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Abstract. The results of investigation of the resource management in radar
search are presented in the paper. The time for search of manoeuvring targets
is minimized by optimal distribution of radar power among the space directions
and by optimization of search parameters.

The problem of the optimal control of radar search is extremely complicated
in the general case and in real situations, therefore we have compared only some
strategies (e.g., one stage cyclic strategy, various multistage strategies).

In some simple ¢ases (e.g., motionless targets) optimal parameters of mul-
tistage strategies may be found but in the general case the efficiency of strategies
may be evaluated with the help of statistical simulation. The simulation time
was essentially redufed by some simplifications of models, by the forecast of
discrete coordinates]of the targets and by the use of averaged values.

The usage of tlfle proposed strategies enables us to reduce the time of search
by 2-3 times. Those strategies may be executed in real time.
Key words: optimal distribution, radar search, multistage strategy.

1. Introduction. Radar search strategies of manoeuvring tar-
gets in a three-dimensional space are investigated. The purpose of
investigations is to minimize ihe average time until the moment at
which all targets are detected with a given false alarm probability
and the probability of detection. o

Some assumptions will be made on the search region, on radio
signals and control parameters. |

The space region in which the targets are searched is d1v1ded
into a number of cells, because the technical possibiiities of radar
equipment to separate two neighboring tzrgets are limited. We
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_ have I = m, * m; directions (where m, is the number of cells along
" the bearing angle, m, is the number of cells along the elevation
angle) and m is the number of cells in each direction.

We suppose that the number of targets is much smaller than
the number of cells in the search region and that the targets are
uniformly distributed and mutually 1ndependent in the region.

, Let the radar set have a possibility to send a package of some
radio impulses of the fixed equal amplitude and equal power to each
direction. The power of impulses is constant all the time and the
time required for changing the search direction may be neglected.
Therefore, the resource of a radar system may be characterized by
the summary number of impulses. :

The impulses sent in some direction may be reflected from the
targets in each cell of this direction. The stochastic independent
noise (the stationary Gaussian noise) is added to the reflected useful
signal. The noise is uniform for all cells and has the Rayleigh
envelope V with the density (see Akimov, 1989):

Pﬂ(V7 ‘71) = V/d{ exp(—V2/2af), (1)

where o2 is the variance of noise.
~ We also assume that the reflected impulses are received in a
coherent way, therefore the summary amplitude of the useful signal
is equal to \

A= tA;,

where t is the number of sent impulses; A; is the amplitude of

a single reflected impulse, which depends on the distance to the

target. This dependence is determined by the signal-to-noise ratlo
- The signal-to-noise ratio of power is

q‘.:

A

in the case of the fixed amplitude A;. The ratio q depends on the
distance to the target according to the range equation:

¢=(Cp/d)t, . 2
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where Cp is the constant, depending on the characteristics of the
atmosphere and targets, on the power of a transmitter and so on.
" The envelope X of the reflected signal mixed with noise has
the density corresponding to the generalized Rayleigh distribution
law (see Akimov, 1989 and Levin, 1966):

| p.(x,a,A):(x/az)exp[-(xz+A=)/2az]zo(XA}a’), ©)

where ¢? = to?, Iy — a modified Bessel function (see Korn, 1973).
 The reflected signal is detected by checking two statistical hy-
potheses: H, — the envelope of the reflected signal is distributed
according to law (1) or H; - it is distributed according to law (3).
The decision rule depends on the probability of the first order error
Qo (in our case the false alarm probability) and the probability of
the second order error 3. The probability of detection Po=1- 4.
We have the possibility to control some parameters of search
strategies during the search time period. The parameters are:
— the search direction i € {1,1};
- the number t of impulses in the package, transmitted to
the direcfiori i; )
— the prol)hbi}ities P, and Qq of the direction i.

The summary false alarm probability for each cell obtained
after the whole search period must be smaller than the given level
Q of the probability. The summary probability of detection of each
target must be greater than the given level P of the probability.

The most investigated search strategies are when the number m
of cells in each direction is equal to 1 (see Kuzmin, 1986; Sosulin,
1987; Vlasov, 1989). A sequential criterion is more efficient in
this case. Optimal search strategies under some assumptions were
developed by Sosulin (1987).

A more complicated case m > 1 is less investigated in the ana-
lytical way. The difficulties of the case depend on the fact that. all
the cells of some direction get the same signals but with diffe -nt
characteristics. The possibilities to investigate in the analytical way
are limited, therefore, the statistical simulation is used. The simu-
lation leads to the conclusion that Neyman-Pearson search strate-
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gies are more preferable in the case m > 1. Two-stage Neyman-
Pearson strategies are especially effective. If we use a greater false
alarm probability at the first stage and only some directions are
examined at the second (see Kuzmin, 1986), then the search time
may be reduced from 25% to 40%. We have used the information
from previous stages more completely therefore the search time was
reduced by 70%.

Two main approaches may be distinguished in the optimiza-
tion of search strategies. The first is the static case when one can
assume the targets to be motionless during the period of investiga-
tion. In this simplified case we were able to construct the analytical
expression of the dependence of the average resource t on search
parameters and to optimize the parameters. A more real dynamic
~ case when the motion of targets is taken into account has been in-
vestigated by statistical simulation and optimal search parameters
have been obtained.

2. Static case.

2.1. One-stage cyclic Neyman-Pearson strategy. This
simple widely used strategy carries out the search in all I direc-
tions in some consecutive order. The package of ¢ impulses is used
for each direction, the detection is carried out on the basis of the
Neyman-Pearson criterion with the probabilities Qo and Py, which
are uniform for all directions (P, is calculated for the most dis-
tant cell). The summary false alarm probability Q = Qo and the
summary probability of detection P > Py, because each cell is ex-
amined only once with one package of impulses and the targets are
motionless. .

The statistical hypothesis Hy is accepted according to the Ney-
man-Pearson criteria if the envelope of the reflected signal z (nor-
malized to o) is less than the normalized threshold z,. Otherwise
the hypothesis H; is accepted. The value of the threshold may be
obtained from (1), if z=v/o:

»Qo = /‘*’ opn(v,0)dz = /oo zexp(—2°%/2) dz.

1 4 t 4
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_ Hence
5 = V2Ia(1/Q0) - (4)

Usually the ratio for the summary signal is A/e > 3. Then the
generalized Rayleigh density function (3) may be approximated by
the Gaussian density function with mean A and variance o? (see
Levin, 1966). Therefore, for the most remote cells we have:

Py =/Q op,(v,0,A)dz
=—\/i_ih/m exp[—(z—a\/t-)z/Q]dz=<I>(a\/i—zp), (5)

where a = A;/0; is the signal-to-noise ratio for the voltage of the
signal reflected from the most remote cell; ® is the Gaussian dis-
tribution function.

After a substitution of (2) and (4) into (5) we get the necessary
number of impulses for one direction

= ‘15 [0 (Po) + )" = 5'43‘? [0-2(Po) + V21n(1/Q0))",  (6)

where dpa, is thd maximal range in the space region. Here we leave
out of account tf\e discretization of t.

- Equations (4), (6) determine the search parameters for a single
direction. If the number of targets is unknown the search period
ends after all I directions were examined and after the total number
of inipulses ty = It was sent. tgy depends on the probabilities Qo
and P, but it does not depend on the coordinates and number of

“targets. L '

2.2, Multistage strategies. The division of the Neyman-
Pearson search procedure to several stages under certain conditions
may reduce the summary search time. .

Let the strategies of each consequent stage he independent,
i.e., the values of signals of each stage are not memorized and are
not used in the next stages. The selection of searzh directions is
independent of the results of search in other directions. Therefore,
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we may restrict ourselves by investigating the search strategies sep-
arately for each direction. The directions which were not rejected
in the previous stages are examined using the probabilities P; and
Q; of the i-th stage with the parameters determined from (4) and
(6). In these formulas we take the maximal distance in which the
useful signal was detected in the previous stage instead of dmax.

" We minimize the average number of summary impulses

k
ts=t+3 &, ' )
i=2

where {; is the average number of impulses in the i-th stage, & is
the number of stages. The a\;erage number of summary impulses tg
depends on the distribution of search resources between the stages.
The distribution may be controlled by changing the probabilities
P; and Q; for the i-th stage.

Let us restrict ourselves by the strategies with uniform false
alarm probabilities Q; for all cells. The summary faise alarm prob-
ability is equal to the product of all Q;(i = 1,k) because the noise
is not correlated. The next inequality must be fulfilled:

k
H Ql' < QO’ (8)
=1 i -
0<Qi<1, i=TFk | 9

It can be proved that the minimum of tg is achieved when

k
[[@=Q, Q<q@<1 i=TF, . (10)
i=1
since by (6), i decreases when increasing Q. In a similar way
the probability of detection P;; in the i-th stage and j-th cell (on
condition that the signal be detected in the (i — 1)-th stage) must
satisfy the next inequalities:

k
[1Pi>PR, P<P;<1, i=TF j=Tm (11)

i=1



262 Simulation and optimization

* Therefore . we have the problem of minimization of ¢z under
the conditions (10) and (11). We investigated the relatively simple
‘cases m =1 and k = 2 (at m > 1) with a small amount of controlled
variables.

2.3. Multistage strategies for m=1. For 31mp11c1ty let us
denote P; = P;; and n be the number of targets in the region of
the space. Then the probability of detection under the tkreshold

z; = /2In(1/Q;) in the i-th stage is equal to

&-“"H@ ,IIP, BT

j=1

The corresponding numbers of impulses are
ti=CF(P,Q:), i=1E, (13)

where C = i;%?,
D

F(Pil, Q) = [~(P) +v2In(1/Q) ]’

Then the avefage number of impulses used in the k-sta,ge strat-
egy for a single 4xrectlon is equal to

- tgk—CF(P1,Q1)+CZ R;_ lF(PHQi)

=2

The efﬁcxency of the multistage strategy may be measured by
the ra.tlo

EP, QY = Tor = E(P*,Q")

F(Po, Qo) (14)
F(P;,Q1)+ Yi, Ri- lF(PnQ:)

where P* = (Py, ..., P), @ =(Q1,..,Qs) and ¢ is the average number
of impulses used in the one-stage strategy.

It is important that the ratio E does not depend on the size of
the space region or on the parameters of a radar set mcorporated
in the constant C.
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Thus we have the problem of mathematical programmirg:

max__ E(P*,Q"), )
Q.,P.,l_l 3
E - Y .
[Me=0 @<qcxi, (16)
i=1
| ) .
H P; 2 Py, PPl a7

=1

The number t5; monotonously increases with an increase of
each P,,i = Tk, therefore the maximal value of E must be achieved
when inequalities (17) are replaced by equalities:

k
[Ir=P, PR<pR<1, i=TE (9

i=1

It must be admitted that in real situations the dependence
(12,14) of the efficiency E on the number of targets n may be ne-
glected, because n/ I << 1. The error of approximation of the values
of R;, i=1,k—1 by the value

is equal to :
n[[e B - ey @)
Inj':l QJ ‘

Therefore, the approximation is acceptable if

Qo/Qi >> n/I, | - (19)
espe;.cia'lly at the point of maximal E, and we use the approximated
efficiency E instead of E.
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~ After replacing equalities (16) and (18) the problem of opti-
mization of search may be formulated as mathematical program-
" ming problem of 2(k — 1) variables:

max E(P*1,Q*Y),

k

[1@>Q Q<qc<y, - (20)
i=1

k-1 '

[Tr>R,  R<PR<], (21)
i=1 : :

where P, = Po/ [} Pi, Qe = Qo/ TS Qi

The algorithm of variable metrics (by Tiesis, 1975; 1983), which
enables us to take into account the constraints of type (20), was
used to solve the problem. The constraints (20) were involved into
the optimization with the help of the penalty function (see Tiesis,
1984). The objective function after a transformation is

E(f"“-;, Q) = E(aP*1, AQ 1) +p,

where

. k=l
- 1, x if Hl P2 Py
=N, =t ye-) =

, (Po / II P.-) /_( ) otherwise,

£ i=1 ) ' ‘

Lokt ' '
1, ‘ if 1 Qi>Qo - (22)

ﬁ= i=1

k=1 \1/(k-1) '

(Qo / I1 ‘Qc’) otherwise,
i=1 } o : ‘

_fo, | " fa=landf=1

P = [(Pt-1, Q1) — (aP*-1, BQ*-1)? otherwise.

The maximum values of E are presented in Table 1 for Qo =
108, for various values Py and for two-stage and three-stage strate-
gies. : ‘
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Table 1. The efficiency of opfimal strategies (in times in com-
parison with the one-stage strategy) ‘

Strategy Po = 0.5 Po= 0.6. pPo = 0.7 Pe "—;_?.8 pPo= 0.9
Two-stage | 3.31 313 | 208 | 2.77 2.56
[ Three-stage 4.08 3.78 3.50 3.23 2.92

We may see that the efficiency of two-stage strategies as com-
pared to the one-stage strategy is relatively high. The additional
efficiency of using the three-stage strategy is sma.ll Therefore the
use of two stages is most rational.

2.4. Two-stage strategy for m> 1with discrete t. We
deal here with the case t;,t, € T, where T is a set of integers. So
the problem (7), (10), (11) is of such a form:

minty = min(t; + -t.z),
@nQ2=Qo ,
PyjPy; 2 Py, PhS P;j€1,i=1,2; j=1m. (23)
We assume that the number of impulses for the one-stage cyclic
strategy t = L(t), where L is the function of discretization L : R — T,

such that L(ta) = tZ(a). We have by (6), that the number of impulses
for the j-th cell and for the second stage is

1y = t-L((dj/dm,x)4 F(Po/Pyj, QO/QI)\ ’ (24)

F(Pﬂa QO) /
where d; is the range up to the j-th cell and

Py = <1>(\/(t1 /1)(dumax/d3)*F (Po, Qo) — V21n(1/Q1) )

" The proba.bxhty of detection in j-th cell a.nd in first stage is

Imn

Rl] -~ Ql(

| ) + Pyj — I Q.
So the average number of impiilses in the second stage is

t—z =t {;(t/tlky Ql)a
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where

Bt/6,Q) =Y [(i/) Ry T] (1= R
' j=1 i=j+1

2Q1 Yt (1-Q)™ (25)

j=1

Problem (23) is transformed by (24) and (25) into such a prob-
lem

_ S 7 1
Jpax {E} = max { 1= @/h) B/, Q) }

The parameters t/t; and Q, are used as control parameters.
The parameters of the second stage t/t; and Q2 may be found from
the constraints of the problem (23) and from equation (24).

Note that the number of impulses in the second stage depends
on the maximal distance in which the useful signal was detected in
the first stage.

The maximum values of efficiency E = t/tg for various m, P,
and Q, = 10~° are presented in Table 2. :

Table 2. The efficiency of optimal discrete two-stage strategies
'  (in fimes in comparison. with the one-stage strategy)

. m_ | p=05 po = 0.7 po = 0.9
10 2.68 2.08 1.96
100 1.03 1.87 1.12
1000 1.51 1.30 1.01

We may see that the discretization of ¢t decreases the efficiency.
But the discretization of ¢ is caused by technological constraints.

The discretization of m essentially increases the precision of
search.

8. Dynamic case. Contrary to the static,case we assume that
the targets change their space coordinates during the search peric d.
We consider these changes to be greater than the size of space
cells, however, on the other hand, the targets move through some
limited number of cells during the search period. Therefore, we may
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introduce two main assumptions on the movement of targets, which
considerably simplifies the algorithms and programs of statistical
simulation:

1) the targets don’t change their altitudes;

2) they don’t change the movement direction.

~ The investigation of dynamic situations is carried out mainly
by means of statistical simulation. The simulation of the target
movement is the main part of the simulation system.

3.1. The search region and its surroundings. The region
of a space in which the radar search is carried out is illustrated
in Fig. 1 and Fig. 2. A horizontal projection of the search region
ABCD is presented in Fig. 1, and a vertical one CDEF is presented
in Fig. 2. The region is restricted by four planes, stretching through
the point O, and by two spherical surfaces with the center at the
same point O. The characteristics of the region are:

1) maximal distance dpay;

. 2) minimal distance dmin;

3) width along the bearing angle Aa;

4) width along the elevation angle Ac.

The horizontal plane OZ divides the angle Ac in half (Fig. 2).

We simulate the movement of targets only in the search region.
But during the search period some new targets may appear from
the surroundings of the region. Therefore, there arises a necessity
of simulation of additional targets in the surroundings. The width
Ad of the surroundings must be chosen according to the maximal
speed of targets and the search period. If we choose the width Ad
too large , we shall have to simulate a great number of targets, Too
small Ad may cause errors in the simulation of new targets.

3.2. Generation of the target coordinates. We must gen-
erate the coordinates of the targets randomly and uniformly dis-
tributed in the region and surroundings. The next algorithm of
generation is suggested. ‘ * )

1. The uniformly distributed coordinates of the targets are
generated both in the region and in the surroundings.

2. The coordinates are checked whether they are in the region



268 " Simulation and optimization

or in the surroundings. ‘
3. The process of generation must stop a.fter the requu‘ed num-
" ber of targets is generated in the region.

The first stage of generation in the region and surroundings
uses new characteristics, different from the four ones presented
above. The differences are (see Fig. 1, Fig. 2):

1) a new center (’ is used instead of the center O;

2) a new maximal distance

& = dae + Ad(l + —1%3)

is used instead of dmx.

The characteristics dmin,Aa and Ac remain the same.

-The generation of random uniformly distributed values « and
¢ is rather simple. If £ is a uniformly distributed random number
in the interval (0,1), then

Aa

o =fba— -,
e = an—%‘-'— ‘ .

. The third coordinate — distance &’ — must be genera.ted with
the density incrdasing as square of the distance. It is easy to verify

that if € is a uniformly distributéd random number in the mterval
(0,1), then

&= df,,i.. + E(dBge — d2i)-

" These pdla.r coordinates are calculated with respect to the cen-
ter O'. In order to transform the coordinates to the center O we
transform them to the orthogonal system:

’

z=d cose cosa’ — _A:!,'
) ' sin ° 2.

. y=d cose’sine/,

z=d'sin¢’.
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Tig. 1. A horizontal projection of the search region.

The polar coordinates with the center O are transformed ac-
cording to the next formulas: ‘
= tg~—
o = arctg_,
d=Vz2 + 3]2 + 22’

€ cs'nz
= arcsin =.
d



270 * Simulation and optimization

.-/ \

Fig. 2. A vertcal projection of the search region.

The verification of the polar coordinates whether they are in
the region is equivalent to a simultaneous satisfaction of such con-
ditions: A A

’ (4 4 x
BRI

- Ac As
-5 €< 5>
’dmin €d< dmax- .

3.3. Generation of the direction of the target move-
ment. The distribution of probabilities for movement directions
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must be nonuniform. The movements in a relatively short period
of search may take place only in the horizontal plane. The move-
ments to the center (the attack on the radar set) or out of the
center (the escaping manoeuvre) are more probable. The coeffi-
cient of nonuniformity C, is the ratio between the largest and the
smallest probabilities for all the angles of movement directions. We
use-the next density of probabilities for the directions:

w_JPpo—(x—9), HI<¥<x
pé)= po— (¥ —7); if':'gi<=?—
p—(2x-v), fE<Y<in
where ¢ = ¢ — a,a is the bea;ing angle of thé i;arget,
-.___‘IC._._.____“
= HCa¥1)
_ 2AC,—1)
=R, +1)

The function p(¢) is actually the density of probabilities be-
cause [." p(¢)dé = 1 for various. values of C, and a.

Then we may generate random values of the angle
¢ =p'(£),

where P! is the inverse function of P(¢) = f: p(z)dz, £ is a uni-
formly distributed random number in the interval {0,1), using the
next formula: - : ' o

,
- 2 _9 .
m—J:ﬁf né f0<£<0,25°
po—/p2 —2p1(0.5—6)
-2 VP pl”.‘( 9 f025<£<05
é = :
—Soi—2pi(6-0.5)
e Ve m"‘“ ) i£0,5<£<0,75
po— /P2 = 2p1(1 - | ‘
o P VR Z2A-8) e ey

7 21 ’
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« 3.4. Calculations of the coordinates of the moving tar-
géts. ‘During the simulation process we must calculate the discrete
‘coordinates of the moving targets at some moments of time. The
process consists of:

1) the orthogonal ooordma.tes of ta.rgets are ca.lculated on the
base of: .

a) the coordinates at the time t = 0;

b) the velocity of the targets;

c) the direction of the movement;

d) time ¢t from the beginning of simulation;

2) the coordinates are transformed to the polar coordinates;

3) the discrete coordma.tes, ie., the numbers of cells are calcu-
lated. 3

The coordinates must be calculated at each step during the
simulation, because the targets may change their discrete coor-
dinates, go out of the region or go into the region. Therefore a
straightforward process of simulation requires much computer time
for real radar search situations. For example, only one statistical
experiment for 10 !targets and the use of aTelatively simple strategy
require about 30 ;mmutes of PC AT computer time.

We used the;forecast of time moments when the targets change
their discrete cobrdinates or go out of the region or go into the
region. b

3.5. Results of simulation. The search of moving targets
was simulated using the Neyman-Pearson and two-stage strategies.
The process of simulation terminated when all the targets were
found with the probability P,. The result of one process of simu-
lation was the time until termination. The search in one direction
was not simulated, but the average time of the search was calcu-
lated analytically both in the case of absence and in the case of
location of a target. We assume that the target is motionless dur-
ing the search in one direction. Also, we assume that there are
900 search directions and 5 targets in the search area. The effi-
ciency of the two-stage strategy in comparison with the Neyiian-
Pearson strategy is presented in Table 3 (the results are averaged
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Table 8. The efficiency of the two-stage strategy (dynamic case)
(in times in comparison with the one-stage strategy)

m Do :’:__()j po=0.9

10 2.77 1.94
100 3.05 .73
1000 1.57 0.91

from 10 simulation prmésseg).

We see that the values of efficiency are almost like that in the
state case. '

4. Conclusions. Multi-stage strategies for radar search were
designed and investigated. The two-stage strategy in the case of
distance measuring (m > 1) is about 3 times faster than a simple
Neyman-Pearson strategy if the search is not precise (Po = 0.5,
m = 10). Both strategies are approximately equivalent in the case
of precise search (P, = 0.5, m = 1000).

The simulation system for the movement of targets and search
strategies was designed. The simulation of complicated dynamic
situations shows that the results of analytical investigations may
be effectively used in dynamic cases.
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