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Abstract. We present an algorithm to solve multistage stochastic convex problems, whose objec-

tive function and constraints are nonlinear. It is based on the twin-node-family concept involved in

the Branch-and-Fix Coordination method. These problems have 0–1 mixed-integer and continuous

variables in all the stages. The non-anticipativity constraints are satisfied by means of the twin-node-

family strategy.

In this work to solve each nonlinear convex subproblem at each node we propose the solution of

sequences of quadratic subproblems. Due to the convexity of the constraints we can approximate

them by means of outer approximations. These methods have been implemented in C++ with the

help of CPLEX 12.1, which only solves the quadratic approximations. The test problems have been

randomly generated by using a C++ code developed by this author. Numerical experiments have

been performed and its efficiency has been compared with that of a well-known code.

Key words: stochastic programming, convex programming, branch and fix coordination, mixed

integer nonlinear programming, quadratic programming, outer approximation.

1. Introduction

Most decision problems involve uncertainty in some parameters. Stochastic programming

is dedicated to developing methods for decision-taking under uncertainty over time in

parameters of the optimization problems. In order to model the uncertainty over time,

scenarios that approximate the future are used. In this field we have excellent theoreti-

cal books, see e.g. Birge and Louveaux (1997), Higle and Sen (1996), Kall and Wallace

(1994), Prékopa (1995). There are also application books, see e.g. Uryasev and Pardalos

(2001), Wallace and Ziemba (2005), Ziemba and Mulvey (1998).

In multistage programs, decisions on variables in each stage must be taken; e.g. first

stage variables are chosen before knowing the realization of uncertain parameters in each

scenario. Once decided on first stage and observed each realization of uncertain parame-

ters, the second stage decision must be taken, and so on. For each stage there are variables

associated with decisions that must be taken without anticipation of some of future prob-

lem data, that is, they take the same value in each scenario, which yields non-anticipativity

constraints. If we consider a finite number of scenarios, a general multistage program can
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be expressed by means of the previous stage decision variables, which corresponds to a

large programming problem suggested by Wets (1966) and known as deterministic equiv-

alent model (DEM).

An important feature of this approach is that it deals with multistage programs with

both continuous and binary variables at any stage. Elsewhere (Alonso-Ayuso et al., 2003a;

Escudero et al., 2009), some approaches to address two-stage problems with only binary

variables in the first stage and binary and continuous variables in the second stage were

presented. Escudero et al. (2010) represented the multistage stochastic mixed 0–1 prob-

lem by a mixture of the compact and splitting variable representations of the DEM of the

stochastic problem where each stage can have the binary and the continuous variables.

It uses a specialization of the BFC scheme and of the twin-node-family (TNF) concept,

which was introduced by Alonso-Ayuso et al. (2003b). This scheme is specifically de-

signed for coordinating the node branching selection and pruning, and the 0–1 variable

branching selection and fixing at each branch-and-fix (BF) tree. Also, in that paper the

decomposition of the set of scenarios in clusters is suggested.

On the other hand, the mixed-integer nonlinear programs (MINLP) provide a pow-

erful framework for mathematical modelling of problems including discrete and con-

tinuous decisions and nonlinearities. MINLP models have been developed and solved

in various engineering areas, see among others (Floudas, 1995; Grossmann, 2002;

Biegler and Grossmann, 2004). These problems have been traditionally solved with de-

terministic models, although the real systems are almost always uncertain. Stochastic pro-

gramming is a natural way to address uncertainties in engineering problems (see Wal-

lace and Ziemba, 2005). Mijangos (2013) puts forward an algorithm for solving two-

stage stochastic problems with a quadratic objective function and linear constraints, which

is used in Heredia et al. (2013) to solve electric market problems. It is based on the

TNF concept involved in the BFC method. These problems have continuous and bi-

nary recourse variables in the first stage and only continuous variables in the second

stage.

The present paper considers multistage stochastic problems with both continuous and

binary variables at any stage. These problems have a nonlinear convex objective func-

tion, nonlinear convex constraints, and relatively complete recourse. The algorithm devel-

oped is based on BFC-MSMIP method of Escudero et al. (2010), but instead of solving

an LP problem at each node of the BF trees, MINLP problems are solved and the co-

ordinated tree-search and the iterative solution of the MINLP are interlaced. Thus the

nonlinear part of our problem is solved whilst searching the tree. In this paper con-

vex MINLP problems are solved via a sequence of quadratic programming approxima-

tions.

This paper is organized as follows: Section 2 defines the problem; Section 3 presents

some basic theoretical results for the case where the subproblems are solved to optimality;

Section 4 explains the solution of our problem using sequences of quadratic subproblems

and outer approximations; and Section 5 puts forward the numerical tests. Finally, Sec-

tion 6 concludes the paper.



Solving Multistage Mixed Nonlinear Convex Stochastic Problems 801

Fig. 1. Compact representation of a scenario tree.

2. Problem Definition

Consider the multistage mixed 0–1 nonlinearly-constrained nonlinear convex problem

min
∑

t∈T

cT
t xt + ft (yt )

s.t. A1x1 + h1(y1) 6 0,

A′
txt−1 + Atxt + ht (yt−1, yt ) 6 0, t ∈ T \ {1},

xt ∈ {0,1}nx , yt ∈R
+ny , t ∈ T ,

(1)

where T is the set of stages and for each t ∈ T , xt ∈ {0,1}nx and yt ∈ R
+ny are t-stage

variables, ct is the coefficient vector for xt in the objective function, ft ∈ C2 is a nonlinear

convex function, A′
t , At are constraint matrices, and ht ∈ C are vector functions, whose

components are convex nonlinear functions. Without loss of generality some constraints

could be linear with lower and upper bounds.

We will introduce uncertainty in the parameters of the deterministic problem (1) by

using a scenario analysis, see Fig. 1. It corresponds to the compact representation of the

stochastic version, see DEM (2). Each node g represents a point in time where a decision

can be made.

Once a decision is made in a stage, a number r of contingencies may occur (e.g. r = 2

for each stage t in Fig. 1). Information related to these contingencies is available at the

beginning of each stage. |T | is the number of stages (e.g. |T | = 4 in Fig. 1). At each stage,

there are two kinds of decision variables: x , vector of 0–1 variables, and y , vector of

continuous variables. The structure of this information is presented as a tree, where each

root-to-leaf path represents one specific scenario ω and corresponds to one realization of

all the uncertain parameters. � is the set of scenarios. Thus, in the tree of Fig. 1, we have

|�| = 8 root-to-leaf paths. Each node in the tree can be associated with a scenario group g,

where G means the set of scenario groups and Gt the subset of scenario groups in stage t ,
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such that G =
⋃

t∈T Gt . Two scenarios are in the same group in a given stage provided that

they have the same realizations of the uncertain parameters up to the stage. �g denotes

the set of scenarios that belong to group g, for g ∈ G. According to non-anticipativity

principle, two scenarios should have the same value for the related variables with the time

index up to the given stage.

Let us assume that the coefficient vector c, the function f , the constraint-matrix coef-

ficients A and A′, and the constraint functions h depend on the scenario groups. Then the

compact representation of the mixed 0–1 DEM of the stochastic version with complete

recourse of multistage problem can be given by

min
∑

g∈G

wg

(

cT
g xg + fg

(

yg
))

s.t. A1x
1 + h1

(

y1
)

6 0,

A′
gx

π(g) + Agx
g + hg

(

yπ(g), yg
)

6 0, g ∈ G \ {1},

xg ∈ {0,1}nx , yg ∈R
+ny , g ∈ G,

(2)

where wg is the likelihood for g, such that wg =
∑

ω∈�g
wω , and π(g) is the immediate

predecessor node of node g. In addition, xg, yg are the x , y variables for the scenario

group g. In this work, without loss of generality, we will consider that the dimensions

of xg and yg are nx and ny , respectively, for each g ∈ G.

As is showed by Escudero et al. (2010) the compact representation DEM can be writ-

ten as a splitting variable representation, see Ruszczyński (1997); i.e. xg and yg are res-

pectively replaced by xω
t , yω

t for the scenarios ω that belong to the same group �g , for

g ∈ Gt with t ∈ T − = T \ {|T |}. This gives rise to the following stochastic mixed-integer

nonlinear problem:

min
∑

ω∈�

∑

t∈T

wω
((

cω
t

)T
xω
t + f ω

t

(

yω
t

))

(3)

s.t. Aω
1 xω

1 + hω
1

(

yω
1

)

6 0, (4)

A
′ω
t xω

t−1 + Aω
t xω

t + hω
t

(

yω
t−1, y

ω
t

)

6 0, ∀ω ∈ �, t ∈ T \ {1}, (5)

xω
t − xω′

t = 0, ∀ω ∈ �g, ω′ = ω + 1, ω < |�g|, g ∈ Gt , t ∈ T
−, (6)

yω
t − yω′

t = 0, ∀ω ∈ �g, ω′ = ω + 1, ω < |�g|, g ∈ Gt , t ∈ T
−, (7)

xω
t ∈ {0,1}nx , yω

t ∈R
+ny , ∀ω ∈ �, t ∈ T , (8)

where (6) and (7) are the non-anticipativity constraints (NACs). Note that f ω
t = fg , cω

t =

cg for ω ∈ �g , g ∈ Gt , t ∈ T and the same for the other parameters. The relaxation of

these NACs in this model gives rise to |�| independent submodels:

min
∑

t∈T

wω
((

cω
t

)T
xω
t + f ω

t

(

yω
t

))

s.t. Aω
1 xω

1 + hω
1

(

yω
1

)

6 0,

A
′ω
t xω

t−1 + Aω
t xω

t + hω
t

(

yω
t−1, y

ω
t

)

6 0, ∀t ∈ T \ {1},

xω
t ∈ {0,1}nx , yω

t ∈ R
+ny , ∀t ∈ T .

(9)

These models are linked by the NACs.
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Fig. 2. Splitting variable representation of the scenario tree.

Figure 2 gives the tree of Fig. 1 by splitting the variables for the different root-to-leaf

paths. On the right side of Fig. 2 for each stage except the last one we have the non-

anticipativity constraints on the variables xω
t , yω

t for the scenarios ω that lie in the same

scenario group �g, for g ∈ Gt . For example, for t = 2 stage and �3 = {5,6,7,8} sce-

nario group, the equalities x5
2 = x6

2 = x7
2 = x8

2 and y5
2 = y6

2 = y7
2 = y8

2 must be satis-

fied.

3. Scenario Clusters

As suggested by Escudero et al. (2010), a scenario-cluster partitioning combines compact

and splitting variable representations in the different stages of the problem, depending on

the scenario cluster partition of choice.

Let q be the number of scenario clusters. This value is selected as a divisor of |�|,

then �p gives the set of scenarios in cluster p with |�p| = |�|/q , for p = 1, . . . , q . For

example, in Fig. 3 we have these set of scenarios: �1 = {1,2}, . . . ,�4 = {7,8}. In addi-

tion, let Gp ⊆ G be the set of scenario groups for cluster p, such that �g ∩�p 6= ∅ means

that g ∈ Gp ; e.g. in Fig. 3, G1 = {1,2,4,8,9}, . . .,G4 = {1,3,7,14,15}.

Instead of the submodel (9) for ω ∈ � we consider for each scenario cluster p ∈

{1, . . . , q} the compact representation

(SMINLPp) min
∑

g∈Gp

wg

(

cT
g xg + fg

(

yg
))

s.t. A1x
1 + h1

(

y1
)

6 0,

A′
gx

π(g) + Agx
g + hg

(

yπ(g), yg
)

6 0, g ∈ G
p \ {1},

xg ∈ {0,1}nx , yg ∈R
+ny , g ∈ G

p,

(10)

where wg =
∑

ω∈�g∩�p wω .
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Fig. 3. Partition in q = 4 scenario clusters and NACs.

These q models are connected by the NACs

x
g
p − x

g

p′ = 0 (NACx),

y
g
p − y

g

p′ = 0 (NACy)

for all g ∈ Gp ∩ Gp′
, p ∈ {1, . . . , q − 1} and p′ = p + 1, see Fig. 3. In future we will use

xg and yg , with g ∈ Gp , to denote the vectors x
g
p and y

g
p for each scenario cluster p.

Therefore, an equivalent model of (2) can be given in terms of the scenario-cluster

models as

(SMINLP)min

q
∑

p=1

∑

g∈Gp

wg

(

cT
g xg + fg

(

yg
))

s.t. A1x
1 + h1

(

y1
)

6 0,

A′
gxπ(g) + Agx

g + hg

(

yπ(g), yg
)

6 0,

g ∈ Gp \ {1}, p ∈ {1, . . . , q},

x
g
p − x

g

p′ = 0, g ∈ G
p ∩ G

p′

, p ∈ {1, . . . , q − 1}, p′ = p + 1,

y
g
p − y

g

p′ = 0, g ∈ Gp ∩ Gp′

, p ∈ {1, . . . , q − 1}, p′ = p + 1,

xg ∈ {0,1}nx , yg ∈R
+ny , g ∈ G

p, p ∈ {1, . . . , q}.

(11)

In general, without loss of generality, let us consider a symmetric and balanced scenario

tree, with |�| = r |T |−1, where r is the number of contingencies for each stage. Therefore,

we can take the number of scenario clusters q ∈ {r, r2, . . . , r |T |−1}.



Solving Multistage Mixed Nonlinear Convex Stochastic Problems 805

Fig. 4. Branch and fix trees for p ∈ {1, . . . , q} and q = 4 scenario clusters.

In sum, the model (11) is partitioned into q submodels (10), which are connected by

the NACs. Each SMINLPp submodel has |�p| = |�|/q scenarios.

4. Multistage BFC for Nonlinear Convexity

Given a partition in scenario clusters, the optimal solution for the models SMINLp ,

for p = 1, . . . , q , is coordinately obtained by using the Branch-and-Fix Coordination

scheme (BFC) based on the Twin-Node-Families concept (TNF), which was introduced

by Alonso-Ayuso et al. (2003b). This strategy allows us a better coordination of the se-

lection of the branching node and branching variable for each scenario cluster related BF

tree, such that the relaxed NACx are satisfied when fixing the appropriate variables ei-

ther to 1 or to 0. Also, it coordinates and reinforces the scenario cluster related BF node

pruning and the variable fixing. BFC lies in the fact that it has as many branch and bound

trees as the number of scenario clusters, coordinating the branching nodes (TNFs) and

the branching variables (integer common variables) so that the related NACx are satis-

fied.

4.1. Some Definitions

Consider the branch and fix (BF) tree associated with the scenario cluster p ∈ {1, . . . , q}

and generated by branching on/fixing at 0 or 1 the xg variables, for g ∈ Gp . Let Ap be the

set of active nodes, which are nodes where there still are x-variables not fixed to 0 or to 1.

Let also I be the set of indices of the binary variables x that the algorithm branches on.

Denote (x
g
p)i the ith variable of the vector x

g
p.

In order to explain the concepts defined below we use Fig. 4, which corresponds to the

scenario tree in Fig. 1, with the q = r2 = 4 scenario clusters given in Fig. 3. The decision
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variables are x1 in the first stage, and x2, x3 in the second stage. The four scenario clusters

are connected by the NACs corresponding to the stages t = 1 and t = 2. I is the set of

indices of the binary variables x for stages t = 1 and t = 2, and the branching order is

x1
p, x2

p, x3
p for p ∈ {1,2,3,4}.

We say that (x
g
p)i and (x

g

p′)i are common variables for scenario clusters p and p′ when

i ∈ I , g ∈ Gp ∩ Gp′
, and p,p′ are in �g . For example, in Fig. 4 (without i indices), x2

1

and x2
2 are common variables, as in both scenario clusters 1 and 2 x2 must be fixed to the

same binary value. However, the variables x2
1 and x2

3 are not common, as in stage t = 2 we

have p = 1 ∈ �2 and p = 3 ∈ �3, i.e. the scenario clusters are not in the same scenario

group, see Fig. 3.

Let index i ∈ I , scenario group g ∈ Gp ∩ Gp′
, and the scenario clusters p,p′ ∈

{1, . . . , q}. Nodes a ∈ Ap and a′ ∈ Ap′
are twin nodes with respect to scenario group

g when on the path from the root node to these nodes in each of the BF trees for p and p′,

the common variables (x
g
p)i and (x

g

p′)i have been branched on at the same binary value.

For example, in Fig. 4, nodes 21 and 22 are twin nodes with respect to scenario group 2,

as both have fixed the values of their common variables x1
1 , x2

1 and x1
2 , x2

2 to 0. However,

21 and 32 are not twin nodes, as their common variables x2
1 , x2

2 have opposite values. 21

and 23 are not twin nodes, as in spite of the fact that variables x2
1 , x2

3 have the same value,

they are not common variables, since the scenario clusters are not in the same scenario

group.

A twin node family (TNF) is a set of nodes such that any node is a twin node to all

other nodes in the family. For example, in Fig. 4, the sets {01,02,03,04}, {11,12}, {13,14},

{21,22}, {23,24}, {41,42} are TNFs.

A TNF is candidate when any of its common variables has not yet been fixed.

For example, in Fig. 4, the TNF {11,12} is candidate, as its scenario cluster trees

have in common variables x2
1 and x2

2 that have not yet been fixed. However, the TNF

{11,12,13,14} is not a candidate, as the only common variable is x1, but it has already

been fixed.

A TNF integer set is a set of TNFs where all x variables have binary values and the

NACx are satisfied. For example, in Fig. 4, the set {41,42,53,54} is a TNF integer set, as

the integrality condition of x and the NACx are satisfied. However, the set {43,54} is not a

TNF integer set, as the common variables x3
3 and x3

4 have taken different values, 0 and 1,

respectively.

4.2. Auxiliary Submodels

Let G∗
t denote the cumulated set of scenario groups until stage t ; i.e. G∗

t =
⋃t

j=1 Gj for

t ∈ T .

Consider q = r t , for t ∈ {1,2, . . . , |T | − 1}, and a TNF where i of the x vari-

ables have been already branched on and fixed at for i ∈ I related to a group g ∈ G∗
t .

Let n = |I|. We branch on the xg variables, just for stages where there are explicitly

NACs.

At each TNF, we compute the lower bound Zi =
∑q

p=1 z
p
i , where z

p
i is the optimal

solution value of MINLP
p
i , which denotes the mixed integer nonlinear problem obtained
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from SMINLPp after the first i variables xg have been fixed to 0 or 1, say, x
g
j , such that

g ∈ Gp ∩ G∗
t , namely for p ∈ {1, . . . , q}

(MINLP
p
i ) z

p
i = min

∑

g∈Gp

wg

(

cT
g xg + fg

(

yg
))

s.t. A1x
1 + h1

(

y1
)

6 0,

A′
gxπ(g) + Agx

g + hg

(

yπ(g), yg
)

6 0, g ∈ Gp \ {1},

x
g
j = x

g
j , 1 6 j 6 i, g ∈ Gp ∩ G∗

t ,

x
g

j ∈ [0,1], i + 1 6 j 6 n, g ∈ G
p ∩ G

∗
t ,

x
g

j ∈ {0,1}, n + 1 6 j 6 Nx , g ∈ G
p \ G∗

t ,

yg ∈R
+ny , g ∈ Gp,

(12)

where Nx = nx · |G|. Note that in the computation of each lower bound Zi , q mixed 0–1

nonlinear convex subproblems must be solved, one per each scenario cluster p, with 0–1

variables in the stages t + 1 until the last one.

Z0 denotes the lower bound associated with the root node, i = 0. Also, note that Z0 6

Z1 6 · · · 6 Zn and n is the number of nodes for branching and fixing the xg variables,

such that g ∈ Gp ∩G∗
t . If the optimal solution obtained in a TNF i satisfies the integrality

of x and the NACx , two cases can happen with respect to the NACy :

1. If the NACy have been satisfied, the incumbent solution is updated and the TNF

branch is pruned. If the set of active nodes is empty in the BF trees, that solution is

the optimum.

2. Otherwise, to satisfy NACy we solve the submodel MINLPTNF
i obtained by fixing

in (2), DEM, the xg-variables that satisfied integrality and NACx . If this problem

is feasible, the incumbent solution is updated, and if the TNF cannot be pruned, we

continue with the examination of the BF trees.

Submodel MINLPTNF
i can be given as

ZTNF
i = min

∑

g∈G

wg

(

cT
g xg + fg

(

yg
))

s.t. A1x
1 + h1

(

y1
)

6 0,

A′
gxπ(g) + Agx

g + hg

(

yπ(g), yg
)

6 0, g ∈ G \ {1},

x
g
j = x

g
j , 1 6 j 6 i, g ∈ G∗

t (from branching/fixing),

x
g

j = x
g

j , i + 1 6 j 6 n, g ∈ G
∗
t (from MINLP

p

i ),

x
g
j ∈ {0,1}, n + 1 6 j 6 Nx , g ∈ G \ G∗

t ,

yg ∈R
+ny , g ∈ G.

(13)

Note that the solution of MINLPTNF
i attached to a TNF integer set could be the incumbent

solution, as it is a feasible solution of the original problem; so, ZTNF
i is an upper bound
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of the solution value of the original problem. But it does not mean that it must be pruned

unless i = n, as a better solution can still be obtained by following deep in the tree. For

this reason, we use a very similar auxiliary submodel, MINLP
f
i , which can be defined as

Z
f
i = min

∑

g∈G

wg

(

cT
g xg + fg

(

yg
))

s.t. A1x
1 + h1

(

y1
)

6 0,

A′
gx

π(g) + Agx
g + hg

(

yπ(g), yg
)

6 0, g ∈ G \ {1},

x
g
j = x

g
j , 1 6 j 6 i, g ∈ G∗

t (from branching/fixing),

x
g

j ∈ [0,1], i + 1 6 j 6 n, g ∈ G
∗
t ,

x
g
j ∈ {0,1}, n + 1 6 j 6 Nx, g ∈ G \ G∗

t ,

yg ∈R
+ny , g ∈ G.

(14)

Observe that, unlike MINLPTNF
i , in this submodel for i + 1 6 j 6 n the variables x

g
j

are relaxed in the interval [0,1]. As a consequence, this model contributes strong lower

bounds of the solution value of the descendant nodes from a given node. Therefore, the

TNF can be pruned if Z
f

i = ZTNF
i . Note that the solution of MINLP

f

i satisfies the NACs,

but not necessarily the integrality for all x-variables. Hence, if Z
f
i is lower than ZTNF

i

and Z, there are two possibilities. The first, the x-variables are integer, then we set Z :=

Z
f
i and the TNF is pruned. The second, there is any non-integer x-variable, then the

branching follows deep to the (i + 1)th node, since it is possible to find a better feasible

solution.

5. Solution of SMINLP

In order to solve the original problem (2), equivalently SMINLP, we need to solve aux-

iliary subproblems. Since the objective function is convex and the constraints are con-

vex, we propose to solve each MINLPp in each node of the BF tree (in each TNF), and

MINLPTNF and MINLPf subproblems by solving sequences of mixed integer quadratic

problems (MIQP).

Since the components of hg are convex, we propose to approximate each convex con-

straint by using linear outer approximations (see Duran and Grossmann, 1986), i.e. by

replacing each constraint jg = 1, . . . ,m, for g ∈ G \ {1}, with the linear constraint

(

a′
jg

)T
xπ(g) + aT

jg
xg + hjg

(

y
π(g)
k , y

g
k

)

+ ∇hjg

(

y
π(g)
k , y

g
k

)T
(

yπ(g) − y
π(g)

k

yg − y
g

k

)

6 0,

where (y
π(g)

k , y
g

k ) is the solution in the previous iteration, ajg is the j -th row of Ag ,

and hjg function is the j -th component of hg . We follow a similar approach for

g = 1.
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Each MINLPTNF
i is solved by sequentially solving the mixed integer quadratic prob-

lem MIQPTNF
k given by

2TNF
k = min

∑

g∈G

wg

(

cT
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is the Taylor polynomial of fg(yg).

The vector y
g
k is updated k times at most and each y

g
k is the solution of the previous

quadratic approximation, i.e. that corresponding to q
g

k−1(y
g). The initial y

g

1 is the estimate

solution from the previous node. Thus, we solve k MIQPTNF
k approximationsat most. This

sequence is stopped when for a given τ it holds

∣
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∣, k 6 k,

then, we set ZTNF
i := 2TNF

k .

In the case of MINLP
f

i we use a similar method to obtain Z
f

i . In addition, since we

want to use its solution value like a strong lower bound, and fg functions are convex, the

following objective cut is included in the MIQP
f
k subproblems:
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6 Z, (16)

where Z = min{Z,ZTNF
i }. Therefore, the MIQP

f
k submodel has the following formula-

tion:
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If MIQP
f
k is infeasible, the node is pruned.

For the solution of MINLP
p

i subproblems in each node i of the TNF we solve the

following mixed integer quadratic problem MIQP
p
i :
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where q
g
k (yg) is defined by (15). We only solve one quadratic approximation, i.e. k = 1,

since if for k = 1 and any p scenario cluster MIQP
p
i is infeasible, MINLP

p
i is infeasible

(as its constraints are convex) and then the node of BFC is pruned. If it is feasible, due to

the successive iterations in the previous nodes, the current values of (x
g

1 , y
g

1 ) have been

“polished”, hence they are a good reference for the quadratic approximation. As a con-

sequence, the optimal solution for MINLP
p
i subproblems will not be very different from

the optimal solution for MIQP
p
i subproblems with k = 1, which reduces drastically the

computational effort required by this method.

For the solution of the MIQPTNF and MIQPf subproblems, by default, k = 20 and

τ = 10−6. These values have been heuristically chosen.
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For a given t ∈ {1, . . . , |T | − 1} and q = r t , an initial lower bound on the solution

value of the original problem is obtained at the root node (i = 0) by

Z0 =

q
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z
p
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where z
p
00 is obtained by solving the following subproblem for each scenario cluster p ∈

{1, . . . , q}
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Note that the x-variables take 0–1 values in all stages.

Let the initial branching parameter σi be the most repeated 0–1 value of the xi variable,

for the clusters where the NACx must be satisfied, in the solution of (18) for p ∈ {1, . . . , q},

for each i ∈ {1, . . . , n} (n = |I|). If there is the same number of 0 and 1, we set σi = 0.

Later we branch on the other value, which is denoted by σ i . We arrange the branching

variables according to the initial natural ordering.

Note that in the algorithm given by Fig. 5 the upper index g, with g ∈ Gp , denotes

the set of common variables, x
g

i of cluster p, that must be fixed to the same 0–1 value.

Likewise, the subindex i denotes the index in I , i.e. the corresponding set over which the

algorithm proceeds by branching on. Moreover, I is the subset of variables until the fixed

stage t such that q = r t and IC means integrality constraints.

6. Numerical Results

This method has been implemented with the help of CPLEX 12.1 to solve the quadratic

subproblems MIQPp in each node of the BF tree, for each p ∈ {1, . . . , q}, and to solve

the quadratic subproblems MIQPTNF and MIQPf .

MS-NLBFC code is a C++ implementation of this method with the coordination of x

in the twin node families of the BF trees for clusters p ∈ {1, . . . , q}.

Three convex functions have been used as f (y) for yi > 0, ∀i:

p(y) =
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∑

i=1

(

y3
i + ciyi

)

,

e(y) =
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∑

i=1

(

exp(yi) + ciyi

)

, and l(y) =

ny
∑

i=1

(

− log(yi + 1) + ciyi

)

.
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Fig. 5. Flowchart of the algorithm.

The constraint functions h(y) are composed of a linear combination of the terms y2
i

with positive coefficients, which are randomly chosen. The first-stage constraints are two-

sided inequality linear constraints.
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Table 1

Dimensions of the problems.

Test Scenario model Group dim. DEM dim.

Tree |�| |G| nx ny m #bin #nlvar #lc #nlc dens%

T1 23 8 15 5 15 20 75 225 20 280 60

T2 23 8 15 10 30 42 150 450 42 588 48

T3 33 27 40 4 4 4 160 160 4 156 75

T4 33 27 40 8 8 8 320 320 8 312 75

T5 33 27 40 10 10 10 400 400 10 390 30

T6 33 27 40 15 15 15 600 600 15 585 54

T7 33 27 40 10 25 20 400 1000 20 780 60

T8 33 27 40 10 30 22 400 1200 22 858 59

T9 43 64 85 5 20 15 425 1700 15 1275 40

T10 53 125 156 5 12 12 780 1872 12 1860 33

T11 53 125 156 15 15 15 2340 2340 15 2325 47

T12 63 216 259 5 20 15 1295 5180 15 3870 47

T13 83 512 585 5 5 5 2925 2925 5 2920 40

T14 83 512 585 3 12 12 1755 7020 12 7008 25

Table 1 presents the dimensions of the 14 test problems according to the scenario

model, the dimensions of each scenario group, and the dimensions of DEM model, see (2).

In regard to “Scenario model” the headings are as follows: “Tree” indicates the kind of

tree; |�| the number of scenarios; and |G| the number of scenario groups. “Group dim.”

has these headings: nx , number of binary variables in each group; ny , number of contin-

uous variables in each group; and m, number of constraints in each group. Finally, under

“DEM dim.” there are these columns: #bin, number of binary variables x; #nlvar, num-

ber of nonlinear variables y; #lc, number of linear constraints; #nlc, number of nonlinear

constraints; and “dens%”, density of the constraints.

Numerical experiments have been performed on HP Compaq with Intel Core 2 Quad

Q9550 2.83GHz 4 CPU under Linux and 4 GB of RAM. AMPL modelling system has

been used as an interface with the solver BONMIN (Basic Open-Source Nonlinear Mixed

INteger programming), which is an experimental open-source C++ code for solving gen-

eral MINLP by (Bonami et al., 2008) (COIN-OR).

Tables 2, 3, and 4 show, for q = r clusters, the results of the computational experiments

for our tests with polynomial function p(y), with exponential function e(y), and with

logarithmic function l(y), respectively. In these tables the headings are as follows: #nF,

number of mixed 0–1 problems (13) solved; #n, number of TNF branches for the set of BF

trees; fM , solution value of the original problem obtained by MS-NLBFC; tM , computing

time required by MS-NLBFC to solve each problem in CPU-seconds; fB , solution value

of the original problem obtained by BONMIN; tB , computing time required by BONMIN

to solve each problem in CPU-seconds. Symbol “–” means that BONMIN finishes the

execution with the message “The LP relaxation is infeasible or too expansive”.

As can be seen in Table 2 for the polynomial function p(y), with the exception of T6,

in the rest of the tests the efficiency of MS-NLBFC has been higher than that of BON-

MIN, and especially in the biggest instances T7-T9 and T11-T14. BONMIN does not find

a solution for T10. In Table 3 for the exponential function e(y), in all the instances MS-
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Table 2

Numerical results for p(y).

Test #nF #n fM tM fB tB

T1 0 0 3709.6585 0.9 3709.6581 4.1

T2 2 32 89.242415 4.3 89.242408 13.7

T3 2 12 999.91318 0.6 999.91305 1.1

T4 4 34 3155.1924 3.4 3155.1922 5.3

T5 0 0 3218.9060 0.8 3218.9058 1.4

T6 3 78 5051.4940 13.9 5051.4936 9.6

T7 0 0 6485.5299 2.2 6486.0032 11.6

T8 0 0 5978.8555 2.1 5978.8548 14.3

T9 0 0 1416.3723 2.1 1416.3718 29.5

T10 0 0 3338.5685 2.8 – –

T11 0 0 7313.7601 2.3 7313.7599 95.8

T12 0 0 64936.258 3.5 64936.256 1253.2

T13 1 14 1718.9321 6.6 1718.9320 803.5

T14 0 0 24933.784 5.6 24933.783 97.0

Table 3

Numerical results for e(y).

Test #nF #n fM tM fB tB

T1 0 0 3775.5283 0.9 3775.5280 2.1

T2 0 0 220.39991 2.8 220.39990 17.4

T3 2 12 1016.8698 0.6 1016.8697 1.2

T4 2 30 3190.6568 2.6 3190.6566 4.6

T5 0 0 3254.3535 0.9 3254.3532 1.7

T6 3 78 5110.9118 15.6 5110.9115 199.6

T7 0 0 6585.8601 1.6 6585.8600 5.9

T8 0 0 6103.6315 2.2 6103.6307 10.0

T9 0 0 1500.2018 2.2 1500.2013 64.9

T10 0 0 3390.2928 3.0 – –

T11 0 0 11714.366 3 11714.366 7.6

T12 0 0 81307.035 6.1 81307.033 1155.8

T13 1 14 1741.1116 6.6 1741.1115 6113.7

T14 0 0 30412.109 7.4 30412.108 300.4

NLBFC gives a lower time than BONMIN, except for T10, where this last does not con-

verge. In the biggest instances T12-T14 the times obtained by MS-NLBFC in comparison

with those of BONMIN are especially significant. Finally, in Table 4 for the logarithmic

function l(y), in the tests T9, T11 and T12 BONMIN does not find a solution. However,

MS-NLBFC converges in all the instances and with a high efficiency with regard to that

of BONMIN.

The relative difference between the values of the objective function for both solvers at

the optimal is about 10−8 in all the instances for p(y) and e(y) functions. In the case of

the function l(y) in the instances T2, T4, T7, T10, and T13 MS-NLBFC gives a clearly

lower value of the objective function in the solution than BONMIN, especially in T10 and

T13, in these tests MS-NLBFC’s solution is about 4% better (lower) than that computed

by BONMIN.
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Table 4

Numerical results for l(y).

Test #nF #n fM tM fB tB

T1 0 0 3698.8769 0.9 3698.8766 2.1

T2 2 34 59.519263 7.1 59.580983 89.6

T3 2 12 994.87526 0.6 994.87512 0.8

T4 4 34 3149.3124 3.5 3158.6708 16.3

T5 0 0 3185.3608 1.1 3185.3606 11.4

T6 3 78 5026.4560 14.2 5026.4557 56.7

T7 0 0 6443.2200 2.8 6447.1188 134.0

T8 0 0 5956.5374 2.2 5956.5367 54.4

T9 0 0 1411.2299 2.3 – –

T10 0 0 3329.0272 2.9 3473.4372 207.3

T11 14 116 3047.4103 119.5 – –

T12 7 24 51847.349 100.3 – –

T13 1 14 1716.5050 7.5 1780.3682 621.2

T14 0 0 22161.360 5.1 22161.337 954.5

Table 5

Experiments for q values (#nF; #n; tM ).

Test q = r1 q = r2 q = r3

T2 (2; 35; 7.1) (2; 35; 10.7) (2; 35; 20.6)

T3 (2; 13; 0.6) (2; 13; 1.3) (2; 13; 3.9)

T4 (4; 35; 3.5) (4; 35; 6.8) (4; 35; 23.8)

T6 (3; 79; 14.2) (3; 79; 37.5) (3; 79; 171.0)

T13 (1; 15; 7.5) (1; 15; 40.2) (2; 17; 842.4 )

Table 6

Experiments using objective cuts (#MIQPf /tM ).

Test q = r1 q = r2 q = r3

!OC OC !OC OC !OC OC

T4 44/5.0 25/3.5 44/9.1 25/6.8 44/28.0 25/23.8

T6 22/17.1 3/14.2 42/48.3 4/37.5 42/201.0 4/171.0

Table 5 shows the performance of MS-NLBFC in some tests for different values of q

using l(y) in the objective function. As could be expected the bigger the number of clus-

ters, the higher the computing time is. This is owing to the larger amount of subproblems

(12) that must be solved, despite the smaller size of the subproblems.

Finally, the use of objective cuts (16) reduces the number of MIQPf subproblems

(17) that must be solved. In Table 6, for the instances T4 and T6 with l(x) function, for

each kind of q we have two columns: !OC, not using objective cuts; OC, using objective

cuts. In the instance T6, for q = r , if we use objective cuts, instead of solving 22 MIQPf

problems only 3 are solved and, as a consequence, the total run-time is also reduced, from

17.1 seconds to 14.2.
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7. Conclusions

An algorithm based on the Branch-and-Fix Coordination method has been designed to

solve multistage stochastic mixed integer nonlinear convex problems with convex objec-

tive function and constraints. The uncertainty of these problems appears in the coefficients

of the objective function and of the constraints.

The algorithm approximates the objective function by a sequence of quadratic Tay-

lor polynomials. The convex constraints are approximated by means of linear outer ap-

proximations. When solving the submodels related to fractional TNFs objective cuts are

involved in order to reduce the computational effort when the subproblem has an opti-

mal solution bigger than that obtained for the integer TNF submodel or than the current

incumbent solution.

It has been implemented in C++ with the help of CPLEX library to solve only the

quadratic subproblems. This algorithm has been tested with a set of small- and medium-

sized instances. The preliminary numerical results show that this experimental code is

able to efficiently solve this kind of problems.

Some important topics for further investigation are the following: the Benders De-

composition for solving the submodels related to integer and fractional TNFs in the MS-

NLBFC algorithm, the parallelization of the scenario-cluster related submodels solving,

and the application of this code to solve real-world problems.
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Daugiaetapio mišraus netiesinio stochastinio iškilo programavimo
uždavinių sprendimas

Eugenio MIJANGOS

Pateikiamas algoritmas daugiaetapio stochastinio iškilo programavimo uždaviniams spręsti, su

netiesinėmis tikslo ir ribojimų funkcijomis. Algoritmas grindžiamas dvigubų mazgų koncepcija,

įtraukta į koordinačių Plėtimosi ir Fiksavimo metodą. Neanticipativiškumo sąlygos yra tenkinamos
taikant dvigubų mazgų strategiją. Šiame darbe siūloma spręsti pagalbinius uždavinius pasinaudojus
kvadratinių uždavinių sekos rezultatais. Dėl ribojimų iškilumo šie yra aproksimuojami pritaikius
išorinę aproksimaciją. Šie metodai yra realizuoti C++ su CPLEX 12.1, pritaikytu kvadratinėms ap-
roksimacijoms surasti. Testiniai uždaviniai buvo generuojami atsitiktinai, autorių sukurtu C++ kodu.
Atlikti skaitiniai eksperimentai palyginti su žinomais testais.


