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Abstract. The results of investigation of the resource management in radar 
search are presented in the paper. The time for search of manoeuvring targets 
is minimized by optimal distribution of radar power among the space directions 
and by optimization of search parameters. 

The problem of the optimal control of radar search is extremely complicated 
in the general case and in real situations, therefore we have compared only some 
strategies (e.g., one stage cyclic strategy, various multistage strategies). 

In some simple tases (e.g., motionless targets) optimal parameters of mul­
tistage strategies maybe found but in the general case the efficiency of strategies 
may be evaluated wiJ.h the help of statistical simulation. The simulation time 
was essentially redufed by some simplifications of models, by. the forecast of 
discrete coordinatesjof the targets and by the use of averaged ,·alues. 

The usage of t~e proposed strategies e~ables us to reduce the time of search 
by 2-3 times. Those strategies may be executed in real time. 

Key words: dptimal distribution, radar search, multistage strategy. 

1. Introd uetion. Radar search strategies of manoeuvring tar­
gets in a three-dimensional space are investigated. The purpose of 
investigations is to minimize the average time until the moment at 
which all targets are detected with a given false alarm probability 
and the probability of detection. 

Some assumptions will be made on the se~rch region, on radio 
signals and control parameters. 

The space region in which the targets ~re searched is divided 
into a number of cells, because the technical possibiiities of ra:dar 
equipment to separate two neighboring targets are limited. We 
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have I = m. * m. directions (where m. is the number of cells 'along 
the bearing angle, mt is the number of cells along the elevation 
angle) and m is the number of cells.in each direction. 

We suppose that the number of targets is much smaller than 
the number of .cells in the s~rch region and tJlat the targets are 
uniformly distributed and mutually independent in the region. 

, Let the rada~ set have a possibility to send a package of some 
radio impulses of the fixed equal amplitude and equal.power to each 
direction. The power of impulses is constant all the time and the 
time required for changing the search direction may be neglected. 
Therefore, the resource of a· radar system may be characterized by 
the summary number of impulses. 

The impulses sent in sorne direction may be reflected from the 
targets in each cell of this direction. The stochastic independent 
noise (the stationary Gaussian noise) is added to the reflected useful 
signal. The noise is uniform for all cells and has the Rayleigh 
envelope V with the density (see Akimov, 1989): 

(1) 

where D'~ is the variance of noise. 
We also assume that the reflected impulses are received in a 

~oherent way, therefore the summary amplitude of the useful signal 
is equal to 

'. 

A =tAl, 

where f is the number of sent impulses; A1 is the amplitude of 
a single reflected impulse, which depends on the distance to the 
target. This dependence is determined by the signal-ta:-noise ratio. 

The signal-to-noise ratio of power is . 

A2 
q=_1 

2~ 

in the case of the fixed amplitude Al . The tatio q depends on the 
distance to the target according to the range equation: 

q = (CD/d)\ (2) 
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where CD ill the constant, depending on the characteristics of the 
atmosphere and targets, on the power of a transmitter and' so on .. 

The, envelope X of the reflected signal mixed with noise has 
the density corresponding to the generalized Rayleigh distribution 
law (see Akimov, .1989 and Levin, 1966): 

,.(X,D',A);:: (x/r)exJ,[.,..(X2 + A2)/2r]10(XA/r), (3) 

where r ;:: tD'f, 10 - a modified Bessel function (see Korn, 1973). 
The reflected signal is ,detected by checking two statistical hy· 

potheses: Ho - the envelope of the reflected signal is distributed 
according to law (1) or Hl -: it is distributed according to law (3). 
The decision rule depends on the probability ofthe first order error 
Qo (in our case the'false~alarm probability) and the probability of 
the seCond order error /J. The probability of detection Po ;:: I - /J. 

We have the possibility to co~trol some parameters of search 
strategies during the search time period. The parameters are: 

- the search direction i E {I,I}; 
- the number t of impulses in the package, transmitted to 

the direction i; -

- th~ prQij.,bilities Po and Qo of the direction i. 
The summalry false alarm probability for each. cell obtained 

aft~r the whole ~earch period must be smaller than the given level 
Q of the probability. The summary probability of detection of each 
target must be greater than the given level P of the probability. 

The most investigated Sea.rch strategies are when the number m 
of cells in each direction is equal to 1 (see Kuzmin, 1986; Sosulin, 
19~1; Vlasov, 1989). A sequential criterion is more efficient in 
this case. Optimal search strategies under some assumptions were 
developed by Sosulin (1981). 

A more complicated case m > I is less investigated in the ana. 
lytical way. The difficulties of the case de.pend on the fact that. all 
the cells of some direction get the same signals but with diffe 'nt 
characteristics. The possibilities to investigate in the analytical way 
are limited, therefore, the statistical simulation is used, The 'simu­
lation leads to the conclusion that Neyman-Pearson search strate-
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gies are more preferable in the case m > 1. Two-stage Neyman­
Pearson strategies are especially effective. If we use a greater false 
alarm probability at ,the first stage and only some directions are 
examined at the second (see Kuzmin, 1986), then the search time 
may be reduced from 25% to.40%. We have used the information 
from previous stages more completely therefore the'search time was 
reduced by 70 %. 

Two main approaches may be distinguished in the optimiza­
tion of sea.rch strategies. The first is the static case when one can 
assume the targets to be motionless during the period of investiga­
tion. In this simplified case we were able to construct the analytical 
expression of the dependence of the average resource t on search 
parameters and to optimize the parameters. A more real dynamic 

. case when the motion of targets is taken into account has been in­
vestigated by statistical simulation and optimal search parameters 
have been obtained. 

2. Static case. 
2.1. One:"stage cyclic Neyman-Pearson strategy. This 

simple widely used strategy carries out the search in all I direc­
tions in some consecutive order .. The package of t impulses is used 
for each direction, the detection is carried out on the basis of the 
Neyman-Pearson criterion with the probabilities Qo and Po, which 
are uniform for all directions (PI) is calculated for the most dis­
tant celD. The summary false alarm probability Q =Qo and the 
summary probability of detection P ~ Po, because each cell is ex­
amined only once with one package of impulses and the targets are 
motionless. 

The statistical hypothesis Ho is accepted according to the Ney­
man-Pearson criteria if the envelope of the reflected signal z (nor­
malized to 0-) is less than the normalized threshold Zp. Otherwise 
the hypothesis Hl is accepted. The value of the threshold may be 
obtained from (1), if z = v/o-: 
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Hence 

z" = J21n(1/Qo) • (4) 

Usually the ratio for the summary signal is A/(f > 3. Then the 
generalized Rayleigh density function (3) may be approximated by 
the Gaussian density functi~n with mean A and variance (1'7 (see 
Levin, 1966). Therefore, for the most remote cells we have: 

Po =[ (fp,(v,(f,A)dz 
Zp 

1 10) =~ exp { - (z - a v'i) 2 /2]dz = ~(aJi - z,,). 
v2nzp 

(5) 

where a = At/(1'l is the signal-ta-noise ratio for the voltage of the 
signal reflected from the most remote cell; ~ is the Gaussian dis­
tribution function. 

After a substitution of (2) and (4) into (5) we get the' necessary 
number of impulses for one direction 

where dmax is the' maximal range in the space region. Here we lea~ 
out of account the discretization of t. 

- Equations (4), (6) determine the search parameters for a single 
direction. If the' n'umber of targets is unknown the search period 
ends after all I directions were examined and after the total number 
of impulses tr; = It was sent. tr; depends on the probabilities Qo 
and Po but it does not depend on the coordinates and number of 

. targets. . 

2.2. Multistage strategies. The division of the Neyman­
Pearson search procedure to several stages under certain conditions 
may reduce the summary search time. 

Let the strategies of each conseCluent st.age he indeoendent, 
i.e., the values of signals of each stage are not memorized and are 
not used in the next stages. The selection 'of sear:h directions is 
independent of the results of search in other directions. Therefore, 
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we may restrict ourselves by investigating the search strategies sep­
arately for each direction. The directions which were not rejected 
in the previous stages are examined using the prouabilities Pi and 
Q; of the i-th stage with the parameters determined from (4) and 
(6). In these formulas we take the maximal distance in which the 
useful signal was detected in the previous stage instead of dmax • 

We minimize the average number of summary impulses 

.I: 

tI: = tl + E i;, 
i=2 

(7) 

where tj is the average number of impulses in the i-th stage, k is 
the number of stages. The average number of summary impulses tI; 
depends on the distribution of search resources between the stages. 
The distribution may be controlled by changing the probabilities 
Pi and Qi for the i-th stage. 

Let us restrict ourselves by the strategies with uniform false 
alarm probabilities Q; for all cells. The summary false alarm prob­
ability is equal to the product of all Qj(i =: f,k) because the noise 
is not correlated. The next inequality must be fulfilled: 

I: 

IT Qj ~ Qo, (8) 
i=1 

i=U. (9) 

It tan be proved that the minimum of tI; is ar.hieved when 

J: 

IT Qi = Qo, Qo ~ Qj ~ 1, i = f,k, . (10) 
i=1 

since by (6), II: decreases when increasing Qk. In a similar way 
the probability of detection Pij in the i-th stage and j-th cell {on 
condition that the signal be detected in the (i - 1 )-th stage) ~ust 
satisfy the next inequalities: 

I: 

II ~j ~ Po, Po ~ Pij ~ 1, i = U . .i = I,m. (11) 
;=1 
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., Therefore. we have the 'problem of minimization of tE under 
the conditions (10) and (11). We investigated the relatively simple 
'cases m = 1 and I: = 2 (at m ~ 1) with a small amount of controlled . 
variables. 

2.3. Multistage strategies for m = 1. For simplicity let us 
denote Pi = Pil and n be the number of targets in the region of 
the space. Then the probability of detection under the threshold 
%i = y'21n(1/Q,) in the i-th stage is equal to 

. i i 
·D. 1-;- n II' Q nIT D .I" = --,-- j + - .rj. 

I j=1 . I j=1 

(12) 

The corresponding numbers of ,impulses are . 
(13) 

~ 
where C = 2C!;' 

F(Pi,Qi) = [.-1 (Pi) + y'21n(1/Qi) t 
Then the awl. number of impulses-used in the k-stage strat­

egy for a single 1i~tion is equal to , 

I ' I: 
tE~ =CF(Pl,Ql)+CE Ri-1F(P"Qi). 

, '=2 
.The efficiency of the multistage strategy may be measured by 

the ratio: . 

E(PI:,QI:) = tEl = E(PI:,QI:) 
tEl: 

= F(~o, Qo) , (14) 
F(Pl>Ql) + E;=2 Ri-1F(P"Qi) 

where p4 = (Pt. ... ,Pt ), QI: = (Qt. ... ,QI:) andt is the average number 
of impulses used in the one-sta.ge strategy. 

It is important that the ratio E does not· depend on the ~ize of 
the space region or on the parameters of a radar set incorpor~ted 
in the constant C. 
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Thus we have .the problem of mathematical ptogrammitig: 

(IS) 

} . 
II Qi =Q~., (16) 
i=1 

} 

IT Pi ~ Po, (17) 
i=1 

The number t~} monotonously increases with an increase of 
each Pi, i = G, therefore .the maximal value of E must be achieved. 
when inequalities (17) are replaced by equalities: 

i = 0. (18) 

It must be admitted that in real situations the dependence 
(12,14) of th~ efficiency E on the number of targets n may be ne­
glected, because nIl < < 1. The error of approximation ofthe values 
of Hi, i = l,k -1 by the value· . 

is equal to 

n[m=1 Pj - It=l Qj]. 

In~=1 Qj 

Therefore, the approximation is acceptable if 

QoIQ} » nIl, .. (19) 

espedaUy· a.t the point of maximal E, and we use the approximated 
efficiency E instead of E. 
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" After replacing equalities (16) and (18) th'~probletri of opti­
mization of search" may be formulated as mathematical program­

. ming problem of2(k -1) variables: 

.(20) 

i-I 

II Pi ~ Po, (21) 
i=1 

where 1\ = Pol m=lp,.Q. =Qo/ m;11 Q,. 
The algorithm of variable me tries (by Tieiis, 1975; 1983), which 

enables us to take into account the constraints of type (20), was 
used to solve the problem. The constraints (20) were involved into 
the optimi~tion with the help of the penaJty function (see Tiesis, 
1984). The objective function after a transformation is 

E(f"-,I. Qk-l) ::: E(oc?-1,_ Pot-1) + p, 
, 

where 

, l " {I 
oc = (' / "-1- ) 1/(lr-1) 
,Po n ~ , 
, i=1 

lr-1 
if n p,~Po 

':=1 

otherwise, 

{
I, if lrtl Qi'~ 00 

P = ( /"-1 )l/(J:-i) ':1 
Qo n '0, otherwise, 

~=1 , 

.' {O,' 'if oc ~ 1 and ,8 = 1 
p = [(p.-l,~-l) _ (ocplr-1,PQlr-l)J2 otherwise. 

'" 

(22) 

The maximum values ofE are presented in Table 1 for Qo = 
10.-6; for various Values Po&lld for two-stage and three-stage stra.te­
gies. 
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Table 1. The efficiency' of optimal strategies (in times in' com­
parison with tbe one-stage strategy) 

., 
Strategy Po = 0.5 Po = 0.8. Po= 0.7 Po = 0.8 Po = 0.9 

Two-stage 3.31 3.13 2.95 2.77 2.56 
Three-stage 4.08 3.78 3.50 3.23 2.92 

We may see that the efficiency of two-stage strategies as com­
pared to ~he one-stage strategy is rela.tively high. The additional 
efficiency of using the three-stage strategy is small. Therefore the 
use of two stages is most rational.' . 

2.4~ Two-stage strategy for m> 1 withdlscl'8te t. We 
deal here with the Casetl,t; e T, where Tisa set gf integers. So 
the problem (7), (10), (11) is of such a form: 

min ts: = min(t~ + I,), 
0102 = Qo , 

PljP2f ~ Po, Po < Pi; < I, i = 1,2; j = I, m. (23) 

We assume that the number of impulses for the one-stage cyclic 
strategy t = L(t), where L is the function of discretizationL : R - T, 
such that L(ta) = tL(a). We have by (6), that the' number of impulses 
for the j-th cell and for the second stage is' 

t . = t. L (d /-d )4 F(Po/:A;, QO/Q1») (24) 
21 . J max F(Po, Qo) I' 

where d; is the, range up to the j-th cell and 

P1j =.( V(t1/t)(dmax/d;)4F(Po,Qo) -.j2ln(1/Q1»)' 

. The probability of detection in j-thcell and in first stage is 

(Im-n) n I 
.R1j = Q1 1m' + PI; 1m:!!! Ql. 

So the average number of impulses in the secondsta.ge is 



where 

m III 
i;(tltl,Ql) = E [(t'ilt).R1i II (1- RU)] 

. i=1 i=i+l 
III 

S?! Ql E t2i (1 - Qt)III-l • (25) 
i=1 

Problem (23) is transformed by (24) and (25) into such a prob­
lem 

The parameters t/tl and Ql are used as control parameters. 
The parameters of the second stage tIt, and Q, may be found from 
the constraints of the problem (23) and from equation (24). 

Note that the number of impulses in the second stage depends 
on the maximal distance in which the useful signal was detected in 
the first stage. 

The maximum values of efficiency E = tll'£ for various m, Po 
and Qo = 10-6 are presented in Table 2. 

! • 
Table 2. The {efficiency of optimal discrete two-stage strategies 

. . (in 1im,s in comparison. with the one-stage strategy) 
, 

m Po =0.5 Po = 0.7 Po = 0.9 
10 i 2.68 2.08 1.96 

100 1.93 1.87 1.72 
1000 1.51 1.30 1.01 

We may see that the discretization of t decreases the efficiency. 
But- the discretization of t is caused by technological constraints. 

The discretization of m essentially increases the precision of 
search. 

8. Dynamic case. Contrary to the static, case we assume that 
the targets change their space coordinates during the search perit d. 
We consider- these changes to be greater than the size of space 
cells, however, on the other hand, the targets move through- !fame 
limited number of cells during the search period. Therefore, we may 
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introduce two main assumptions on the movement oftargets, which 
considerably simplifies the' algorithms ana programs of statistical 
simulation: 

1) the targets don't change their altitudes; 
2) they d~n 't change the-movement direction. 

_ The investigation of dynamic sit.uations is carried out mainly 
by . means of statistical simulation. The simulation of the target 
movement is the main part of the simulation system. 

3.1. The search region and its surroundings. The region 
of a space in which the radar search is carried out is illustrated 
in. Fig. 1 and Fig. 2. A horizontal projection of the search region 
ABeD is presented in Fig. 1; and a vertical one CDEF is presented 
in Fig. 2. The region is restricted by four planes, stretching through 
the point 0, and by two spherical surfaces with the center at the 
same point O. The char,acteristics of the region are: 

1) maximal distance dmax; 

2) minimal distance dmin; 

3) width .along the bearing angle AQ; 
4) width along the elevation angle AE. 

The horizontal plane OZ divides the angle AE in half (Fig. 2). 
We simulate the movement of targets only in the search region. 

But during the search period some new targets may appear from 
the surroundings of the region. Therefore, there arises a. necessity 
of simulation of additional targets in the surroundings. The width 
Ad of the surroundings must be chosen accC?rding to the maximal 
speed of targets and the search period. If we choose the width Ad 
too large ,we shall have to simulate a great number oftargets .. Too 
small tid may cause errors in the simulation ofne~ targets. 

3.2. Generation of the target coordinates. We must gen­
erate the coordinates of the targets randoqtly and uniformly dis­
tributed in the region. and surroundings. The next algorithm of 
generation is suggested. . . . 

1. The uniformly distributed coordinates of the targets are 
ge1,lera.ted both in the region and in the surroundings. 

2. The coordinates a.re checked whether they are in the region 
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orin the surroundings. 
3. The process o~ generation must stop after therequirednum· 

. ber of targets is generated in the region. 
The first stage of generation in the region and surroundings 

uses new characteristics, different from the four ones presented 
above. The differences are (see Fig. 1, Fig. 2): 

1) a new center 0' is used instead of the_ center OJ 
2) a new maximal distance 

- - ( 1) <au = d~ax + Ad 1 + sin Af 

is 'used instead of d~ax. 
The characteristics d~Ut ,'~o- and -Ae remain the same. 
-The generation of random uniformly distributed values 0 and 

e is rather simple. If e is a uniformly distributed random number 
in the interval (0,1), then 

, tA Ao 0= .. 0--, - - 2 _. 

, The third ~ordinate - distance d' - must be generated with 
the density incr~&Iling as square of the distance. It is easy to verify 
that if e is ~ uniformly distributed random number in the interval 
(0,1), then 

cl = \I d!ain + e( dSmoe - d!ai~)' 
These polar coordina.tes are calculated with respect to the cen­

ter 0'. In order to transform the coordinates to the center 0 we 
tra.nsform them· to the orthogonal system: _ 

- ad I 

z = d' cos e' cos 0' - --:---A.:"; - sm-

: 11 =-cl cose' sine', 

z=d'sine'. 

- 2.: 
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0' 

Fi~. 1. A horizontal projeCtion of the search region. 

The polar coordinates with the center· 0 are transformed ac­
cording to .the next formulas: 

··a·=~tg!, 
% 

d= ,./%2+,,+%2, 
. % 

E = arCSlD;;. 
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Fig. 2. A vert~ projection of the search region. 
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f 

The verification of the polar coordinates whether they are in 
the.-region is equivalent to a simult&neous satisfaction of such .con­
ditions: 

4a- 4a 
""T~(t<T' 

_~e <e< ~e, 
dmiD < d < dmu • 

3.3. Gener~tioD of the direction of the target move­
ment. The distribution Qf probabilities for movement directions 
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must be nonuniform. The movements in a. rela.tively short Period 
of search may take pla.ce only in the horizontal plane. The move-­
ments to the center (the attack on the radu set) or out of the 
center (the escaping manoeuvre)· are more probable. The coeffi­
cient of nonuniformity Cn is the ratio between the largest and the 
smallest prQbabiJities for all th~ angles of movement directions. We 
use,the next density of probabilities for the directions: 

. 
where '" = 4> - tk, tk is the bearing angle of the ta~t, 

Po = lr(Cn + 1)' 
2(Cn ,....1) 

PI = r2(C .. + 1)' 

The function p( t/J) is actually the density of probabilities be­
cause f:1f P(4))dt/J = 1 for various. values of Cn and (t. 

Then we may generate random values of the angle 

where p-l is the inverse function of P(t/J) = to p(z)dz, e is a. uni­
formly distributed random number in the interval (0,1), using the 
next formula: 

4>= 

Po - Jl?5 - 2ple 
Pl 

Po - Jp~ -2Pl(0, 5 - e) 
1r- Pl. , 

Po - Jp5 - 2Pl(e - 0,5) 
1r+ Pl t 

Po - Jp~.~ 2Pl(1- e) 
211' - Pl. , 

if 0,25 < e ~ 0,5 

if 0,5 < e ~ 0,75 

if 0; 75 < e ~ 1. 
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. _ • 8 •. 4. Calcul~tions of the coordinates of-the moving tar­
gets. During tbe si~ulation process we must calculate the discrete 
'coordinates of the moving targets at some moments of time. The 
ploCe~ consists of: . ". 

1) the orthogonal coordinates of targets are calculated on the 
base of: 

a) the cOordinates at the time t = 0; 
b) the velocity of the t'"'8ets; 
c) the direction of the movement; 
d) time t from the beginning of simulation; 

2) the coordinates are transformed to the polar coordinates; 
3) the discrete coordinates, i.e., the numbers of cells are calcu-

lated. -;~ 

The coordinates must be calculated at each step during the 
simulation, because the targets may charjge their discrete coor­
dinates, go out of the region or go into the region. Therefore a 
straightforward process of simulation requires much computer time 
for real radar search situations. For example, only one statistical 
experiment for 10.!l;argets and the use of a relatively simple strategy 

I 
require about 30 flDinutes of PC AT computer time. . 

We used the/forecast of time moments when the targets chang~ 
th~ir discrete cobrdinates or go out of the region or go into the 
region. I 

8.5. Results of simulation. The search of moving targets 
was simulated using the Neyman-Pearson a.nd two-stage strategies. 
The process of simulation terminated when. all the- targets were 
fou~d with the probability Po. The result of one process of simu­
lation was the time until termination. The sea.rch in one direction 
was not simula.ted, but the average time of the search was wcu­
lated analytically "both in the case of absence and in the case of 
location of a target. We assume that the target is motionless dur­
ing *he search in one direction. Also, we assume that there are 
900 search directions and 5 targets in the search area. The effi­
ciency of the two-stage strategy in comparison with the Neynian­
Pearson strategy is presented in Table 3 (the results a.re averaged 
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Table 8. The efficieJlcy of the two-stage strategy (dynamic case) 
(in times in comparison with the one-stage strategy) 

m Po = 0.5 Po = 0.9 
10' 2,77 1.94 
100 ~.05 1.73 

1000 1.57 0.91 

from 10 si~ulation processeS). 
We see that' the "WIlues of efficiency are almost like that in the 

state case. 

4. CODclusioDs. Multi-stage strategies for radar Search were 
designed and investigated. The· two-stage s~rategy in' the case of 
distance measuring (m > 1) is about 3 times faster than a simple 
Neyman-Pearson strategy if the search is not precise (Po = 0.5, 
m = 10). Both stra.tegies are approximately equivalent in the case 
of precise search (Po = 0.5, m= 1000). 

The simulation system for the moVement of targets and search 
strategies was' designed. The simulation of complicated dynamic 
situations shows. that the results of analytical investigations may 
be effectively used in dynamic cases. 
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