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Abstract. This paper proposes a novel approach to light plane labeling in depth-image sensors re-
lying on “uncoded” structured light. The proposed approach adopts probabilistic graphical models
(PGMs) to solve the correspondence problem between the projected and the detected light patterns.
The procedure for solving the correspondence problem is designed to take the spatial relations be-
tween the parts of the projected pattern and prior knowledge about the structure of the pattern into
account, but it also exploits temporal information to achieve reliable light-plane labeling. The pro-
cedure is assessed on a database of light patterns detected with a specially developed imaging sensor
that, unlike most existing solutions on the market, was shown to work reliably in outdoor environ-
ments as well as in the presence of other identical (active) sensors directed at the same scene. The
results of our experiments show that the proposed approach is able to reliably solve the correspon-
dence problem and assign light-plane labels to the detected pattern with a high accuracy, even when
large spatial discontinuities are present in the observed scene.

Key words: depth images, structured light, probabilistic graphical models, spatio-temporal
information.

1. Introduction

Depth-image acquisition is a field with many areas of application that range from re-
constructing the shapes of statues, medical imaging and biometry to obstacle detection
and other similar areas. Particularly interesting and simple to implement are the active-
triangulation techniques that rely on the projections of structured light. Much research
effort is being directed at improving structured-light approaches, especially with respect
to outdoor usage (see, e.g., Mertz et al., 2012), where most of the existing solutions strug-
gle with their performance.

Structured-light approaches to acquiring depth images typically work by projecting a
pattern of structured light onto the observed scene and analyzing the deformations of the
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Fig. 1. Illustration of the correspondence problem: shape of the projected pattern (upper left), target scene (upper
right), projected pattern superimposed on the target scene (lower left), deformed detected pattern (lower right).

projected pattern to recover the shape (and reveal the depth information) of the observed
scene. Clearly, an integral part of such an approach is the procedure for establishing the
correspondence between the projected pattern and the pattern that is detected by the imag-
ing sensor due to interactions with the observed scene. The difficulty associated with this
problem is illustrated in Fig. 1. Here, the upper-left image depicts the structure of the
projected pattern, the upper-right image shows the observed scene, the lower-left image
depicts the scene with the superimposed light pattern and the lower-left image shows the
deformed pattern detected by the imaging sensor. To be able to recover the shape of the
observed scene, a one-to-one correspondence between all the parts of the projected and
detected patterns need to be established.

To make the outlined problem simpler, the majority of structured-light approaches
rely either on color-coded projection patterns (Albitar et al., 2009; Boyer and Kak, 1987;
Koninckx et al., 2004; Ulusoy et al., 2010; Zhang et al., 2002) width-coded projection pat-
terns (Beumier and Acheroy, 1999), time-dependant sequences (Curless and Levoy, 2007;
Daley and Hassebrook, 1998) or other coding techniques (Salvi et al., 2004). As argued
in Brink et al. (2008) and Robinson et al. (2004), the presented approaches also exhibit
some limitations: color cannot be applied consistently to surfaces with weak or ambiguous
reflectance and limits the use of potentially useful optical filters on the camera side, for
width coding the resolution is less than for uniform parallel stripes and so forth. Consid-
ering the presented limitations, it seems appealing to use projection patterns consisting of
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uncoded (i.e., homogeneous) parallel stripes, for which the term uncoded structured light
is often used in Brink et al. (2008), Robinson et al. (2004).

In this paper we present a technique for solving the correspondence problem between
the projected and detected patterns of uncoded structured light. As will be shown in
the paper, the problem corresponds to a light-plane-labeling problem that can effectively
be solved using probabilistic graphical models. With the proposed approach a graphical
model is first constructed by defining local (spatio-temporal) relationships between the
parts of the detected light pattern. Inference on the graph is then conducted through frac-
tional belief propagation.

The developed labeling technique is applied to images of detected light patterns gen-
erated with our imaging sensor (Volkov et al., 2013; Žganec and Žganec-Gros, 2009),
which was already shown to be capable of robustly working in outdoor environments
and, therefore, represents a major step towards robustifying structured-light approaches
for outdoor use. Note that even existing commercial products, such as Microsoft’s Kinect,
which relies on speckle-pattern projection, have difficulties operating in outdoor environ-
ments.

To summarize, the following novelties are presented in the paper:

• A technique for building graphical models from the detected, uncoded, structured-
light patterns,

• A technique for solving the problem of correspondence between the projected and
detected patterns based on probabilistic graphical models,

• The inclusion of temporal information into the process of solving the correspondence
problem.

The rest of the paper is structured as follows: In Section 2 we briefly present the imag-
ing sensor used in the paper, formally define the correspondence problem and describe
the preprocessing technique applied to the detected light pattern before constructing the
graphical model. In Section 2.2 we introduce the new labeling procedure that relies on
spatio-temporal information and probabilistic graphical models and show how it can be
used to solve the correspondence problem. We evaluate the proposed approach in Sec-
tion 4 and conclude the paper in Section 5.

2. Prerequisites

In this section we present the background needed to understand the proposed labeling
procedure that is presented in the remainder of the paper. We commence the section by
formally defining the labeling problem we are trying to solve. We then proceed by briefly
describing the depth-image sensor that is used to generate images of the projected pat-
terns that form the basis for our work and conclude the section by presenting the basic
pre-processing techniques applied to the detected light patterns and defining some of the
terminology used in the paper.
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Fig. 2. Illustration of the problems typically encountered when solving the correspondence problem between
the light planes of the projected pattern and the line segments of the detected pattern.

2.1. The Labeling Problem

Structured-light approaches to depth-image acquisition work by projecting a structured
light pattern onto a scene and analyzing the deformations of the projected pattern due to
interactions with the scene. Based on these deformations a depth map of the observed
scene can be reconstructed, but only under the condition that a correct correspondence
between the projected and detected patterns is established (Salzmann et al., 2007). In our
case, where the (uncoded) structured-light pattern consists of parallel light planes, this
corresponds to finding the correct light-plane label for each part of the detected light pat-
tern. While this task seems trivial at first, it is in fact quite complex, especially when depth
discontinuities are presented in the observed scene. Figure 2 illustrates the difficulties that
are often encountered when trying to establish the correspondence. If the scene contains
depth discontinuities (left side of Fig. 2), the projected pattern is deformed and what is
detected is a light pattern where the line segments belonging to different projected light
planes may form a single line or other (similar) ambiguities are introduced into the de-
tected pattern.

Formally, the correspondence problem can be defined as follows. Assume that the
detected light pattern (shown in Fig. 3) is represented as a binary image I ; that is, pixels
representing scene points illuminated by the projected pattern are encoded with a value
of one, while all the other pixels are encoded with a value of zero. Let us denote with
B = {b1, b2, b3, . . . , bN } the set of all non-zero pixels in image I and let N stand for the
number of such pixels.2 Furthermore, let us denote the set of indices of the light planes
constituting our light pattern as I = {1,2, . . . , k, . . . ,M}, whereM stands for the number
of parallel light planes, and the index 1 denotes the plane that is the lowest in the projected
pattern. The correspondence problem can then be defined as a mapping that assigns each
pixel from B an index from I; that is:

ψ : bi → I, for i = 1,2, . . . ,N. (1)

It is clear that the correspondence problem actually represents a labeling problem, where
each non-zero pixel in the detected light pattern needs to be assigned a light-plane label.

2Note that in our case the set B actually represents a set of pixel-clusters.
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Fig. 3. Image demultiplexing. Upper part: Sub-images acquired when the illumination pattern is projected onto
a scene. Middle part: multiplexing signal. Lower part: sub-images acquired when the illumination pattern is
not projected onto the scene. Right side: schematics of constructing the final image. Sub-images containing the
projected pattern are multiplied by w1 = 1, whereas sub-images without the projected pattern are multiplied by
w2 = −1.

2.2. The Imaging Sensor

The imaging sensor used in this work consists of two parts, i.e., a pattern projector in the
form of a laser and a high-speed camera, of which both are attached to a rigid structure and
are capable of working in synchronization. The optical centre of the camera and projec-
tor lie on the same vertical plane. The camera produces a special pseudo-random binary
(on/off) sequence that drives the laser. When the sequence is in the “on” state, the laser
projects the light pattern onto the scene and, similarly, when the sequence is in the “off”
state, the laser emits no pattern. The camera acquires (sub-)images of the scene on each
clock signal, regardless of the state of the pseudo-random sequence (on or off). Using the
sequence of sub-images acquired by the camera, the final output image is produced by
de-multiplexing the sequence of sub-images with the multiplexing signal. In other words,
the final image is constructed as a normalized superposition of the entire sequence of
sub-images, where the sign in the sum is determined by the multiplexing signal: 1 (on)
is a positive sign and 0 (off) is a negative sign. In this way, the images that contain the
projected pattern will have a positive sign and the images without the pattern will have
a negative sign (see Fig. 3). After the summation, the projected pattern on the image is
emphasized and the background is suppressed (Žganec and Žganec-Gros, 2009). A simi-
lar background-substraction imaging approach was proposed in Mertz et al. (2012), with
the difference being that the acquisition step is not modulated, which can be prone to
disturbances, especially if two such sensors are deployed in the same environment. Note
that different implementations are possible to speed up the background subtraction, as for
example Hung et al. (2014).

As demonstrated in Volkov et al. (2013), the described sensor has several merits, such
as the capability to work in the presence of other identical sensors as well as in outdoor
environments. Note that an experimental demonstration of the merits of the sensor is be-
yond the scope of this paper. The interested reader is referred to Volkov et al. (2013) for
more information.
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Fig. 4. Color-coded binary image after preprocessing (best viewed in color).

2.3. Image Pre-Processing

The problem formulation presented in Section 2.1 assumes that the detected light pattern
represents a binary image. However, our sensor produces a grey-scale image that needs
to be pre-processed to emphasize the projected patterns and to make them more suitable
for the task of solving the correspondence problem. A local thresholding procedure is,
therefore, first applied to the pattern image to produce its binary version (Gonzales and
Woods, 2008). The generated binary image is then processed to generate what we refer
to here as “pixel-clusters”, which in our case are nothing more than line segments in the
binary image partitioned into smaller pieces, each spanning a certain number of columns.
Some examples of these pixel-clusters are shown in Fig. 4.

In the next section we show how the pixel-clusters can be assigned random variables
and used to build a graphical model. Based on the constructed graphical model, the map-
ping ψ from Eq. (1) can then be easily determined.

3. Light-Plane Labeling with Probabilistic Graphical Models

In this section we build on the ideas introduced in Ulusoy et al. (2010) and present the la-
beling problem in the form of a probabilistic graphical model (PGM). partitioned into sim-
pler parts. The use of PGMs for solving the labeling problem is reasonable, as the theoret-
ical framework and formalism associated with PGMs allows us to describe complex prob-
lems in a concise way by partitioning them into smaller and simpler parts (Vesnicer and
Mihelič, 2008). In the case of our labeling problem, this translates to describing the rela-
tionships and dependencies between pairs of pixel-clusters based on spatial/temporal/prior
information, and using the constructed dependency chain for inferring the labels of all the
parts of the (global) projected and deformed light pattern.

3.1. Problem Formulation with PGMs

In general, graphical models consist of a set of vertices V and a set of edges E connecting
those vertices, which together form a graph G = (V,E). In our case, each pixel-cluster in
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Fig. 5. Illustration of the construction procedure for the PGM: simplified light pattern (left), corresponding
PGM (right).

the detected pattern is represented as a vertex v ∈ V , while the interdependencies between
the pixel-clusters are represented as the edges e ∈ E of the graph.

Each pixel-cluster and thus also each vertex corresponds to a discrete random vari-
able X, while the set of allN random variables of a given input image I at time instance t
is defined asX t = {Xt

1
,Xt

2
, . . . ,XtN }. The domain of the random variables is defined by I .

It is trivial to see that determining the value of each random variable from X is equivalent
to solving the labeling problem defined by Eq. (1).

To illustrate how the PGM framework is used for modelling the relationships between
pixel-clusters in this paper, let us for a moment examine the two simplified patterns on
the left hand side of Fig. 5, acquired at the time instances t − 1 and t . Each of the two
detected patterns consists of three pixel-clusters that belong to two distinct light planes.
As can be seen from the right hand side of Fig. 5, where the PGM constructed on the
basis of our modelling approach is presented, the state (or value) of each random vari-
able (i.e., each pixel-cluster) is modeled to depend on its horizontal neighbors, vertical
neighbors, temporal neighbors, and prior knowledge about the structure of the projected
pattern. The dependencies between the neighboring pixel-clusters are defined by so-called
factors, which model the relationships between the random variables, and for the horizon-
tal, vertical, temporal and prior cases are denoted as φh, φv , φt , and φp , respectively.

For our modelling approach, the joint probability distribution of the PGM can thus be
written as being proportional to the following factor product:

p
(
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, (2)

where N can, in general, take different values at different time instances and could also
be written as N t

′
in the above equation. The sets Eh, Ev , and Et correspond to the subsets
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of all the edges E , on which the horizontal, vertical and temporal factors are defined, re-
spectively. Note that the above joint distribution is defined for the case of two consecutive
frames (at time instances t and t − 1). The extension to a longer sequence is straightfor-
ward.

After the graph and the factors have been constructed, the optimal configuration of
the graph can be found using various inference algorithms, such as a brute force search
for exact inference, loopy belief propagation (Kschischang et al., 2001), or fractional be-
lief propagation (Wiegerinck and Heskes, 2003), which has also been used in our exper-
iments (Mooij, 2010). Once the state of each random variable has been determined, the
pixel-cluster-to-light-plane correspondence is known.

3.2. Building the Graph

The example shown in Fig. 4 represents a simple toy setting, where two line segments at
time instances t and t − 1 are perfectly aligned, as are the three pixel-clusters comprising
the segments. In practice this is unfortunately very rarely the case. Since no specific topol-
ogy is present in the projected pattern that could serve as a reference point for defining the
spatial relationships between the pixel-clusters, we need to define the criteria for defining
vertical, horizontal and temporal neighbors that can be used for building our graph.

Here, the simplest and most obvious criterion applies to the horizontal neighbors. In
our modelling approach two pixel-clusters are considered to be horizontal neighbors if
they are adjacent in the horizontal direction and they represent connected binary regions.3

Horizontal neighbors are needed in our PGM to “encourage” horizontally adjacent pixel-
clusters to take the same label. Most commonly, each pixel-cluster has two horizontal
neighbors, but any other number is possible as well, even though it is less likely.

Vertical neighbors are defined as pairs of pixel-cluster that contain at least one pixel at
the same x-coordinate (and different y-coordinates). There can again be several vertical
neighbors for a given pixel-cluster, and having more than just two vertical neighbors is in
fact the most common setting for a given pixel-cluster. Vertical neighbors are needed in
our PGM to ensure that the detected light planes tend to be labeled consecutively and as
such are extremely important for our modelling approach.

Last but not least, temporal neighbors are defined as pixel-clusters from the pattern
images of two consecutive time instances that share at least one non-zero pixel at the same
spatial coordinates. This definition requires no tracking of the pixel-clusters over time and
is, therefore, simple to implement. Temporal neighbors are included in our modelling
approach to exploit the additional temporal information when labeling the light planes
of the projected pattern and, as will be shown in the experimental section this is indeed
useful for the labeling accuracy.

The presented definitions define the topology of the PGM (i.e., vertices and edges)
constructed from the given input image I . To be able to conduct inference on the graph,
we need to define the factors between pairs of neighboring vertices (or on a single vertex)
that model the dependencies between the random variables of the vertices. The procedure
for defining this factor used in this paper is described in the next section.

3Where a 8-adjacency is considered for the connectivity (Gonzales and Woods, 2008).
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3.3. Defining the Factors

As emphasized in the previous section, factors represent functions of random variables
and are typically used to model the dependencies between the neighboring vertices (i.e.,
random variables) or to include prior knowledge into the PGM, in which case they apply
only to a single vertex. In the simple toy example in Fig. 5 the factors are represented
by small squares. In our modelling procedure we defined the factors to model the rela-
tionships between horizontally, vertically and temporally neighboring pixel-clusters and
added unary4 prior factors to include prior knowledge about the pattern structure into the
modelling procedure.

Horizontal factors φh are assigned between variables that correspond to horizontally
neighboring pixel-clusters. Depending on the values of both random variables, the factor
determines a fitness value. This fitness is high if the variables take the same value and
small if their values differ, which forces the horizontal neighbors to tend to correspond to
the same projected plane of light. The fitness assigned by the factor is defined by Eq. (3).

φh
(

Xti = k, Xtj = k′
)

=

{

1, k = k′,

fc, else,
(3)

where k, k′ ∈ I , and fc (0< fc < 1) denotes a fraction cost parameter that tells us how
much the fitness is diminished if two horizontally neighboring pixel-clusters take a differ-
ent value.

Vertical factors φv are assigned between the variables whose corresponding pixel-
clusters overlap vertically. This factor tends to assign a high fitness when the two vertically
neighboring pixel-clusters come from two neighboring light planes. If this is not the case,
the fitness drops accordingly. Eq. (4) summarizes the fitness determined by the vertical
factors:

φv
(

Xti = k, Xtj = k′
)

=

{

f (k − k′), k > k′,

0, else,
(4)

where k, k′ ∈ I and f stands for a linear function between the difference of two label
indices. The function f decreases monotonically with the difference:

f (δ)=

{

g(1 − (δ− 1)h), δ 6= 0,

oc, else.
(5)

The constant h determines the function drop rate, oc (overlap cost) denotes a parameter
penalizing two vertically overlapping pixel-clusters taking the same variable value, and
the function g(.) represents a truncating function that truncates all the negative values to
zero. Ideally, pixel-clusters originating from the same projected light plane never overlap
vertically, but due to system imperfections and lens distortions some vertically overlapping

4Factors of a single random variable.
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Algorithm 1: Determining prior factors.

for all pixel-clusters (i.e., rand. var. Xi ) in the image I do
Init: Initialize p as an M-dimensional vector of all zeros;
Result: Normalized distribution φp(Xi);
for all columns in the pixel-cluster Xi do

– find at most M biggest line segments overlapping with the given image column;
– record the position k of the pixel-clusters among the pixel-clusters found counting
from the bottom of the image up;
if number of found line segments m equals M then

– increase the k-th element of p by some positive constant ρ;
else

– increase all elements of p from position k to k+ (M −m− 1) by some
positive constant ρ;

end
end
– normalize the vector p to unit L1 norm; φp(Xi)= p;

end

pixel-clusters can take the same value. This is why it should be discouraged, but allowed
at high cost.

Temporal factors φt are assigned between the pixel-clusters belonging to two con-
secutive frames. Given a sufficiently high frame rate, the pixel-clusters in the temporal
neighborhood should preserve the same correspondence and, hence, also the same vari-
able state. The temporal factor is a function that assigns high fitness if the pixel-clusters
take the same value and zero fitness if the values differ.

φt
(

Xt−1

i = k, Xtj = k′
)

=

{

1, k = k′,

0, else,
(6)

where k, k′ ∈ I .
The prior factors φp are assigned to all the vertices and operate on a single random

variable. They are used to incorporate prior knowledge about the spatial structure of the
projected pattern into the modelling procedure and, in a sense, carry information about
the most likely range of values a random variable can take with respect to the vertical
position of the pixel-clusters and the number of vertical neighbors above and below. The
prior factors the distribution are determined based on the pseudo-procedure shown in Al-
gorithm 1.

4. Experimental Assessment

4.1. Experimental Setup and Performance Measurement

In order to evaluate the proposed approach we construct a database of 152 binary images of
a dynamic scene. The scene is illuminated with the uncoded structured-light pattern gen-
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Fig. 6. Sample images from the constructed database: captured scene (upper row), detected pattern (lower row).

erated by our sensor, which in the current form consists of eleven parallel light planes,5

i.e.,M = 11. The scene contains three objects (two cones and a ball) that are positioned on
a rotating table. When the table is turned, the objects change their position back and forth
and left and right in a range of approximately 1 m, thus creating different depth disconti-
nuities. The sensor records the scene and stores the individual images in our database for
subsequent experimentation. Some sample images from the acquired database are shown
in Fig. 6. Here, the upper row depicts raw images of the constructed scene, while the lower
row presents the corresponding detected patterns that serve as the input for the proposed
labeling procedure.

For each acquired image, the ground truth needed to estimate the efficiency of the pro-
posed labeling approach is obtained by hand labeling all the pixels belonging to all the
detected line segments. The labels of the pixel-clusters obtained with our PGM technique
are then compared to the pre-annotated ground truth to estimate the accuracy of the as-
sessed procedure. Here, the accuracy is measured in the form of the correct labeling rate
(CLR), which is defined as the ratio between the number of correctly labeled (non-zero)
pixels ncorrect and all the non-zero pixels nall , i.e.:

CLR =
ncorrect

nall

, (7)

where CLR ∈ [0,1]. Obviously, a CLR value close to one indicates a good performance,
whereas a CLR value close to zero indicates a poor performanceof the assessed technique.

5Note that the number of parallel light planes the sensor emits can be adjusted depending on the needs
of the application that uses the sensor. Our current prototype features eleven light planes and was used in this
experimental evaluation as such. Since hardware modifications are beyond the scope of this paper, we made no
efforts to alter the number of light planes emitted by our sensor.
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Fig. 7. Impact of: (a) fraction cost fc , (b) overlap cost oc , and (c) the function drop rate h on the labeling
accuracy of the proposed approach. The accuracy is measured in terms of the CLR.

4.2. Experiments and Results

The first issue of interest with the proposed PGM labeling method is the impact of var-
ious parameters on the performance of the proposed method. To examine this issue, we
fix all the open parameters to a default value, change one parameter at a time and observe
how the labeling accuracy changes with respect to the varying parameter. Even though the
parameters are, in general, not independent, we obtain a rough impression of the perfor-
mance of the proposed method with respect to the changing parameter. For this series of
experiments we only use a sequence length of one and, hence, rely for the moment only on
spatial information. The results of the described experiments are presented in Fig. 7. Note
that both the fraction cost fc (see Eq. (3)) and the overlap cost oc (see Eq. (5)) have only
a little effect on the labeling performance, as long as they are kept sufficiently small. In
contrast, the function drop rate h (Eq. (5)) has a significantly larger impact on the accuracy
of the proposed method. All in all, our experiments suggest that a similar performance can
be achieved over a wide range of parameter values. For the following experiments we fix
the values of the fraction cost fc, the overlap cost oc and the function drop rate h to the
values that resulted in the highest accuracy in this series of experiments.

Another important observation that can be made on the basis of the presented results
is the fact that the PGM labeling technique, in general, results in a relatively high labeling
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Fig. 8. Effect of varying the sequence length on the labeling accuracy. The accuracy is again measured in terms
of the CLR.

accuracy. This suggests that the spatial relationships defined between the line segments
(and pixel-clusters) of the detected patterns are reasonable, despite the fact that in the ver-
tical direction no obvious topology is present to define vertical neighbors. To summarize,
the experiments show that it is possible to define the spatial relationships between neigh-
boring line segments (and pixel clusters) with the proposed labeling technique without the
need to project complex light patterns, as in Ulusoy et al. (2010), and still produce a high
labeling accuracy.

With the open parameters fixed in the previous series of experiments, we can now eval-
uate the effect of temporal information on the labeling accuracy of our procedure. To this
end, we construct sequences of different lengths from images of our database that were
taken one after the other. We first build a new database of all the possible sequences of
length two, then a database of all the possible sequences of length three, and so forth up
until a sequence length of five. For each constructed database we compute the labeling ac-
curacy by considering spatial as well as temporal information. The results of the described
experiments are presented in Fig. 8. Note that the performance increases quite significantly
when adding temporal information to the labeling techniques. The largest jump in perfor-
mance is visible when the sequence length is increased from one (no temporal information
used) to two, while any additional images in the sequence again add a little to the overall
accuracy of the PGM labeling approach, but not as much as the first. The results suggest
that temporal information is indeed important when labeling structured-light patterns and
represents an important source of information that can add to the overall accuracy of the
labeling procedure.

Another important issue with the proposed labeling technique is the computational
cost. In our experiments the average time needed to process sequences comprising a single
image was around 0.3 s. The computational cost increased linearly with the length of the
sequence and prolonged the processing time by 1 s (on average) for each image that was
added to the sequence.

Up to this point, we have looked at the impact of open parameters and the effect of
temporal informationon the labeling accuracy of the proposed PGM technique. Hence, we
observed only the relative improvements in the labeling accuracy, while it is also important
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Fig. 9. Comparison with reference techniques. The performance is measured in the form of the CLR.

to know how the proposed technique compares to other techniques that are applicable for
the task of labeling uncoded structured-light patterns. To examine this issue we implement
two reference techniques, namely

• A naive labeling approach (NLA), which assigns light plane labels to the detected
non-pixels in the order the non-zero pixels appear in the image. The first non-zero
pixel at a given x-coordinate6 looking from the bottom of the image up is assigned a
label of one, the next detected non-zero pixel is assigned a label of two and so forth,
until all eleven labels have been assigned;

• The reference approach from Ulusoy et al. (2010) (RPGM), which also relies on
probabilistic graphical models, but makes no use of temporal information.

The comparison is presented in Fig. 9. Note that the proposed technique outperforms both
reference techniques in terms of the labeling accuracy, again demonstrating that spatial
and temporal information are important for the labeling process.

All in all, the results of our experimental assessment suggest that considering spatio-
temporal information for modelling dependencies among parts of the structured-light pat-
tern represents a viable solution to the problem of light-plane labeling in our (depth-image)
sensor. Our PGM approach yields good results on the experimental database and, as can
be seen from Fig. 10, where a sample result image is presented, is capable of assigning the
correct index to most of the pixel-clusters of the detected light pattern, even in difficult sit-
uations where large discontinuities are present in the scene. As can also be seen from the
presented example, the proposed labeling approach easily handles spurious connections
in the detected light planes and assigns them the correct labels. It is also relatively robust
to discontinuities in the detected light planes that are caused either by discontinuities in
the scene or failure to detect the projected patterns.

5. Conclusion

We have presented a novel technique for labeling light planes in depth-image sensors us-
ing probabilistic graphical models. We have shown that next to the spatial relationships

6The first non-zero pixel in this context refers to the pixel lowest in the image, or in other words, the pixel
with the largest y-coordinate.
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Fig. 10. Automatically labeled pixel-clusters. Left: unlabeled pixel-clusters. Right: labeled pixel-clusters (best
viewed in color).

between the parts of the projected pattern, temporal information can also be exploited to
improve the labeling accuracy. The performance of the proposed approach was compared
to reference techniques from the literature and demonstrated highly competitive results.
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Erdvinės ir laiko informacijos pridėjimas šviesos plokštumoms žymėti
gilaus vaizdo sensoriuose, naudojant tikimybinius grafinius modelius

Jaka KRAVANJA, Mario ŽGANEC, Jerneja ŽGANEC-GROS, Simon DOBRIŠEK,
Vitomir ŠTRUC

Straipsnyje pristatomas naujas būdas, leidžiantis sužymėti šviesio plokštumas vaizduose, atsižvel-
giant į nekoduotą šviesos struktūrą. Siūlomas sprendimas pritaiko tikimybinius grafų modelius, lei-
džiančius išspręsti projektuojamos ir atvaizduojamos šviesos šablonų sutapdinimą. Sprendžiant ša-
blonų sutapdinimo problemą, nagrinėjami ryšiai tarp atskirų projektuojamo šablono dalių, išanks-
tinė informacija apie šablono struktūrą, taip pat ir laiko informacija, siekiant gauti patikimą šviesio
plokštumų žymėjimą. Pristatomas metodas buvo išbandytas, naudojant šviesio šablonų duomenų
bazę, kuri buvo sudaryta, naudojant specialų vaizdo sensorių. Tyrimų rezultatai rodo, kad straips-
nyje aprašytas metodas su dideliu patikimumu sužymi šviesio šablonus vaizduose, net ir tuose, kurių
scenose matomi erdviniai trūkiai.


