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Abstract. With respect to multi-attribute decision making under uncertain linguistic environment,

a new interval-valued 2-tuple linguistic representation model is introduced. To deal with the sit-

uation where the elements in a set are interdependent, several generalized interval-valued 2-tuple

linguistic correlated aggregation operators are defined. It is worth pointing out that some interval-

valued 2-tuple linguistic operators based on additive measures are special cases of our operators.

Meanwhile, several special cases and desirable properties are discussed. Furthermore, models based

on the correlation coefficient are constructed, by which the optimal weight vector can be obtained.

Moreover, an approach to multi-attribute group decision making with uncertain linguistic infor-

mation is developed. Finally, an example is selected to show the effectivity and feasibility of the

developed procedure.

Key words: multi-attribute decision making, interval-valued 2-tuple linguistic variable, Choquet

integral, generalized Shapley function.

1. Introduction

Decision making is one of the most common activities for human beings, which is defined

in uncertain, vague and imprecise situations. Thus, the experts usually express their pref-

erences using fuzzy variables, such as fuzzy sets (Zadeh, 1965), type-2 fuzzy sets (Zadeh,

1973), intuitionistic fuzzy sets (Atanassov, 1986), and hesitant fuzzy sets (Torra, 2010).

All these fuzzy tools are defined for quantitative situations. However, in many situations,

it is more suitable to express the experts’ preferences using qualitative variables rather

than quantitative variables (Zadeh, 1975a, 1975b, 1975c), which is usually expressed by

linguistic variables, such as “light”, “fair”, and “heavy”. To well deal with qualitative

variables, different kinds of linguistic variables are presented, such as linguistic variables

(Zadeh, 1975a, 1975b, 1975c), uncertain linguistic variables (Xu, 2004a, 2004c), and hes-

itant fuzzy linguistic term sets (Rodríguez et al., 2012).

*Corresponding author.
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Since linguistic variables were first introduced by Zadeh (1975a, 1975b, 1975c), the

fuzzy linguistic approach has been applied in many fields and applications, such as de-

cision making (Ben-Arieh and Chen, 2006; Dong et al., 2009a; Martínez et al., 2010;

Merigó et al., 2010; Wang, 2013; Xu, 2004b; Zha, 2013), medical care (Becker, 2001),

military system (Wu and Mendel, 2010), risk assessment (Liu et al., 2010), engineering

evaluation (Martínez et al., 2005, 2007), and social choice (Garcia-Lapresta et al., 2010).

At present, there are main two kinds of computing methods for linguistic variables. One

uses the membership function of linguistic terms (Degani and Bortolan, 1988; Martin and

Klir, 2006), the other is based on the predefined ordinal scales (Yager, 1981). It needs to

point out that model based on the predefined ordinal scales has been widely applied to

decision-making processes for its easy calculation and application (Delgado et al., 1993;

Herrera and Martínez, 2000a; Wei, 2010, 2011a; Xu, 2004b, 2004c, 2004d, 2006, 2007;

Xu et al., 2013; Yager, 1993, 1995).

The 2-tuple fuzzy linguistic model (Herrera and Martínez, 2000a), an effective com-

putational approach for computing with words (CW), can well deal with the process

of linguistic information. Since it was first proposed by Herrera and Martínez (2000a),

it has provided very good results in many fields and applications (Dong et al., 2009a;

Herrera and Martínez, 2000b; Herrera-Viedma et al., 2007; Li et al., 2009; Liu et al., 2011;

Moreno et al., 2005; Yu, 2009; Zeng et al., 2012). As Martínez and Herrera (2012)

noted: “this success would not have been possible without methodologies to carry out

the processes of computing with words (CW) that implies the use of linguistic informa-

tion”. As a key aspect of CW, many 2-tuple linguistic aggregation operators have been

proposed, such as the 2-tuple linguistic weighted averaging (TLWA) operator (Herrera

and Martínez, 2000a), the 2-tuple linguistic ordered weighted averaging (TLOWA) op-

erator (Herrera and Martínez, 2000a), the extended 2-tuple linguistic weighted averag-

ing (ET-LWA) operator (Herrera and Martínez, 2000a), the 2-tuple ordered weighted

geometric (TOWG) operator (Jiang and Fan, 2003), the extended 2-tuple linguistic or-

dered weighted averaging (ET-LOWA) operator (Zhang and Fan, 2006), the 2-tuple hybrid

weighted averaging (T-HWA) operator (Xu, 2004c), the 2-tuple linguistic weighted geo-

metric averaging (TLWGA) operator (Xu and Huang, 2008), the extended 2-tuple linguis-

tic ordered weighted geometric (ET-LOWG) operator (Wei, 2010), the induced general-

ized 2-tuple linguistic ordered weighted averaging (IG-2TLOWA) operator (Wei, 2011a),

the 2-tuple linguistic power averaging (2TLPA) operator (Xu and Wang, 2011), the 2-tuple

linguistic power ordered weighted averaging (2TLPOWA) operator (Xu and Wang, 2011),

the dependent 2-tuple ordered weighted averaging (D2TOWA) operator (Wei and Zhao,

2012), the dependent 2-tuple ordered weighted geometric (D2TOWG) operator (Wei and

Zhao, 2012), and the induced 2-tuple linguistic generalized ordered weighted averaging

(2-TILGOWA) operator (Xu, 2004c). To cope with the situation where the elements in a

set are correlative, some 2-tuple Choquet integral operators are defined, such as the 2-tuple

linguistic induced quasi-arithmetic Choquet integral aggregation (Quasi-2-TLICIA) op-

erator (Merigó and Gil-Lafuente, 2013), and the generalized 2-tuple correlated averaging

operator (Xu, 2004d). Because the 2-tuple linguistic variable only addresses the situation

where the attribute value of alternative is one linguistic term from the predefined ordinal
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scales. This makes it insufficient to completely express the expert’s personal judgment on

the attribute values of alternatives.

To cope with this issue, several other types of linguistic variables are presented, such

as uncertain linguistic variables (Xu, 2004a) and hesitant fuzzy linguistic term sets (Ro-

dríguez et al., 2012). With respect to uncertain linguistic variables, similar to the 2-tuple

fuzzy linguistic model (Herrera and Martínez, 2000a) for linguistic variables, Lin et al.

(2009) introduced the interval-valued 2-tuple linguistic model to deal with uncertain lin-

guistic information that avoids the information loss and distortion in the process of un-

certain linguistic information. Later, Zhang (2012, 2013) further researched the interval-

valued 2-tuple linguistic model and defined some interval-valued 2-tuple linguistic aggre-

gation operators, such as the interval-valued 2-tuple weighted average (IVTWA) opera-

tor, the interval-valued 2-tuple ordered weighted average (IVTOWA) operator, the gen-

eralized interval-valued 2-tuple weighted average (GIVTWA) operator, and the general-

ized interval-valued 2-tuple ordered weighted average (GIVTOWA) operator. At present,

the interval-valued 2-tuple linguistic aggregation operators are all based on the assump-

tion that the elements in a set are independent. However, in many real decision-making

problems, there is usually a degree of interdependence between elements. For exam-

ple, “we are to evaluate three companies according to three attributes: economic ben-

efits, environment benefits, social benefits, we want to give more importance to envi-

ronment benefits than to economic benefits or social benefits, but on the other hand we

want to give some advantage to companies that are good in environment benefits and

in any of economic benefits and social benefits”. In this situation, the aggregation oper-

ators based on additive measures seem to be insufficient. The purpose of this paper is

to define some new generalized interval-valued 2-tuple linguistic aggregation operators

using the Choquet integral and the generalized Shapley function that address the situa-

tion in which the elements in a set are interdependent. Meanwhile, some important cases

and desirable properties are considered. Furthermore, models for the optimal weight vec-

tor are constructed. Then, an approach to uncertain linguistic multi-attribute group deci-

sion making with incomplete weight information and interactive characteristics is devel-

oped.

This paper is organized as follows: Section 2 introduces several relative concepts, such

as interval-valued 2-tuple linguistic variables, interval-valued 2-tuple linguistic represen-

tation models, the Choquet integral and the generalized Shapley function. Section 3 de-

fines several generalized interval-valued 2-tuple linguistic aggregation operators that are

based on the Choquet integral and the generalized Shapley function. Meanwhile, several

special cases and desirable properties are studied. Section 4 constructs several models

based on the correlation coefficient, by which the optimal vector on an attribute set, on an

expert set and on their ordered sets can be respectively obtained. Furthermore, an approach

to multi-attribute group decision making with uncertain linguistic information is devel-

oped. Section 5 uses an example to illustrate the concrete application of the procedure.

Conclusion is made in the last section.
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2. Basic Concepts

2.1. Interval-Valued 2-Tuple Linguistic Variables

The linguistic approach is an approximate technique to represent qualitative aspects using

linguistic variables. Let S = {si | i = 0,1, . . . , t} be a linguistic term set with odd car-

dinality. Any label si represents a possible value for a linguistic variable, and it should

satisfy the following characteristics (Herrera and Martínez, 2000a):

(1) The set is ordered: si > sj , if i > j ;

(2) Max operator: max(si , sj ) = si , if si > sj ;

(3) Min operator: min(si , sj ) = si , if si 6 sj ;

(4) A negation operator: neg(si) = sj such that j = t − i .

For example, the linguistic term set S can be expressed by S = {s0: very light,

s1: light, s2: fair, s3: heavy, s4: very heavy}.
To represent the linguistic assessment information, Herrera and Martínez (2000a) in-

troduced the 2-tuple linguistic representation model that is based on the concept of sym-

bolic translation. A 2-tuple linguistic variable is composed by a linguistic term and a real

number, denoted by a 2-tuple (si , αi) with si being a linguistic term from predefined lin-

guistic term set S and αi ∈ [0.5,0.5).

Definition 1. (See Herrera and Martínez, 2000a.) Let β be the result of an aggregation of

the indices of a set of labels assessed in a linguistic term set S, i.e., the result of a symbolic

aggregation operation, β ∈ [0, t], with t being the cardinality of S. Let i = round(β) and

α = β − i be two values, such that, i ∈ [0, t] and α ∈ [0.5,0.5), then α is called a symbolic

translation.

Definition 2. (See Herrera and Martínez, 2000a.) Let S = {s0, s1, . . . , st } be a linguistic

term set, and β ∈ [0, t] be a number value representing the aggregation result of linguistic

symbolic, then the 2-tuple linguistic variable that expresses the equivalent information

to β is obtained with the following function 1:

1 : [0, t] → S × [0.5,0.5),

1(β) = (si , αi), with

{

si, i = round(β),

αi = β − i, αi ∈ [−0.5,0.5),

where round(·) is the usual round operation, si has the closest index label to β and αi is

the value of the symbolic translation.

Definition 3. (See Herrera and Martínez, 2000a.) Let S = {s0, s1, . . . , st } be a linguistic

term set, and (si , αi) be a 2-tuple linguistic variable. There is always a function 1−1:

1−1 : S × [0.5,0.5) → [0, t],

1−1(si , αi) = i + αi = β.
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Later, Chen and Tai (2005) introduced another form of the 2-tuple linguistic represen-

tation model.

Definition 4. (See Chen and Tai, 2005.) Let S = {si | i = 0,1, . . . , t} be a linguistic term

set with odd cardinality, then any β ∈ [0,1] can be transformed into a 2-tuple linguistic

variable, denoted by

1(β) = (si , α) with

{

si , i = round(β ∗ t),

α = β − i/t, α ∈ [−0.5/t,0.5/t).

From Definition 4, one can conclude that any 2-tuple linguistic variable (si , α) can be

converted into a crisp value β ∈ [0,1], denoted by 1−1(si, α) = i/t + α. This represen-

tation model can deal with linguistic decision-making problems with multi-granularity

linguistic term sets.

Similar to Herrera and Martínez (2000a), Lin et al. (2009) introduced the concept

of interval-valued 2-tuple linguistic variables. Later, Zhang (2012) gave the definition of

interval-valued 2-tuple linguistic variables as follows:

Definition 5. (See Zhang, 2012.) Let S = {si | i = 0,1, . . . , t} be a linguistic term set

with odd cardinality. An interval-valued 2-tuple linguistic variable is composed of two

linguistic terms and two numbers, denoted by [(si, α1), (sj , α2)], where i 6 j and α1 6 α2

if i = j , si(sj ) represents the linguistic label in S and α1(α2) is the value of the symbolic

translation. Equivalently, any interval [β1, β2] ⊆ [0,1], β1 6 β2, can be expressed by the

interval-valued 2-tuple linguistic variable as follows:

1
(

[β1, β2]
)

=
[

(si, α1), (sj , α2)
]

, with















si , i = round(β1 ∗ t),

sj , j = round(β2 ∗ t),

α1 = β1 − i/t, α1 ∈ [−0.5/t,0.5/t),

α2 = β2 − j/t, α2 ∈ [−0.5/t,0.5/t).

From Definition 5, one can conclude that any interval-valued2-tuple linguistic variable

[(si , α1), (sj , α2)] can be converted into an interval [β1, β2] ⊆ [0,1], β1 6 β2, denoted by

1−1([(si, α1), (sj , α2)]) = [i/t +α1, j/t+α2]. From Definition 5, we know that the value

of α is small. For example, if t = 8, then α ∈ [0.0625,0.0625). To extend the range of the

value α, similar to Herrera and Martínez (2000a), we introduce another interval-valued

2-tuple linguistic representation model as follows:

Definition 6. Let S = {si | i = 0,1, . . . , t} be a linguistic term set with odd cardinal-

ity. An interval-valued 2-tuple linguistic variable is composed of two linguistic terms

and two numbers, denoted by [(si, α1), (sj , α2)], where (si , α1) 6 (sj , α2) if i + α1 6

j +α2, si(sj ) is the linguistic term in S and α1(α2) is the value of the symbolic translation.

Furthermore, any interval [β1, β2] ⊆ [0,1], β1 6 β2, can be expressed by interval-valued

2-tuple linguistic variable as follows:
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1
(

[β1, β2]
)

=
[

(si , α1), (sj , α2)
]

, with















si, i = round(β1 ∗ t),

sj , j = round(β2 ∗ t),

α1 = β1t − i, α1 ∈ [−0.5,0.5),

α2 = β2t − j, α2 ∈ [−0.5,0.5).

From Definition 6, one can conclude that any interval-valued 2-tuple linguistic vari-

able [(si, α1), (sj , α2)] can be converted into an interval [β1, β2] ⊆ [0,1], denoted by

1−1([(si, α1), (sj , α2)]) = [(i + α1)/t, (j + α2)/t].

Remark 1. Without special explanation, in this paper we adopt the interval-valued

2-tuple linguistic representation model given in Definition 6. This representation model

is convenient to compare interval-valued 2-tuple linguistic variables from different multi-

granularity linguistic term sets.

Example 1. Let S = {si | i = 0,1, . . . ,6} be the predefined linguistic term set. For the in-

terval [β1, β2] = [0.4,0.7], by Definition 5 we have 1([β1, β2]) = [(s2,0.07), (s4,0.03)].
On the other hand, from Definition 6 we obtain 1([β1, β2]) = [(s2,0.4), (s4,0.2)].

For any interval-valued 2-tuple linguistic variable A = [(si, α1), (sj , α2)], similar to

Zhang (2012), the score function is defined to get the score of A, denoted by S(A) =
(i + j + α1 + α2)/2t , and the accuracy function is given to evaluate the accuracy degree

of A, expressed by H(A) = (j + α2 − i − α1)/2t . Furthermore, an order relationship,

for any two interval-valued 2-tuple linguistic variables A = [(si , α1), (sj , α2)] and B =
[(sk, α3), (sl, α4)], is defined as follows:

If S(A) < S(B), then A < B .

If S(A) = S(B), then

{

H(A) = H(B) ⇒ A = B,

H(A) < H(B) ⇒ A > B.

From the expressions of the score and accuracy functions, one can derive that S(A) =
(β1 + β2)/2 and H(A) = (β2 − β1)/2 with 1−1(A) = [β1, β2].

2.2. The Choquet Integral and the Generalized Shapley Function

As many researchers (Grabisch, 1996; Meng et al., 2014a, 2014b, 2014c, 2015; Meng and

Chen, 2015a, 2015b, 2016; Meng and Zhang, 2014; Tan and Chen, 2010, 2011; Xu, 2010;

Xu and Xia, 2011; Yager, 2003; Zhang et al., 2011) have noted, in many situations where

the elements are interdependent. In this case, the aggregation operators based on addi-

tive measures seem to be insufficient, whereas the aggregation operators based on fuzzy

measures (or non-additive measures) seem to well cope with this issue. This subsection

reviews the concepts of the Choquet integral and the generalized Shapley function.

Definition 7. (See Sugeno, 1974.) A fuzzy measure on a finite set N = {1,2, . . . , n} is a

set function µ : P(N) → [0,1] satisfying

(1) µ(∅) = 0,µ(N) = 1,

(2) If A,B ∈ P(N) with A ⊆ B , then µ(A) 6 µ(B), where P(N) is the power set

of N .
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Definition 8. (See Murofushi and Sugeno, 1989.) Let f be a positive real-valued func-

tion on X, and µ be a fuzzy measure on A = {x1, x2, . . . , xn}. The discrete Choquet inte-

gral of f with respect to µ is defined by

Cµ

(

f (x(1)), f (x(2)), . . . , f (x(n))
)

=
n
∑

i=1

f (x(i))
(

µ(A(i)) − µ(A(i+1))
)

,

where (·) indicates a permutation on N such that f (x(1))6 f (x(2)) 6 · · ·6 f (x(n)), and

A(i) = {x(i), . . . , x(n)} with A(n+1) = ∅.

From Definition 8, we know that the Choquet integral degenerates to the OWA opera-

tor if there are no interactions. Based on the fuzzy measure, the Choquet integral addresses

the interactions between elements. However, it only considers the importance of the or-

dered positions and gives the interactions between adjacent coalitions A(i) and A(i+1),

i = 1,2, . . . , n.

The generalized Shapley function proposed by Marichal (2000) is an effective tool to

reflect the interactions between coalitions in game theory, denoted by

8S(µ,N) =
∑

T ⊆N\S

(n − s − t)!t !
(n − s + 1)!

(

µ(S ∪ T ) − µ(T )
)

∀S ⊆ N,

where n, t and s are the cardinalities of N , T and S, respectively.

From Definition 7, one can easily derive that 8S(µ,N) > 0 for any S ⊆ N . Fur-

thermore, for any ordered set A(i), we have
∑n

i=1
(8A(i)

(µ,N) − 8A(i+1)
(µ,N)) = 1

and 8A(i)
(µ,N) − 8A(i+1)

(µ,N) > 0, i = 1,2, . . . , n. It means that {8A(i)
(µ,N) −

8A(i+1)
(µ,N)}i=1,2,...,n is a weight vector (or probability measure). When s = 1, it derives

the well-known Shapley function (Shapley, 1953)

ϕi(µ,N) =
∑

S⊆N\i

(n − s − 1)!s!
n!

(

µ(S ∪ i) − µ(S)
)

∀i ∈ N.

From the expression of the generalized Shapley function, we know that it is an expectation

value of the interactions between the coalition S and any coalition T ⊆ N\S.

3. Some Generalized Interval-Valued 2-Tuple Linguistic Choquet Aggregation

Operators

At present, there are few researches about the interval-valued 2-tuple linguistic aggre-

gation operators based on fuzzy measures that restrict the application of interval-valued

2-tuple linguistic variables. To deal with the situation where the elements in a set are

interdependent, this section defines several generalized interval-valued 2-tuple linguistic

Choquet aggregation operators.
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Definition 9. Let X = {[(l1, αl
1
), (r1, α

r
1
)], [(l2, αl

2
), (r2, α

r
2
)], . . . , [(ln, αl

n), (rn, α
r
n)]}

be a set of interval-valued 2-tuple linguistic variables, and µ be a fuzzy measure on the

ordered set N = {1,2, . . . , n}. The GIVTLCWA operator is defined by

GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

1−1
(

l(i), α
l
(i)

)λ
,

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

1−1
(

r(i), α
r
(i)

)λ

]
1

λ
)

,

where λ ∈ R+, (·) is a permutation on N with [(l(i), αl
(i)), (r(i), α

r
(i))] being the j th least

value of [(li, αl
i), (ri , α

r
i )], i = 1,2, . . . , n, and A(i) = {i, i + 1, . . . , n} with A(n+1) = ∅.

Remark 2. If there are no interactions between the ordered positions, then the

GIVTLCWA operator degenerates to the generalized interval-valued 2-tuple ordered

weighted average (GIVTOWA) operator (Zha, 2013)

GIVTOWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

w(i)1
−1
(

l(i), α
l
(i)

)λ
,

n
∑

i=1

w(i)1
−1
(

r(i), α
r
(i)

)λ

]

1

λ
)

.

Remark 3. If λ = −1, then the GIVTLCWA operator degenerates to the interval-valued

2-tuple linguistic Choquet weighted harmonic (IVTLCWH) operator

IVTLCWH
[(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)]

= 1

([(

n
∑

i=1

µ(A(i)) − µ(A(i+1))

1−1(l(i), α
l
(i))

)−1

,

(

n
∑

i=1

µ(A(i)) − µ(A(i+1))

1−1(r(i), α
r
(i))

)−1])

.

Remark 4. If λ → 0, then the GIVTLCWA operator degenerates to the interval-valued

2-tuple linguistic Choquet weighted geometric mean (IVTLCWGM) operator

IVTLCWGM
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∏

i=1

1−1
(

l(i), α
l
(i)

)µ(A(i))−µ(A(i+1)),

n
∏

i=1

1−1
(

r(i), α
r
(i)

)µ(A(i))−µ(A(i+1))

])

.

Remark 5. If λ = 1, then the GIVTLCWA operator degenerates to the interval-valued

2-tuple linguistic Choquet weighted averaging (IVTLCWA) operator
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IVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

1−1
(

l(i), α
l
(i)

)

,

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

× 1−1
(

r(i), α
r
(i)

)

])

.

Remark 6. If λ = 2, then the GIVTLCWA operator degenerates to the interval-valued

2-tuple linguistic quadratic Choquet weighted averaging (IVTLQCWA) operator

lIVTLQCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

1−1
(

l(i), α
l
(i)

)2
,

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

× 1−1
(

r(i), α
r
(i)

)2

]

1

2
)

.

Remark 7. If λ → +∞, then the GIVTLCWA operator degenerates to the Max operator

GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= n
max
i=1

[(

li , α
l
i

)

,
(

ri , α
r
i

)]

,

and if λ → −∞, then the GIVTLCWA operator degenerates to the Min operator

GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

=
n

min
i=1

[(

li , α
l
i

)

,
(

ri , α
r
i

)]

.

Remark 8. If (li, α
l
i ) = (ri , α

r
i ) for each i = 1,2, . . . , n, then the GIVTLCWA operator

degenerates to the generalized 2-tuple correlated averaging (GTCA) operator (Yang and

Chen, 2012)

GTCA
(

(l1, α1), (l2, α2), . . . , (ln, αn)
)

= 1

(

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

1−1
(

l(i), α
l
(i)

)λ

)
1

λ

.

Similar to the 2-tuple linguistic induced quasi-arithmetic Choquet integral aggregation

(Quasi-2- TLICIA) operator (Merigó and Gil-Lafuente, 2013), the Quasi-GIVTLCWA

(Q-GIVTLCWA) operator is defined as follows:
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Definition 10. Let X = {[(l1, αl
1
), (r1, α

r
1
)], [(l2, αl

2
), (r2, α

r
2
)], . . . , [(ln, αl

n), (rn, α
r
n)]}

be a set of interval-valued 2-tuple linguistic variables, and µ be a fuzzy measure defined

on the ordered set N = {1,2, . . . , n}. The Q-GIVTLCWA operator is defined by

Q-GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

g−1

(

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

g
(

1−1(l(i), α
l
(i))
)

)

,

g−1

(

n
∑

i=1

(

µ(A(i)) − µ(A(i+1))
)

g
(

1−1
(

r(i), α
r
(i)

))

)])

,

where g is a strictly continuous monotonic function such that g : [0,1] → R, (·) is a per-

mutation on N with [(l(i), αl
(i)), (r(i), α

r
(i))] being the j th least value of [(li, αl

i ), (ri , α
r
i )],

i = 1,2, . . . , n, and A(i) = {i, i + 1, . . . , n} with A(n+1) = ∅.

Remark 9. If g(x) = xλ, x ∈ [0,1], then the Q-GIVTLCWA operator reduces to the

GIVTLCWA operator.

Now, let us consider several desirable properties of the GIVTLCWA operator.

Theorem 1. Let X = {[(li, αl
i), (ri , α

r
i )]}i∈N and Y = {[(τi, ε

l
i), (πi, ε

r
i )]}i∈N be two sets

of interval-valued 2-tuple linguistic variables and µ be a fuzzy measure defined on the

ordered set N = {1,2, . . . , n}.

(i) Commutativity: let X′ = {[(l′i, α
l ′′
i ), (r ′

i , α
r ′
i )]}i∈N

be a permutation of X =
{[(li, αl

i), (ri , α
r
i )]}i∈N

. Then

GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= GIVTLCWA
([(

l′
1
, αl ′

1

)

,
(

r ′
1
, αr ′

1

)]

,
[(

l′
2
, αl ′

2

)

,
(

r ′
2
, αr ′

2

)]

, . . . ,
[(

l′n, α
l ′
n

)

,
(

r ′
n, α

r ′
n

)])

;

(ii) Comonotonicity: let (·) is a permutation on N with [(l(i), αl
(i)

), (r(i), α
r
(i)

)]
and [(τ(i), ε

l
(i)), (π(i), ε

r
(i))] being the j th least values of [(li, αl

i ), (ri, α
r
i )] and

[(τi, ε
l
i), (πi, ε

r
i )], i ∈ N , respectively. If (l(i), α

l
(i))6 (τ(i), ε

l
(i)) and (r(i), α

r
(i)) 6

(π(i), ε
r
(i)), then

GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

6 GIVTLCWA
([(

τ1, ε
l
1

)

,
(

π1, ε
r
1

)]

,
[(

τ2, ε
l
2

)

,
(

π2, ε
r
2

)]

, . . . ,
[(

τn, ε
l
n

)

,
(

πn, ε
r
n

)])

;

(iii) Idempotency: if [(li, αl
i), (ri , α

r
i )] = [(l, αl), (r, αr )] for each i ∈ N , then

GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

=
[(

l, αl
)

,
(

r,αr
)]

;
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(iv) Boundary:

[ n

min
i=1

(

li , α
l
i

)

,
n

min
i=1

(

ri , α
r
i

)

]

6 GIVTLCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

6

[

n
max
i=1

(

li, α
l
i

)

,
n

max
i=1

(

ri , α
r
i

)

]

.

Proof. Because ((µ(A(i)) − µ(A(i+1))))i∈N is a weight vector, namely, µ(A(i)) −
µ(A(i+1)) > 0 and

∑n
i=1

(µ(A(i)) − µ(A(i+1))) = 1, one can easily obtain the conclu-

sions. �

Although the GIVTLCWA operator reflects the interactions between elements, it only

considers the importance of the ordered positions and gives the interactions between the

adjacent coalitions A(i) and A(i+1), i = 1,2, . . . , n. To eliminate these disadvantages,

the generalized interval-valued 2-tuple linguistic Shapley Choquet weighted averaging

(GIVTLSCWA) operator is defined as follows:

Definition 11. Let X = {[(l1, αl
1
), (r1, α

r
1
)], [(l2, αl

2
), (r2, α

r
2
)], . . . , [(ln, αl

n), (rn, α
r
n)]}

be a set of interval-valued 2-tuple linguistic variables, and 8 be the associated general-

ized Shapley function for the fuzzy measure µ on the ordered set N = {1,2, . . . , n}. The

GIVTLSCWA operator is defined by

GIVTLSCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

(

8A(i)
(µ,N) − 8A(i+1)

(µ,N)
)(

ϕx(i)
(ρ,X)1−1

(

l(i), α
l
(i)

))λ
,

n
∑

i=1

(

8A(i)
(µ,N) − 8A(i+1)

(µ,N)
)(

ϕx(i)
(ρ,X)1−1

(

r(i), α
r
(i)

))λ

]

1

λ
)

,

where λ ∈ R+, ϕxi (ρ,X) is the Shapley value for the fuzzy measure ρ on X with xi =
[(li , αl

i), (ri , α
r
i )], i = 1,2, . . . , n, (·) is a permutation on N with ϕx(i)

(ρ,X)[(l(i), αl
(i)),

(r(i), α
r
(i))] being the j th least value of ϕxi (ρ,X)[(li , αl

i), (ri, α
r
i )], i = 1,2, . . . , n, and

A(i) = {i, i + 1, . . . , n} with A(n+1) = ∅.

From Definition 11, we know that the GIVTLSCWA operator does not only consider

the importance of elements and their ordered positions but also reflect their interactions.

However, the GIVTLSCWA operator does not satisfy idempotency that makes the ratio-

nality of this operator be questioned. Hence, we further present the following general-

ized interval-valued 2-tuple linguistic normalized Shapley Choquet weighted averaging

(GIVTLNSCWA) operator.

Definition 12. Let X = {[(l1, αl
1
), (r1, α

r
1
)], [(l2, αl

2
), (r2, α

r
2
)], . . . , [(ln, αl

n), (rn, α
r
n)]}

be a set of interval-valued 2-tuple linguistic variables, and 8 be the associated general-

ized Shapley function for the fuzzy measure µ on the ordered set N = {1,2, . . . , n}. The
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GIVTLNSCWA operator is defined by

GIVTLNSCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))(ϕx(i)
(ρ,X)1−1(l(i), α

l
(i)))

λ

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)λ

,

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))(ϕx(i)
(ρ,X)1−1(r(i), α

r
(i)))

λ

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)λ

]

1

λ
)

,

where λ ∈ R+, ϕxi (ρ,X) is the Shapley value for the fuzzy measure ρ on X with xi =
[(li, αl

i ), (ri , α
r
i )], i = 1,2, . . . , n, (·) is a permutation on N with ϕx(i)

(ρ,X)[(l(i), αl
(i)),

(r(i), α
r
(i))] being the j th least value of ϕxi (ρ,X)[(li , αl

i ), (ri, α
r
i )], i = 1,2, . . . , n, and

A(i) = {i, i + 1, . . . , n} with A(n+1) = ∅.

Remark 10. If there are no interactions between the elements as well as their ordered po-

sitions, then the GIVTLNSCWA operator degenerates to the generalized interval-valued

2-tuple linguistic hybrid weighted averaging (GIVTLHWA) operator:

GIVTLHWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

w(i)(ωx(i)
1−1(l(i), α

l
(i)))

λ

∑n
i=1

w(i)ωx(i)
λ

,

n
∑

i=1

w(i)(ωx(i)
1−1(r(i), α

r
(i)))

λ

∑n
i=1

w(i)ωx(i)
λ

]

1

λ
)

.

Remark 11. If λ = −1, then the GIVTLNSCWA operator degenerates to the interval-

valued 2-tuple linguistic normalizedShapley Choquet weightedharmonic (IVTLNSCWH)

operator

IVTLNSCWH
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([(

n
∑

i=1

ϑx(i)

1−1(l(i), α
l
(i))

)−1

,

(

n
∑

i=1

ϑx(i)

1−1(r(i), α
r
(i))

)−1])

,

where ϑx(i)
=

(8A(i)
(µ,N)−8A(i+1)

(µ,N))/ϕx(i)
(ρ,X)

∑n
i=1

(8A(i)
(µ,N)−8A(i+1)

(µ,N))/ϕx(i)
(ρ,X)λ

, i = 1,2, . . . , n.

Remark 12. If λ → 0, then the GIVTLNSCWA operator degenerates to the interval-

valued 2-tuple linguistic Shapley Choquet weighted geometric mean (IVTLSCWGM) op-

erator

IVTLSCWGM
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∏

i=1

1−1
(

l(i), α
l
(i)

)8A(i)
(µ,N)−8A(i+1)

(µ,N)
,

n
∏

i=1

1−1
(

r(i), α
r
(i)

)8A(i)
(µ,N)−8A(i+1)

(µ,N)

])

.
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Remark 13. If λ = 1, then the GIVTLNSCWA operator degenerates to the interval-

valued 2-tuple linguistic normalizedShapley Choquet weighted averaging (IVTLNSCWA)

operator

IVTLNSCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)1−1(l(i), α

l
(i))

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)

,

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)1−1(r(i), α

r
(i)

)
∑n

i=1
(8A(i)

(µ,N) − 8A(i+1)
(µ,N))ϕx(i)

(ρ,X)

])

.

Remark 14. If λ = 2, then the GIVTLNSCWA operator degenerates to the interval-

valued 2-tuple linguistic normalized quadratic Shapley Choquet weighted averaging

(IVTLNQSCWA) operator:

IVTLNQSCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n)
])

= 1

([

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))(ϕx(i)
(ρ,X)1−1(l(i), α

l
(i)))

2

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)2

,

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))(ϕx(i)
(ρ,X)1−1(r(i), α

r
(i)))

2

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)2

]

1

2
)

.

Remark 15. If 8A(i)
(µ,N) − 8A(i+1)

(µ,N) = 1

n
, i = 1,2, . . . , n, and λ = 1, then the

GIVTLNSCWA operator degenerates to the interval-valued 2-tuple linguistic Shapley

weighted averaging (IVTLSWA) operator:

IVTLSWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

ϕxi (ρ,X)1−1
(

li, α
l
i

)

, ϕxi (ρ,X)1−1
(

ri , α
r
i

)

])

.

Remark 16. If ϕxi (ρ,X) = 1

n
, i = 1,2, . . . , n, and λ = 1, then the GIVTLNSCWA op-

erator degenerates to the generalized interval-valued 2-tuple linguistic Shapley Choquet

weighted averaging (GIVTLSCWA) operator

GIVTLSCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

n
∑

i=1

(

8A(i)
(µ,N) − 8A(i+1)

(µ,N)
)

1−1
(

l(i), α
l
(i)

)λ
,

n
∑

i=1

(

8A(i)
(µ,N) − 8A(i+1)

(µ,N)
)

1−1
(

r(i), α
r
(i)

)λ

]

1

λ
)

.
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Remark 17. If (li , α
l
i) = (ri , α

r
i ), i = 1,2, . . . , n, then the GIVTLNSCWA operator de-

generates to the generalized 2-tuple linguistic normalized Shapley Choquet weighted av-

eraging (GTLNSCWA) operator

GTLNSCWA
((

l1, α
l
1

)

,
(

l2, α
l
2

)

, . . . ,
(

ln, α
l
n

))

= 1

(

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))(ϕx(i)
(ρ,X)1−1(l(i), α

l
(i)

))
λ

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))ϕx(i)
(ρ,X)λ

)

1

λ

.

Since
( (8A(i)

(µ,N)−8A(i+1)
(µ,N))ϕx(i)

(ρ,X)λ

∑n
i=1

(8A(i)
(µ,N)−8A(i+1)

(µ,N))ϕx(i)
(ρ,X)λ

)

i∈N
is a weight vector, by Theorem 1

one can easily derive that the GIVTLNSCWA operator satisfies Commutativity, Comono-

tonicity, Idempotency, and Boundary.

Similar to the Q-GIVTLCWA operator, the Quasi-GIVTLNSCWA (Q-GIVTLNSCWA)

operator is defined as follows:

Definition 13. Let X = {[(l1, αl
1
), (r1, α

r
1
)], [(l2, αl

2
), (r2, α

r
2
)], . . . , [(ln, αl

n), (rn, α
r
n)]}

be a set of interval-valued 2-tuple linguistic variables, and 8 be the associated general-

ized Shapley function for the fuzzy measure µ on the ordered set N = {1,2, . . . , n}. The

Q-GIVTLNSCWA operator is defined by

Q-GIVTLNSCWA
([(

l1, α
l
1

)

,
(

r1, α
r
1

)]

,
[(

l2, α
l
2

)

,
(

r2, α
r
2

)]

, . . . ,
[(

ln, α
l
n

)

,
(

rn, α
r
n

)])

= 1

([

g−1

(

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))g(ϕx(i)
(ρ,X)1−1(l(i), α

l
(i)))

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))g(ϕx(i)
(ρ,X))

)

,

g−1

(

n
∑

i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))g(ϕx(i)
(ρ,X)1−1(r(i), α

r
(i)))

∑n
i=1

(8A(i)
(µ,N) − 8A(i+1)

(µ,N))g(ϕx(i)
(ρ,X))

)])

,

where g is a strictly continuous monotonic function such that g : [0,1] → R, ϕxi (ρ,X)

is the Shapley value for the fuzzy measure ρ on X with xi = [(li, αl
i), (ri , α

r
i )], i =

1,2, . . . , n, (·) is a permutation on N with ϕx(i)
(ρ,X)[(l(i), αl

(i)), (r(i), α
r
(i))] being the

j th least value of ϕxi (ρ,X)[(li , αl
i ), (ri , α

r
i )], i = 1,2, . . . , n, and A(i) = {i, i + 1, . . . , n}

with A(n+1) = ∅.

Remark 18. If g(x) = xλ, x ∈ [0,1], then the Q-GIVTLNSCWA operator reduces to the

GIVTLNSCWA operator.

4. An Approach to Multi-Attribute Decision Making

As we know, in decision making another hot topic is how to obtain the weight vector. Zha

(2013) introduced a method to determinate the weight vector using the precision function
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that considers the higher degree of precision of the interval-valued 2-tuple linguistic vari-

ables the bigger weights will be. Although this method is simple, the author does not give

more explanations. As we know, the elements’ importance is mainly determined by object

self, such as the decision makers and the attributes. Take a special case to illustrate; if all

interval-valued 2-tuple linguistic variables have the same degree of precision, then they

have the same weight that equals to 1/n. This seems to be unreasonable.

4.1. Models of the Optimal Weight Vectors

Similar to the correlation coefficient of interval-valued intuitionistic fuzzy sets (Bustince

and Burillo, 1995), we define the following correlation coefficient of interval-valued

2-tuple linguistic variables.

Definition 14. Let X = {[(li, αl
i ), (ri , α

r
i )]}i∈N and Y = {[(τi, ε

l
i), (πi, ε

r
i )]}i∈N be two

sets of interval-valued 2-tuple linguistic variables with li , ri , τi and πi being the linguistic

terms in S = {s0, s1, . . . , st }. The correlation coefficient of X and Y is defined by

K(X,Y ) =
C(X,Y )

√
E(X) · E(Y )

,

where N = {1,2, . . . , n}, C(X,Y ) =
∑n

i=1

1−1(li,α
l
i )1

−1(τi ,α
l
i)+1−1(ri,α

r
i )1

−1(πi,α
r
i )

2
is

the correlation between X and Y , E(X) =
∑n

i=1

(1−1(li ,α
l
i )

2+1−1(ri ,α
r
i )

2)

2
and E(Y ) =

∑n
i=1

(1−1(τi ,α
l
i )

2+1−1(πi ,α
r
i )

2)

2
are the informational energies of X and Y , respectively.

Proposition 1. The correlation coefficient K(X,Y ) between X = {[(li, αl
i), (ri , α

r
i )]}i∈N

and Y = {[(τi, ε
l
i), (πi, ε

r
i )]}i∈N satisfies the following conditions:

(i) 0 6 K(X,Y )6 1;

(ii) K(X,Y ) = K(Y,X);

(iii) K(X,Y ) = 1, if X = Y , namely, [(li, αl
i ), (ri , α

r
i )] = [(τi, ε

l
i), (πi, ε

r
i )] for each

i = 1,2, . . . , n.

Proof. By the Cauchy–Schwarz inequality, it is not difficult to get the conclusion (i). Fur-

thermore, from the definition of the correlation coefficient one can easily get the conclu-

sion (ii) and (iii). �

Consider a multi-attribute group decision-making problem, in which the attribute pref-

erence values take the form of uncertain linguistic variables. Suppose there are m alter-

natives A = {a1, a2, . . . , am} and n attributes C = {c1, c2, . . . , cn}, which are evaluated

by q experts, E = {e1, e2, . . . , eq}. Assume that Rk = (s̄k
ij )m×n is the uncertain linguistic

decision matrix given by the expert ek , where sk
ij = [sk

lij , s
k
rij ] is the uncertain linguistic

preference value of the alternative ai ∈ A for the attribute cj ∈ C, and sk
lij and sk

rij belong

to the predefined linguistic term set S = {si | i = 0,1, . . . , t}.
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• Models for the optimal weight vector on the expert set

Let R̄ = (s̄ij )m×n be the average interval-valued 2-tuple linguistic decision matrix,

with s̄ij = [1( 1

q

∑q

k=1
1−1(sk

lij ,0)),1( 1

q

∑q

k=1
1−1(sk

rij ,0))] for all i = 1,2, . . . ,m;

j = 1,2, . . . , n. Calculate the correlation coefficient K(s̄j , s̄
k
j ) between s̄j = (s̄ij )i=1,...,m

and s̄k
j = ([(sk

lij ,0), (sk
rij ,0)])i=1,...,m for all j = 1,2, . . . , n; k = 1,2, . . . , q . If the weight

information on the expert set is not exactly known, then the following model for the opti-

mal weight vector w on the expert set E is established.

max

q
∑

k=1

n
∑

j=1

wekK
(

s̄j , s̄
k
j

)

,

s.t.







∑q

k=1
wek = 1,

wek > 0, k = 1,2, . . . , q,

wek ∈ Wek , k = 1,2, . . . , q

(1)

where Wek is the range of the expert ek .

In model (1), if we delete the condition wek ∈ Wek , k = 1,2, . . . , q , then model for

the optimal weight vector on the expert set where the weight information is completely

unknown is obtained. From model (1), one can conclude that the closer an expert’s eval-

uation values are to the other experts’, the larger the weight measure is. This can avoid

the unduly high or low evaluation values induced by the experts’ limited knowledge or

expertise.

Model (1) is based on the assumption that the importance of the experts is independent.

However, the experts’ importance is a relative value that is influenced by the other experts.

Considering the interdependence between the experts, the following model for the optimal

fuzzy measure ρ on E is established.

max

q
∑

k=1

n
∑

j=1

ϕek (ρ,E)K
(

s̄j , s̄
k
j

)

,

s.t.















ρ(E) = 1,

ρ(S) 6 ρ(T ), ∀S,T ⊆ E s.t. S ⊆ T ,

ρ(ek) ∈ Wek , k = 1,2, . . . , q,

ρ(ek)> 0, k = 1,2, . . . , q,

(2)

where ϕek (ρ,E) is the Shapley value of the expert ek .

Here we use the experts’ Shapley values as their importance that overall consider their

interactions. If there are no interactions, then model (2) degenerates to model (1).

• Models for the optimal weight vector on the ordered set Q

For each j = 1,2, . . . , n, reorder the correlation coefficient K(s̄j , s̄
k
j ), k ∈ Q =

{1,2, . . . , q}, in increasing order such that K(s̄j , s̄
(k)
j )6 K(s̄j , s̄

(k+1)
j ), where (·) is a per-

mutation on Q = {1,2, . . . , q − 1}. The following model for the optimal weight vector ω

on the ordered set Q is constructed.
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max

q
∑

k=1

n
∑

j=1

ωkK
(

s̄j , s̄
(k)
j

)

,

s.t.







∑q

k=1
ωk = 1,

ωk > 0, k = 1,2, . . . , q,

ωk ∈ Wk, k = 1,2, . . . , q,

(3)

where Wk is the range of the kth’s position.

Considering the interdependence between the ordered positions, the following model

for the optimal weight vector µ on Q is constructed.

max

q
∑

k=1

n
∑

j=1

ϕk(µ,Q)K
(

s̄j , s̄
(k)
j

)

,

s.t.















µ(Q) = 1,

µ(S) 6 µ(T ), ∀S,T ⊆ Q s.t. S ⊆ T ,

µ(k) ∈ Wk, k = 1,2, . . . , q,

µ(k)> 0, k = 1,2, . . . , q,

(4)

where ϕk(µ,Q) is the Shapley value of the kth position.

In models (3) and (4), if we delete the condition ωk ∈ Wk and µ(k) ∈ Wk , k =
1,2, . . . , q , then models for the optimal weight vectors on Q where the weight information

is completely unknown are obtained.

• Models for the optimal weight vector on the attribute set

Let R =
(

xij

)

m×n
be the comprehensive interval-valued 2-tuple linguistic deci-

sion matrix with xij = [(lij , αl
ij ), (rij , α

r
ij )] for all i = 1,2, . . . ,m; j = 1,2, . . . , n. Let

X+ = (x+
1

, x+
2

, . . . , x+
n ) and X− = (x−

1
, x−

2
, . . . , x−

n ) be respective the positive and

negative ideal vectors, where x+
j = [max16i6m(lij , αl

ij ),max16i6m(rij , α
r
ij )] and x−

j =
[min16i6m(lij , α

l
ij ),min16i6m(rij , α

r
ij )] for all j = 1,2, . . . , n. Calculate the correlation

coefficient K(x+
j , xij ) between x+

j and xij as well as the correlation coefficient K(x−
j , xij )

between x−
j and xij for all i = 1,2, . . . ,m; j = 1,2, . . . , n. For the benefit attribute cj , let

dij =
K(x+

j ,xij )

K(x−
j ,xij )+K(x+

j ,xij )
, and dij =

K(x−
j ,xij )

K(x−
j ,xij )+K(x+

j ,xij )
, otherwise.

If the weight information on the attribute set C is not exactly known, the following

model for the optimal weight vector w on C is built.

max

m
∑

i=1

n
∑

j=1

dijwcj ,

s.t.







∑n
j=1

wcj = 1,

wcj > 0, j = 1,2, . . . , n,

wcj ∈ Wcj , j = 1,2, . . . , n,

where Wcj is the range of the attribute cj .
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Considering the interdependence between attributes, the following model for the op-

timal weight vector v on C is built.

max

m
∑

i=1

n
∑

j=1

dijϕcj (v,C), (5)

s.t.















v(C) = 1,

v(S) 6 v(T ), ∀S,T ⊆ C s.t. S ⊆ T ,

v(cj ) ∈ Wcj , j = 1,2, . . . , n,

v(cj )> 0, j = 1,2, . . . , n,

(6)

where ϕcj (v,C) is the Shapley value of the kth position.

From models (5) and (6), one can easily get the corresponding model for the optimal

weight vector on the attribute set C where the weight information is completely unknown.

• Models for the optimal weight vector on the ordered set N

For each i = 1,2, . . . ,m, let (·) be a permutation on dij , j = 1,2, . . . , n, such that

di(j) being the j th least value of dij . Similar to model for the optimal weight vector on

the ordered set Q, if the weight information on the ordered set N is incompletely known,

the following model for the optimal weight vector ω on N is constructed.

max

m
∑

i=1

n
∑

j=1

di(j)ωj ,

s.t.







∑n
j=1

ωj = 1,

ωj > 0, j = 1,2, . . . , n,

ωj ∈ Wj , j = 1,2, . . . , n,

(7)

where Wj is the range of the j th position.

Considering the interdependence between the ordered positions, the following model

for the optimal weight vector η on N is constructed.

max

m
∑

i=1

n
∑

j=1

di(j)ϕj (η,N),

s.t.















η(N) = 1

η(S) 6 η(T ), ∀S,T ⊆ N s.t. S ⊆ T ,

η(j) ∈ Wj , j = 1,2, . . . , n,

η(j)> 0, j = 1,2, . . . , n,

(8)

where ϕj (η,N) is the Shapley value of the j th position.

Deleting the conditionsωj ∈ Wj and η(j) ∈ Wj , j = 1,2, . . . , n, in models (7) and (8),

models for the optimal weight vector on the attribute set where the weight information is

completely unknown are obtained.
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4.2. An Approach Based on the GIVTLNSCWA Operator

This subsection develops an approach to multi-attribute group decision making under un-

certain linguistic environment using GIVTLNSCWA operator. The main decision proce-

dure can be described as follows:

Step 1: Transformthe uncertain linguistic decision matrix Ak = (s̄k
ij )m×n, k = 1,2, . . . , q ,

into interval-valued 2-tuple linguistic decision matrix Rk = (rk
ij )m×n, where rk

ij =
[(sk

lij ,0), (sk
rij ,0)] is an interval-valued 2-tuple linguistic variable such that sk

lij and

sk
rij belong to the predefined linguistic term set S = {si |i = 0,1, . . . , t}.

Step 2: Calculate the average interval-valued 2-tuple linguistic decision matrix R̄ =
(s̄ij )m×n.

Step 3: Utilize model (1) or (2) to calculate the optimal weight vector on the expert set E.

Step 4: Utilize model (3) or (4) to calculate the optimal weight vector on the ordered

set Q.

Step 5: Use the GIVTLNSCWA operator to calculate the comprehensive interval-valued

2-tuple linguistic variable, we obtain the comprehensive interval-valued 2-tuple

linguistic decision matrix R = (xij )m×n with xij = [(slij , αl
ij ), (srij , α

r
ij )] for all

i = 1,2, . . . ,m; j = 1,2, . . . , n.

Step 6: Utilize model (5) or (6) to calculate the optimal weight vector on the attribute

set C.

Step 7: Utilize model (7) or (8) to calculate the optimal weight vector on the ordered

set N .

Step 8: Again use the GIVTLNSCWA operator to calculate the comprehensive interval-

valued 2-tuple linguistic variables xij = [(slij , αl
ij ), (srij , α

r
ij )] of the alterna-

tives ai , i = 1,2, . . . ,m.

Step 9: According to the comprehensive interval-valued 2-tuple linguistic value xi =
[(si1, αi1), (si2 , αi2)], i = 1,2, . . . ,m, calculate the score S(xi) = (i1 + i2 + αi1 +
αi2)/2t and the accuracy degree H(xi) = (i2 − i1 + αi2 − αi1)/2t . Then, select the

best one.

Step 10: End.

5. An Illustrative Example

In this section, we use a multi-attribute group decision-making problem of determining

which kind of air-conditioning systems should be installed in a library (Yoon, 1989) to

illustrate the proposed approach.

A city is planning to build a municipal library. One of the problems facing the city

development commissioner is to determine which kind of air-conditioning systems should

be installed in the library. The contractor offers five feasible alternatives, which might be

adapted to the physical structure of the library. The offered air-conditioning system must

take a decision according to four attributes: (1) performance c1; (2) maintainability c2;

(3) flexibility c3; and (4) safety c4. The five possible alternatives aj (j = 1,2,3,4,5) are to
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be evaluated using the uncertain linguistic variables by three experts under the above four

attributes on the predefined linguistic term set S = {si | i = 0,1, . . . ,6}, and construct,

respectively, the decision matrices as listed in the following:

A1 =















[s5, s6] [s4, s5] [s2, s4] [s3, s4]
[s3, s4] [s1, s3] [s5, s6] [s2, s3]
[s2, s4] [s3, s4] [s1, s3] [s3, s5]
[s4, s5] [s3, s5] [s6, s6] [s2, s3]
[s2, s3] [s4, s6] [s4, s5] [s3, s4]















,

A2 =















[s3, s5] [s2, s4] [s1, s2] [s3, s5]
[s4, s5] [s2, s3] [s2, s3] [s4, s6]
[s1, s2] [s3, s5] [s1, s2] [s2, s3]
[s3, s5] [s2, s4] [s2, s4] [s1, s3]
[s1, s3] [s4, s5] [s5, s6] [s4, s6]















,

A3 =















[s2, s3] [s3, s4] [s1, s3] [s2, s3]
[s3, s5] [s1, s3] [s3, s5] [s2, s4]
[s1, s3] [s4, s5] [s2, s3] [s4, s5]
[s2, s3] [s3, s4] [s4, s5] [s1, s2]
[s4, s5] [s3, s4] [s3, s4] [s2, s4]















.

Assume that the weight vector on the expert set E is provided by WE = ([0.2,0.3],
[0.4,0.5], [0.3,0.4]) and the weight vector on the ordered set Q = {1,2,3} is given by

WQ = ([0.1,0.3], [0.2,0.4], [0.3,0.5]). Furthermore, the weight vector on the attribute

set C is defined by WC = ([0.1,0.3], [0.1,0.2], [0.2,0.4], [0.3,0.5])and the weight vector

on the ordered set N = {1,2,3,4} is providedby WN = ([0.1,0.2], [0.15,0.25], [0.2,0.3],
[0.25,0.35]). To obtain the best alternative(s), the following procedure is involved.

Step 1: From Ak , k = 1,2,3, we can easily get the associated interval-valued 2-tuple

linguistic decision matrices, take A1 for example,

R1 =















[(s5,0), (s6,0)] [(s4,0), (s5,0)] [(s2,0), (s4,0)] [(s3,0), (s4,0)]
[(s3,0), (s4,0)] [(s1,0), (s3,0)] [(s5,0), (s6,0)] [(s2,0), (s3,0)]
[(s2,0), (s4,0)] [(s3,0), (s4,0)] [(s1,0), (s3,0)] [(s3,0), (s5,0)]
[(s4,0), (s5,0)] [(s3,0), (s5,0)] [(s6,0), (s6,0)] [(s2,0), (s3,0)]
[(s2,0), (s3,0)] [(s4,0), (s6,0)] [(s4,0), (s5,0)] [(s3,0), (s4,0)]















.

Step 2: Using Rk , k = 1,2,3, we get the following average interval-valued 2-tuple

linguistic decision matrix

R̄ =







[(s3,0.33), (s5,−0.33)] [(s3,0), (s4,0.33)] [(s1,0.33), (s3,0)] [(s3,−0.33), (s4,0)]
[(s3,0.33), (s5,−0.33)] [(s1,0.33), (s3,0)] [(s3,0.33), (s5,−0.33)] [(s3,−0.33), (s4,0.33)]

[(s1,0.33), (s3,0)] [(s3,0.33), (s5,−0.33)] [(s1,0.33), (s3,−0.33)] [(s3,0), (s4,0.33)]
[(s3,0), (s4,0.33)] [(s3,−0.33), (s4,0.33)] [(s4,0), (s5,0)] [(s1,0.33), (s3,−0.33)]

[(s2,0.33), (s4,−0.33)] [(s4,−0.33), (s5,0)] [(s4,0), (s5,0)] [(s3,0), (s5,−0.33)]






.
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Step 3: From steps 1 and 2, we obtain the correlation coefficients as follows:

(

K
(

s̄1, s̄
1

1

)

,K
(

s̄2, s̄
1

2

)

,K
(

s̄3, s̄
1

3

)

,K
(

s̄4, s̄
1

4

))

= (0.978,0.991,0.988,0.984),
(

K
(

s̄1, s̄
2

1

)

,K
(

s̄2, s̄
2

2

)

,K
(

s̄3, s̄
2

3

)

,K
(

s̄4, s̄
2

4

))

= (0.982,0.991,0.952,0.971),
(

K
(

s̄1, s̄
3

1

)

,K
(

s̄2, s̄
3

2

)

,K
(

s̄3, s̄
3

3

)

,K
(

s̄4, s̄
3

4

))

= (0.949,0.991,0.99,0.978).

According to model (2), the following linear programming model for the optimal fuzzy

measure ρ on E is built.

max 0.0128
(

ρ(e1) − ρ(e2, e3)
)

− 0.009
(

ρ(e2) − ρ(e1, e3)
)

− 0.003
(

ρ(e3) − ρ(e1, e2)
)

+ 3.915,

s.t.







ρ(e1, e2, e3) = 1,

ρ(S) 6 ρ(T ), ∀S,T ⊆ {e1, e2, e3} s.t. S ⊆ T ,

ρ(e1) ∈ [0.2,0.3], ρ(e2) ∈ [0.4,0.5], ρ(e3) ∈ [0.3,0.4].

Solving the above model, we get

ρ(e1) = ρ(e3) = 0.3, ρ(e2) = 0.4, ρ(e2, e3) = 0.4,

ρ(e1, e2) = ρ(e1, e3) = ρ(e1, e2, e3) = 1,

and the experts’ Shapley values are ϕe1
(ρ,E) = 0.52, ϕe2

(ρ,E) = 0.26, ϕe3
(ρ,E) =

0.22.

Step 4: From the correlation coefficients given in step 3 and model (4), the following

linear programming model for the optimal fuzzy measure µ on Q is built.

max−0.0256
(

µ(1) − µ(2,3)
)

+ 0.01
(

µ(2) − µ(1,3)
)

+ 0.017
(

µ(3) − µ(1,2)
)

+ 3.915,

s.t.







µ(1,2,3) = 1,

µ(S) 6 µ(T ), ∀S,T ⊆ {1,2,3} s.t. S ⊆ T ,

µ(1) ∈ [0.1,0.3], µ(2) ∈ [0.2,0.4], µ(3) ∈ [0.3,0.5].

Solving the above model, we obtain

µ(1) = 0.1, µ(2) = µ(1,2) = 0.2, µ(3) = µ(1,3) = 0.5,

µ(2,3) = µ(1,2,3) = 1,

and the ordered positions’ generalized Shapley values are 8{1,2,3}(µ,Q) = 1,

8{2,3}(µ,Q) = 0.95, 83(µ,Q) = 0.63.
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Step 5: If λ = 1, by the GIVTLNSCWA operator the comprehensive interval-valued

2-tuple linguistic matrix is obtained as follows:

R =





[(s5,−0.473), (s6,−0.276)] [(s4,−0.235), (s5,−0.203)] [(s2,−0.203), (s4,−0.235)] [(s3,−0.033), (s4,0.448)]
[(s4,−0.46), (s5,−0.12)] [(s1,0.48), (s3,0)] [(s5,−0.438), (s6,−0.267)] [(s3,0.109), (s5,−0.001)]
[(s2,0.203), (s4,−0.235)] [(s4,−0.441), (s5,−0.105)] [(s1,0.032), (s3,−0.48)] [(s3,0.395), (s5,−0.082)]
[(s4,−0.25), (s5,−0.053)] [(s3,−0.032), (s5,−0.203)] [(s6,−0.469), (s6,−0.235)] [(s2,−0.223), (s3,−0.026)]
[(s3,0.169), (s3,0.082)] [(s4,−0.026), (s6,−0.249)] [(s4,0.448), (s5,0.448)] [(s3,0.448), (s5,−0.04)]



 .

Step 6: From the comprehensive interval-valued 2-tuple linguistic matrix R, we have

D = (dij )5×4 =















0.619 0.615 0.607 0.58

0.603 0.558 0.687 0.586

0.567 0.613 0.555 0.588

0.606 0.605 0.702 0.551

0.577 0.623 0.684 0.588















.

According to model (6), the following linear programming model for the optimal fuzzy

measure v on C is built.

max−0.0187
(

v(c1) − v(c2, c3, c4)
)

− 0.0046
(

v(c2) − v(c1, c3, c4)
)

+ 0.0686
(

v(c3) − v(c1, c2, c4)
)

− 0.0453
(

v(c4) − v(c1, c2, c3)
)

− 0.0117
(

v(c1, c2) − v(c3, c4)
)

+ 0.025
(

v(c1, c3) − v(c2, c4)
)

− 0.032
(

v(c1, c4) − v(c2, c3)
)

+ 3.0284,

s.t.















v(c1, c2, c3, c4) = 1,

v(S) 6 v(T ), ∀S,T ⊆ {c1, c2, c3, c4} s.t. S ⊆ T ,

v(c1) ∈ [0.1,0.3], v(c2) ∈ [0.1,0.2],
v(c3) ∈ [0.2,0.4], v(c4) ∈ [0.3,0.5].

Solving the above model, we get

v(c1) = v(c2) = v(c1, c2) = 0.1, v(c3) = 0.4,

v(c4) = v(c1, c4) = v(c2, c4) = v(c1, c2, c4) = 0.3,

v(c1, c3) = v(c2, c3) = v(c3, c4) = v(c1, c2, c3) = v(c1, c3, c4) = v(c2, c3, c4)

= v(c1, c2, c3, c4) = 1,

and the attributes’ Shapley values are ϕc1
(v,C) = ϕc2

(v,C) = 0.075, ϕc3
(v,C) = 0.675,

ϕc4
(v,C) = 0.175.

Step 7: From the matrix D in step 6 and model (8), the following linear programming

model for the optimal fuzzy measure η on N is built.

max−0.0693
(

η(1) − η(2,3,4)
)

− 0.0255
(

η(2) − η(1,3,4)
)

+ 0.0024
(

η(3) − η(1,2,4)
)

+ 0.0924
(

η(4) − η(1,2,3)
)
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− 0.0474
(

η(1,2) − η(3,4)
)

− 0.0335
(

η(1,3) − η(2,4)
)

+ 0.0115
(

η(1,4) − η(2,3)
)

+ 3.0284,

s.t.















η(1,2,3,4) = 1,

η(S) 6 η(T ), ∀S,T ⊆ {1,2,3,4} s.t. S ⊆ T ,

η(1) ∈ [0.1,0.2], η(2) ∈ [0.15,0.25],
η(3) ∈ [0.2,0.3], η(4) ∈ [0.25,0.35].

Solving the above model, we derive

η(1) = 0.1, η(2) = η(1,2) = 0.15,

η(3) = η(1,3) = η(2,3) = η(1,2,3) = 0.2,

η(4) = 0.35, η(1,4) = η(2,4) = η(3,4) = η(1,2,4) = η(1,3,4) = η(2,3,4)

= η(1,2,3,4) = 1,

and the ordered positions’ generalized Shapley values are 8{1,2,3,4}(η,N) = 1,

8{2,3,4}(η,N) = 0.95, 8{3,4}(η,N) = 0.91, 84(η,N) = 0.704.

Step 8: If λ = 1, by the GIVTLNSCWA operator the comprehensive interval-valued

2-tuple linguistic values of the alternatives ai , i = 1,2,3,4,5, are obtained as follows:

x1 =
[

(s3,0.474), (s5,0.096)
]

, x2 =
[

(s4,0.488), (s6,0.323)
]

,

x3 =
[

(s3,0.209), (s4,0.237)
]

, x4 =
[

(s5,0.395), (s6,0.314)
]

,

x5 =
[

(s4,0.407), (s5,0.433)
]

.

Step 9: From the comprehensive interval-valued 2-tuple linguistic values xi , i =
1,2,3,4,5, the scores are

S(x1) = 0.698, S(x2) = 0.847, S(x3) = 0.586,

S(x4) = 0.923, S(x5) = 0.82.

Thus, the ranking result is a4 > a2 > a5 > a1 > a3. Namely, the alternative a4 is the best

choice.

In the above example, we only give the ranking order according to the GLHFHSWA

operator with λ = 1. With respect to the different values of λ, ranking order is obtained

as shown in Table 1.

From Table 1, we see that the ranking orders are different for the different values of λ.

The ranking orders are stable with the increase of the value of λ, and the alternative a4

changes from the worst to the best.

In this example, if we assume that there are no interactions, by the GIVTLHWA oper-

ator ranking orders are obtained as shown in Table 2.
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Table 1

Ranking order based on the GIVTLNSCWA operator.

S(x1) S(x2) S(x3) S(x4) S(x5) Ranking order

λ = −2 0.6386 0.6607 0.6431 0.5875 0.6643 a5 > a2 > a3 > a1 > a4

λ = −1 0.689 0.6325 0.6723 0.641 0.724 a5 > a1 > a3 > a4 > a2

λ → 0 0.7359 0.7421 0.6614 0.7899 0.8036 a5 > a4 > a2 > a1 > a3

λ = 1 0.6982 0.847 0.5856 0.9234 0.82 a4 > a2 > a5 > a1 > a3

λ = 2 0.5772 0.891 0.4666 0.9728 0.8038 a4 > a2 > a5 > a1 > a3

λ = 5 0.5003 0.9153 0.3732 0.9985 0.7643 a4 > a2 > a5 > a1 > a3

Table 2

Ranking order based on the GIVTLHWA operator.

S(x1) S(x2) S(x3) S(x4) S(x5) Ranking order

λ = −2 0.6631 0.601 0.4219 0.6202 0.5478 a1 > a4 > a2 > a5 > a3

λ = −1 0.6565 0.6148 0.4786 0.6317 0.6451 a1 > a5 > a4 > a2 > a3

λ → 0 0.634 0.6512 0.5452 0.6613 0.7257 a5 > a4 > a2 > a1 > a3

λ = 1 0.6095 0.7013 0.5833 0.7176 0.7778 a5 > a4 > a2 > a1 > a3

λ = 2 0.5916 0.7409 0.5935 0.775 0.8148 a5 > a4 > a2 > a3 > a1

λ = 5 0.5677 0.7895 0.5799 0.8491 0.8791 a5 > a4 > a2 > a3 > a1

From Table 2, we also obtain the different ranking orders for the different values of

λ. The ranking orders are stable with the increase of the value of λ, but the alternative as

changes from the worse to the best.

From this example, we know that the different ranking orders are obtained using the

different aggregation operators as well as the different values of λ. Thus, before making a

decision, the experts need to decide the using aggregation operator and λ value. If there

is no special explanation, we suggest that the experts use the GLHFHSWA operator. For

the value of λ, the pessimistic experts could use the smaller λ value and the optimistic

experts may apply the larger λ value. Meanwhile, the neutral experts could use λ = 1.

In this example, we use the introduced interval-valued 2-tuple linguistic representation

model to make decision, whereas we can also apply models given in the literature (Lin et

al., 2009; Zhang, 2012) to obtain the best choice.

6. Conclusion

With respect to multi-attribute decision making with uncertain linguistic variables, the

paper introduces an interval-valued 2-tuple linguistic representation model, by which any

interval-valued 2-tuple linguistic variable can be transformed into an interval in [0,1].
To address the interactions between elements, some interval-valued 2-tuple linguistic ag-

gregation operators are defined. Because of various reasons, such as the complexity and

uncertainty of real world decision making problems and the inherent subjective nature

of human thinking, the weight information is usually incompletely known. To obtain the

weight vector, some models based on the correlation coefficient and the Shapley function

are established. Then, an approach to uncertain linguistic multi-attribute group decision
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making is developed. It is worth pointing out that the new defined Choquet operators can

process the interval-valued 2-tuple linguistic representation models introduced by Lin et

al. (2009) and Zhang (2012).

In addition, when the domain of uncertain linguistic variables is restricted in the set-

ting of linguistic variables, the introduced method can be directly used in linguistic multi-

attribute decision making. Besides the application in the decision making, the defined

aggregation operators and models for the optimal weight vectors can also be used in some

other fields, such as human resources management, pattern recognition, clustering analy-

sis, and social science.
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Kai kurie apibendrintieji koreliuojantieji intervaluose vertinami
kortežiniai lingvistiniai apjungimo operatoriai ir jų taikymas priimant
sprendimus

Fanyong MENG, Mingxun ZHU, Xiaohong CHEN

Pristatytas naujas sprendimų priėmimo intervaluose vertinimų daugelio rodiklių (daugiatikslėje) ne-

raiškioje kalbinėje aplinkoje kortežininis lingvistinis išreiškimo modelis. Uždaviniams spręsti, kai

aibės elementai yra tarpusavyje priklausomi, yra apibrėžti apibendrintieji koreliuojantieji interva-

luose vertinami kortežiniai lingvistiniai apjungimo operatoriai. Verta pažymėti, kad intervaluose

vertinami lingvistiniai kortežų operatoriai, grindžiami suminiais matais, yra ypatingieji mūsų ope-

ratorių atvejai. Aptariami kai kurie atvejai ir jų norimos savybės. Sudaryti modeliai, grindžiami

koreliacijos koeficientu. Jais galima gauti optimalias reikšmingumų (svorių) vektoriaus reikšmes.

Sudarytas grupinis daugiarodiklis (daugiatikslis) sprendimų priėmimo modelis, kuris apibrėžiamas

neraiškia lingvistine informacija. Galiausiai, pasirinktas pavyzdys, sukurtos procedūros efektyvu-

mui ir tikslingumui parodyti.


