350.32 1300.6 0.000 0.000
mt1_2L_650_1350.2000 – 27733.057 3949.573 4309 0.331 0.704 27733.057 819.98 1712.1 0.012 0.021
mt1_3L_256_600_1144.2000 – 46095.089 3247.064 4170 2.021 1.105 46095.09 858.48 1567.7 1.266 0.770
mt1_4L_120_250_520_1110.2000 – 65044.003 3084.885 4154 1.126 0.649 64953.253 1108.49 1847.1 0.667 0.400
mt1_5L_60_120_250_500_1070.2000 – 83523.753 2944.080 4144 1.678 0.830 83404.332 916.77 2034.8 0.997 0.692

Average 507.499 2715.1 0.600 0.480 114.422 2555.3 0.300 0.330

column. A “−” sign in the column Optsol means that no optimal solution was obtained
due to memory or time limits. The remaining columns contain the results of the GA and
MA approaches respectively. On each considered instance, the GA and MA method were
run 20 times. For each method we present:

• the best objective function value best, marked opt in cases when the method reached
optimal solution;
• average running time t (in seconds);
• average number of generations gen;
• average gap agap (in percents) of the obtained solution from the optimal Optsol or

the best solution best (in cases when optimal solution is not known);
• standard deviation σ (in percents) of the obtained solution from the optimal Optsol

or the best solution best;

From the results presented in Table 9, it can be seen that both GA and MA approaches
reach optimal solutions previously obtained by CPLEX solver in short CPU time. In cases
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when no optimal solution was obtained by CPLEX, the GA and MA methods provide the
same solutions in 8 cases, while in 6 cases the MA outperforms the GA in the sense of the
solution quality and improves the best solutions previously obtained by the GA.

Over all tested MLUFLP instances, the average gap of the MA solution from the
optimal/best-known one is agap = 0.300% and the standard deviation is σ = 0.330%.
Considering the corresponding average values for the GA approach (agap= 0.600% and
σ = 0.480%), and taking into account that the MA improved several GA’s best solutions,
we may conclude that the MA method achieves better average solution quality compared
to the GA.

From the columns t (s) in Table 9, we can see that the average MA running time over
all MLUFLP instances was t = 114.422 s, while the average GA time was t = 507.499 s,
which indicates the efficiency of both proposed approaches. The maximal MA’s running
time was 1108.49 s.

The presented computational experiments clearly demonstrate the robustness of the
proposed memetic algorithm with respect to both solutions’ quality and running times,
even on large-scale MLUFLP instances.

6. Conclusions

This paper considers the Multilevel Uncapacitated Facility Location Problem (MLUFLP),
a well-known NP-hard combinatorial optimization problem from the literature. We pro-
pose a new integer programming formulation of the problem, which uses fewer variables
and constraints and which showed to be more efficient compared to existing MLUFLP
formulations. Further, we propose a memetic algorithm for solving the MLUFLP, based
on a new concept of applying a local search method for improving the solutions obtained
by the evolutionary algorithm. Several parallelization techniques are incorporated into
the proposed memetic algorithm in order to improve the CPU times of the MA runs. Fit-
ness function calculation, the crossover operator, the mutation operator and the objective
function calculation are realized in parallel. In cases when the evolutionary algorithm has
run through many generations without improvement, the possibility of a premature con-
vergence significantly increases. In these situations, the evolutionary algorithm needs an
impulse in order to turn away from a local optimum trap.

The proposed memetic algorithm was subject to comparative tests including bench-
mark problems with up to 2000 clients and 5 levels. The MA quickly reached all known
optimal and best known solutions from the literature and in case of 6 large-scale instances,
the MA produced new, improved solutions. Comparing the efficiency of the parallel and
the sequential variants of the proposed MA, we conclude that the parallel MA achieved
considerable gains in terms of the computing time required to reach high-quality solutions.
The advantages of the parallel variant of the MA become more obvious when solving
large-scale problems.

The proposed memetic algorithm with parallelization strategy showed to be a suitable
concept for solving the MLUFLP, especially large-scale problem instances. The obtained
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numerical results show that the developed MA approach represents a valuable addition to
existing methods for solving the MLUFLP.

Further work will be directed to adopting the proposed memetic algorithm for solv-
ing the capacitated and other variants of the Multilevel Uncapacitated Facility Location
Problem.

Acknowledgement. This research was partially supported by Serbian Ministry of Educa-
tion and Science under the grants No. 174010 and 47017.

Appendix

Theorem 2. The formulations MLUFLP-1 and MLUFLP-3 are equivalent, i.e. MLUFLP-1

⇔ MLUFLP-3.

Proof. ⇒: We will first prove that the MLUFLP-3 follows from the MLUFLP-1. Suppose
that conditions (2)–(3) of the MLUFLP-1 formulationhold and objective (1) is considered.

(1), (2)–(3)⇒ (15):
Since |F | =m, then

∑

i∈F fiyi =
∑m

i=1
fiyi . For the second member of the objective

function. i.e. the multiple sum we have:

∑

p∈P

∑

j∈D

cpjxpj =
∑

p∈P

∑

j∈D:xpj=1

cjik + cik ik−1
+ · · · + ci2i1 (21)

because, if xpj = 1, then there is unique path p = (ik, ik−1, . . . , il, il−1, . . . , i2, i1) which
is assigned to j . Let’s fix l ∈ {2, . . . , k + 1} and consider the member (il, il−1). Look
through all p ∈ P and j ∈D such that xpj = 1 and seek for the paths p that contain the
member (il, il−1), i.e. the vertices il , il−1 belong to p, and they are situated on the l-th
and l − 1-th places in the k-tuple that defines p (the counting starts from left to right of
the k-tuple). The number of paths p that satisfy this condition will be exactly the number
of clients that are supplied from the facilities il and il−1, situated on the l-th and l − 1-th
levels respectively. This number of clients is exactly zl

is by the definition. The sum (21)
becomes exactly

k+1
∑

l=2

cil il−1
zl
il il−1

. (22)

If we further perform the re-numeration, i.e. for the fixed l, let’s denote il by i and il−1

by s, we obtain (15)

k+1
∑

l=2

cil il−1
zl
il il−1
=

k+1
∑

l=2

∑

i∈Fl

∑

s∈Fl−1

cisz
l
is .
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(2)–(3)⇒ (16):
Fix an arbitrary j ∈D = Fk+1. From (2) we have 1 =

∑

p∈P xpj , which means that
there is exactly one path p = (ik, ik−1, . . . , il, il−1, . . . , i2, i1) which is assigned to j ∈

Fk+1. Therefore,

∑

ik∈Fk

zk
jik
=

∑

i∈Fk

zk
ji = 1, which is (16).

(2)–(3)⇒ (17):
Let us fix an l and i ∈ Fl . By the definition of zl

is we have

∑

s∈Fl−1

zl
is =

∑

j∈D

∑

p∈P :i, s∈p, s∈Fl−1, i∈Fl

xpj .

According to (2)–(3), for every j ∈ D there is unique established path p ∈ P such that
xpj = 1. For every such path p that (in addition) contains fixed i ∈ Fl and s ∈ Fl−1, there
is unique r ∈ p such that r ∈ Fl+1. It means that the flow originating from j ∈D, which
is shipped via facilities s ∈ Fl−1 and i ∈ Fl , it must be further distributed from i ∈ Fl

to some r ∈ Fl+1. Since there is only and only one path p ∈ P that is assigned to client
j ∈D, the facility r ∈ p, r ∈ Fl+1 is unique. Therefore, we obtain:

∑

j∈D

∑

p∈P :i, r∈p, i∈Fl, r∈Fl+1

xpj =
∑

r∈Fl+1

zl+1

ri ,

and (17) is proven.

(2)–(3)⇒ (18):
Let’s fix l ∈ {1, . . . , k}, r ∈ Fl+1, i ∈ Fl . If l = k, it means that r ∈ Fk+1 =D. There

are two possibilities for i ∈ Fk : it is established (yi = 1) or not (yi = 0). If yi = 0, it is
not possible to assign client r to the unestablished facility (condition (3)). It means that
zk+1

ri = 0, and hence, 0= zk+1

ri 6 nyi = 0 holds. If yi = 1, and the flow goes from facility
r to i ∈ Fk , then, regarding (2) there is unique path p ∈ P (containing i ∈ Fk ) such that
xpj = 1, it follows that 1= zk+1

ri and 1= zk+1

ri 6 nyi = n is true.
If l 6 k, for fixed r ∈ Fl+1, i ∈ Fl we again consider two possibilities for yi .
If yi = 0, again by (3), it is not possible to construct a path p ∈ P , that will conduct

the flow originating from some client j ∈D via unestablished facility i ∈ Fl and facilities
r ∈ Fl+1 (whether r is established or not). It means that zl+1

ri = 0, and hence, 0= zl+1

ri 6

nyi = n holds.
If yi = 1, then we consider two possibilities for r ∈ Fl+1:
If yr = 0, there is no p ∈ P , that will conduct the flow originating from some client

j ∈D via facility i ∈ Fl and unestablished facility r ∈ Fl+1. Hence, zl+1

ri = 0, and, 0 =

zl+1

ri 6 nyi = n holds.
If yr = 1, then both i ∈ Fl and r ∈ Fl+1 are established, and hence, it is possible

to construct a path p ∈ P , that conducts the flow originating from some client j ∈ D



Memetic Algorithm for Solving the Multilevel Uncapacitated Facility Location Problem 463

via facility r ∈ Fl+1 and i ∈ Fl . Since, there are most |D| = n clients, in the best case
they are all assigned to (possibly different) paths containing r ∈ Fl+1 and i ∈ Fl . Hence,
zl+1

ri 6 n= nyi holds.
⇐: Let’s now prove that the MLUFLP-1 follows from the MLUFLP-3. Suppose that

conditions (16)–(18) of the MLUFLP-3 formulation hold and objective (15) is considered.

(16)–(18)⇒ (2):
Let’s fix j ∈D. From (16) we have:

1=
∑

i∈Fk

zk
ji =

∑

p∈P :i∈p, i∈Fk

xpj ,

which means that exists exactly one path p = (i, . . .) that is assigned to j which “starts”
with i ∈ Fk . By using (17) we obtain:

∑

i∈Fk

zk
ji =

∑

s∈Fk−1

zk−1

is =
∑

t∈Fk−2

zk−2

t i = . . .=
∑

i∈F1

z1

ji,

which means that there is exactly one facility at each level that defines a path p = (i, . . .)

assigned to j . Therefore, this path is unique, i.e.

1=
∑

p∈P

xpj .

(15), (16)–(18)⇒ (1):
Since |F | =m, then

∑m
i=1

fiyi =
∑

i∈F fiyi . For the second member of the objective
function. i.e. the multiple sum we have:

k+1
∑

l=2

∑

i∈Fl

∑

s∈Fl−1

cisz
l
is =

k+1
∑

l=2

∑

p∈P :i,s∈P, i∈Fl, s∈Fl−1

∑

j∈D

cisxpj

=
∑

j∈D

k+1
∑

l=2

∑

p∈P :i, s∈P, i∈Fl, s∈Fl−1

cisxpj .

For every j ∈D we have a path p assigned to j (by the definition of feasible solution).
According to (2), that is already proven above, this path p is unique. If facilities i, s belong
to p ((i, s) ∈ p), such that i ∈ Fl , s ∈ Fl−1, we add the cost cis . By going through all levels
l = 2, . . . , k + 1 we construct the sum cpj . Note that for l = k + 1, j ≡ i . Hence:

∑

j∈D

k+1
∑

l=2

∑

p∈P :i,s∈P, i∈Fl, s∈Fl−1

cisxpj =
∑

j∈D

∑

p∈P

cpjxpj ,

that is exactly the second member of (1).
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(16)–(18)⇒ (3):
For every i ∈ F we have two possibilities for i ∈ F .
If facility i ∈ F is not established, then, according to (18) for every client j ∈D we

have no paths assigned to j that contain i . Hence, xpj = 0 for all p ∈ P such that i ∈ p

and all j ∈D. Therefore, 0=
∑

p∈P : i∈p xpj 6 yi = 0 holds for every j ∈D.
If facility i ∈ F is established, then yi = 1. Let us assume the opposite, i.e. there exists

j ∈D, such that
∑

p∈i xpj > yi = 1. Then there exist at least two paths p1,p2 ∈ P that are
assigned to j ∈D and both contain facility i: i ∈ p1,p2. That is a contradiction with (2),
which is already proven above.

Therefore, (3) holds for every i ∈ F , j ∈D. �
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Daugelio lygių vienodo pajėgumo aptarnavimo centrų išdėstymo
memetinis algoritmas

Miroslav MARIĆ, Zorica STANIMIROVIĆ, Aleksandar DJENIĆ,
Predrag STANOJEVIĆ

Straipsnyje nagrinėjamas daugelio lygių vienodo pajėgumo aptarnavimo centrų išdėstymo užda-
vinys (MLUFLP). Šiam uždaviniui pasiūlytas naujas sveikaskaitinio programavimo modelis, kuris
įgalina IBM firmos optimizatorių CPLEX rasti optimalius sprendinius, nerastus iki šiol. Taip pat su-

kurtas memetinis (hibridinis) algoritmas, naudojantis naują lokaliosios paieškos strategiją. Pateikti

eksperimentai rodo, kad šis algoritmas greitai suranda optimalius arba iki šiol žinomus geriausius

testinių MLUFLP uždavinių sprendinius ir pagerina kelių didelių MLUFLP testinių uždavinių spren-

dinius.


