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Abstract. This paper presents minimum mean square error (MMSE) estimators for mean life and
failure rate of Exponential distribution model based on failure censored step-stress accelerated life-
testing (SSALT) data. The MMSE estimators are drived by revising the corresponding unbiased
estimators in terms of mean square error (MSE). Two theorems prove mathematically the fact that
MSE of the resulting MMSE estimators are smaller than that of the corresponding unbiased esti-
mators. The results show that the MMSE estimators are more efficient than the unbiased estimators
and maximum likelihood estimators (MLEs) in small and moderate sample size.

Key words: Step-stress accelerated life-testing (SSALT), exponential distribution, mean life, failure
rate, mean square error (MSE).

1. Introduction

Accelerated life testing (ALT) is commonly practiced in product life testing and analysis
to reduce operation time and costs as products may have high reliability under normal
conditions (Brumen et al., 2014; Miller and Nelson, 1983; Wu and Yu, 2005) because
time and costs are expensive (Zhou et al., 2012). The objective of ALT is to improve the
performance and reliability of products by shorting the period between product design
and release time (Nelson, 1980; Mao and Wang, 1997). Failure data collected from ALT
may be used to estimate some product characteristics, such as mean lifetime, failure rate
and reliability, etc (Lawless, 1982; Zhou et al., 2013a). Step-stress accelerated life testing
(SSALT) is a special type of ALT in which stress levels are increased during the test
period in a specified discrete sequence (Nelson, 1990). SSALT allows the stress setting of
a test unit to be changed at pre-specified times or upon the occurrence of a fixed number of
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failures. The former is called SSALT with Type-I censoring and the latter is called SSALT
with Type-II censoring. However, SSALT should be further developed to reduce operation
time and costs.

In SSALT model, many researchers assumed that failure time (life time) follows Expo-
nential distribution (Sarhan et al., 2012). For example, Miller and Nelson (1983) presented
a simple SSALT plan assuming the exponential life distribution. Khamis (1997) proposed
an optimal m-step SSALT design with k stress variables under the exponential life distri-
bution. Tang et al. (1999) discussed optimum plans for two-parameter Exponential distri-
bution. Wang (2006) obtained unbiased estimators for Exponential distribution based on
SSALT censored data. Balakrishnan and Rasouli (2008) obtained conditional maximum
likelihood estimators (MLEs) of two exponential mean parameters by exact inference for
two exponential populations under joint Type-II censoring. Ling et al. (2009) obtained the
MLE of the model parameters assuming an exponentially distributed life of test units and
a cumulative exposure model. Due to the simplicity and practicability of Exponential dis-
tribution, we further investigate the estimators for parameters of SSALT model assuming
the exponential life distribution based on mean square error (MSE) criterion. The resulting
estimators are called minimum mean square error (MMSE) estimators.

The rest of this paper is organized as follows. Section 2 gives some basic assumptions
and lemmas related with exponential SSALT model and MSE criterion for accessing the
estimators. Section 3 derives the MMSE estimators for the exponential SSALT model.
Section 4 concludes the paper.

2. SSALT Model and Optimization Criterion

2.1. Basic Assumptions

Under the condition of Exponential distribution, statistical inference for SSALT depends
on the following assumptions:

(1) For any stress level, the life time of a test unit follows an Exponential distribution
with the following cumulative distribution function (CDF):

f (t) = 1 − exp(t/θ), t > 0,

where θ is the mean life of the test unit at stress level.
(2) The mean life of a test unit is a log-linear function of stress level x , that is,

log(θ) = α + βx,

where α and β are the unknown parameters depending on the nature of the test
unit and the test method.

(3) If two stress levels x1 < x2, then θ1 < θ2, where θ1 and θ2 are the mean lives of the
test unit at stress levels x1 and x2, respectively.

(4) A cumulative exposure model holds: the remaining life depends on the current
cumulative failure probability and current stress level regardless of how the prob-
ability is accumulated (Nelson, 1980; Wang, 2010; Zhou et al., 2013b).
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2.2. Basic Lemmas

We now consider the basic models under SSALT with the progressive Type-II censoring
provided by Wang (2006). Suppose that all n test units are initially placed at the lowest
stress level x1 and run until failure r1 units occur. At t1,r1

, the stress level is increased to
x2 (x1 < x2). The test is continued, triggering stress level changes at times ti,ri . At xk , the
test is terminated after rk units have failed. At the stress level xi , ri failure times of test
units are observed, which are ti,j (i = 1,2, . . . , k, j = 1,2, . . . , r

1
). We write

T1 =
r1
∑

j=1

t1,r1
+ (n − r1)

and

Ti =
r1
∑

j=1

(ti,j − ti−1,j−1) +
(

n −
i
∑

j=1

ri

)

(ti,ri − ti−1,ri−1), (i = 1,2, . . . , k).

Obviously, statistics T1, T2, . . . , Tk are independent. Moreover, we write

9(x) = d log
(

Ŵ(x)
)

/dx, 9 ′(x) = d2 log
(

Ŵ(x)
)

/d2x.

Let Ui = ln(Ti) − 9(ri) (i = 1,2, . . . , k), then the expectation and the variance of Ui are
as follows:

E(Ui) = ln(θi) = α + βxi, Var(Ui) = 9 ′(x) (i = 1,2, . . . , k).

Mao and Wang (1997) introduced the linear unbiased estimators of the unknown param-
eters α and β by Gauss–Markov theorem, which are given as follows:

α̂ = GH − IM

EG − I 2
, β̂ = EM − IH

EG − I 2
.

where

E =
k
∑

i=1

[

9 ′(ri)
]−1

, I =
k
∑

i=1

[

9 ′(ri)
]−1

xi, G =
k
∑

i=1

[

9 ′(ri)
]−1

x2
i ,

H =
k
∑

i=1

[

9 ′(ri)
]−1

Ui, M =
k
∑

i=1

[

9 ′(ri)
]−1

xiUi .

Hence, the estimators of the mean life θ0 and the failure rate λ0 at the design stress x0

under normal operating conditions are given as follows:

θ0 = exp(α̂ + β̂x0), λ0 = exp(−α̂ − β̂x0).
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Two lemmas related with the exponential SSALT model are given as follows Wang
(2006).

Lemma 1. Let Di = G−(x0+xi )I+x0xiE

9′(ri)(EG−I 2)
(i = 1,2, . . . , k) and θ0 be the mean life at the

design stress x0

(1) If ri + Di > 0 (i = 1,2, . . . , k), then the unbiased estimator of θ0 is

θ̃0 = θ̂0 exp

(

k
∑

i=1

Di9(ri)

)

k
∏

i=1

Ŵ(r1)

Ŵ(ri + Di)
;

(2) If ri + 2Di > 0 (i = 1,2, . . . , k), then the variance of θ̃0 is

Var(θ̃0) =
(

k
∏

i=1

Ŵ(ri)Ŵ(ri + 2Di)

Ŵ2(ri + Di)
− 1

)

θ2
0 .

Lemma 2. Let Di = G−(x0+xi)I+x0xiE

9′(ri)(EG−I 2)
(i = 1,2, . . . , k) and λ0 be the failure rate at the

design stress x0.

(1) If ri − Di > 0 (i = 1,2, . . . , k), then the unbiased estimator of λ0 is

λ̃0 = λ̂0 exp

(

−
k
∑

i=1

Di9(ri)

)

k
∏

i=1

Ŵ(r1)

Ŵ(ri − Di)
;

(2) If ri − 2Di > 0 (i = 1,2, . . . , k), then the variance of λ̃0 is

Var(λ̃0) =
(

k
∏

i=1

Ŵ(ri)Ŵ(ri − 2Di)

Ŵ2(ri − Di)
− 1

)

λ2
0.

The proof of Lemma 1 and Lemma 2 sees the reference (Wang, 2006).

2.3. Optimization Criterion

In recent years, the estimators that fall outside the tradition of linear unbiased estimator
have been concentrated on in the literature. One biased estimator that has received con-
siderable attention is the MMSE estimator. Often, it is found that inducing biases may
significantly reduce MSE of the estimators. For example, Theil (1971) showed that the
MMSE estimator is the best in terms of MSE among the class of linear homogeneous
estimators. Liski et al. (1993) provided a unified discussion of MMSE estimator and il-
lustrated the different interpretations of MMSE estimator that can arise. MSE is a key
criterion in accessing the performance of the estimators and selecting an appropriate es-
timator in statistical models (DeGroot, 1980), which is defined as

MSE(θ̂ ) = E(θ̂ − θ)2 = Var(θ̂ ) +
(

E(θ) − θ
)2
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where θ̂ is the estimator of the unknown parameter θ . MSE equals the sum of the variance
and the squared bias of the estimator. Therefore, a biased estimator should have lower
MSE in practical terms. Among unbiased estimators, minimizing MSE is equivalent to
minimizing the variance.

In ALT, MSE have been considered as the optimization criterion for accessing the
performance of the resulting estimators of the unknown parameters (Sarhan et al., 2012;
Wang, 2006; Balakrishnan and Rasouli, 2008; Ling et al., 2009; Ismail, 2012; Dey and
Dey, 2014; Dey and Pradhan, 2014). However, MMSE estimators are not taken into ac-
count for ALT in the existing literature. In this paper, we will derive the optimal estimators
for mean life and failure rate of the exponential SSALT model, while MSE of the optimal
estimators at the design stress are minimized. The resulting estimators are called MMSE
estimators.

3. MMSE Estimators

In this section, we will derive the optimal estimators for mean life and failure rate of the
exponential SSALT model, while MSE of the optimal estimators at the design stress is
minimized. The resulting estimators are called MMSE estimators.

Theorem 1. Let Di = G−(x0+xi )I+x0xiE

9′(ri)(EG−I 2)
(i = 1,2, . . . , k) and θ0 be the mean life at the

design stress x0.

(1) If ri + 2Di > 0 (i = 1,2, . . . , k), then the MMSE estimator of θ0 is

θ̄0 = θ̂0 exp

(

k
∑

i=1

Di9(ri)

)

k
∏

i=1

Ŵ(ri + Di)

Ŵ(ri + 2Di)
;

(2) If ri + 2Di > 0 (i = 1,2, . . . , k), then the variance of θ̄0 is

Var(θ̄0) =
(

k
∏

i=1

Ŵ2(ri + Di)

Ŵ(ri + 2Di)Ŵ(ri)
− Ŵ4(ri + Di)

Ŵ2(ri + 2Di)Ŵ2(ri)

)

θ2
0 ;

(3) If ri +2Di > 0 (i = 1,2, . . . , k) and θ̃0 is the unbiased estimator of θ0 in Lemma 1,

then

MSE(θ̄0) < MSE(θ̃0).

Proof. (1) From Lemma 1, θ̃0 is an unbiased estimator of θ0, then

E(θ̃0) = E

(

θ̂0 exp

(

k
∑

i=1

Di9(ri)

)

k
∏

i=1

Ŵ(ri)

Ŵ(ri + Di)

)

θ0
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we have

E(θ̂0) = exp

(

−
k
∑

i=1

Di9(ri)

)

k
∏

i=1

Ŵ(ri + Di)

Ŵ(ri)
θ0.

Since

Var(θ̃0) =
(

k
∏

i=1

Ŵ(ri )Ŵ(ri + 2Di)

Ŵ2(ri + Di)
− 1

)

θ2
0 .

Thus

Var(θ̂0) = exp

(

−
k
∑

i=1

2Di9(ri)

)(

k
∏

i=1

Ŵ2(ri + Di)

Ŵ2(ri)

k
∏

i=1

Ŵ(ri)Ŵ(ri + 2Di)

Ŵ2(ri + Di)
− 1

)

θ2
0 .

We now set θ̄0 = cθ̂0 (c is undetermined constant), it follows that

Var(θ̄0) = c2 exp(−
k
∑

i=1

2Di9(ri))

(

k
∏

i=1

Ŵ2(ri + Di)

Ŵ2(ri)

k
∏

i=1

Ŵ(ri )Ŵ(ri + 2Di)

Ŵ2(ri + Di)
− 1

)

θ2
0

and

(

E(θ̄0) − θ0

)2 =
(

c exp(−
k
∑

i=1

Di9(ri))

k
∏

i=1

Ŵ(ri + Di)

Ŵ(ri)
− 1

)2

θ2
0 .

According to the definition of MSE, we have

MSE(θ̄0) =
(

c2 exp

(

−
k
∑

i=1

2Di9(ri)

)

k
∏

i=1

Ŵ(ri + 2Di)

Ŵ(ri)

− 2c exp

(

k
∑

i=1

−Di9(ri)

)

k
∏

i=1

Ŵ(ri + Di)

Ŵ(ri )
+ 1

)

θ2
0 .

In order to obtain the optimal estimator in terms of MSE, we construct an optimization
model as follows:

MinimizeMSE(θ̄0) = MinimizeMSE(cθ̂0).

Taking the derivative of MSE(θ̄0) with respect to c, and letting it be zero,
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d(MSE(θ̄0))

dc
=
(

2c exp

(

−
k
∑

i=1

2Di9(ri)

)

k
∏

i=1

Ŵ(ri + 2Di)

Ŵ(ri)

− 2 exp
(

− Di9(ri)
)

k
∏

i=1

Ŵ(ri + Di)

Ŵ(ri)

)

θ2
0 = 0.

Then, we obtain

c = exp

(

k
∑

i=1

2Di9(ri)

)

k
∏

i=1

Ŵ(ri + Di)

Ŵ(ri + 2Di)
.

Hence, the MMSE estimator of θ0 is

θ̄0 = cθ̂0 = θ0 exp

(

k
∑

i=1

Di9(ri)

)

k
∏

i=1

Ŵ(ri + Di)

Ŵ(ri + 2Di)
.

(2) The variance of θ̄0 is

Var(θ̄0) = c2Var(θ̂0) =
(

k
∏

i=1

Ŵ2(ri + Di)

Ŵ(ri + 2Di)Ŵ(ri)
− Ŵ4(ri + Di)

Ŵ2(ri + 2Di)Ŵ2(ri)

)

θ2
0 .

(3) According to the definition of MSE, we have

MSE(θ̃0) =
(

k
∏

i=1

Ŵ(ri)Ŵ(ri + 2Di)

Ŵ2(ri + Di))
− 1

)

θ2
0

and

MSE(θ̄0) =
(

−
k
∏

i=1

Ŵ2(ri + Di)

Ŵ(ri + 2Di)Ŵ(ri)
+ 1

)

θ2
0 .

According to x + 1
x

= (
√

x − 1√
x
)2 > 0, (x > 0), we have

MSE(θ̃0) − MSE(θ̄0) =
(

k
∏

i=1

Ŵ(ri)Ŵ(ri + 2Di)

Ŵ2(ri + Di))
+

k
∏

i=1

Ŵ2(ri + Di)

Ŵ(ri + 2Di)Ŵ(ri)
− 2

)

θ2
0

> 0.

That is

MSE(θ̄0) < MSE(θ̃0).

Thus, the proof is completed. �
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Similarly, we can obtain the results of the failure rate λ0 at the design stress x0.

Theorem 2. Let Di = G−(x0+xi )I+x0xiE

9′(ri)(EG−I 2)
(i = 1,2, . . . , k) and λ0 be the failure rate at the

design stress x0:

(1) If ri − 2Di > 0 (i = 1,2, . . . , k), then the MMSE estimator of λ0 is

λ̄0 = λ̂0 exp(1)(−
k
∑

i=1

Di9(ri)(1))

k
∏

i=1

Ŵ(ri − Di)

Ŵ(ri − 2Di)
;

(2) If ri − 2Di > 0 (i = 1,2, . . . , k), then the variance of λ̄0 is

Var(λ̄0) =
(

k
∏

i=1

Ŵ2(ri − Di)Ŵ(ri − 2Di)

Ŵ3(ri)
−

k
∏

i=1

Ŵ4(ri − Di)

Ŵ4(ri)

)

λ2
0.

(3) If ri −2Di > 0 (i = 1,2, . . . , k) and λ̃0 is the unbiased estimator of λ0 in Lemma 2,

then

MSE(λ̄0) < MSE(λ̃0).

Proof of Theorem 2 is similar with Theorem 1, thus we omit it here.
It is noted that Wang (2006) implemented Monte Carlo simulations investigation in

small and moderate sample size and showed that the unbiased estimators given in Lemma 1
and Lemma 2 are more efficient than the corresponding MLEs. Theorem 1 and Theorem 2
illustrate that MSE of the resulting MMSE estimator is less than that of the corresponding
unbiased estimators introduced by Wang (2006). Then, it holds that the MMSE estima-
tors are more efficient than the corresponding unbiased estimators in small and moderate
sample size. That is to say, for mean life and failure rate at a design stress, the MMSE
estimators are more efficient than the MLEs and the unbiased estimators in small and
moderate sample size. Therefore, in this paper, it is not necessary to implement Monte
Carlo simulation to illustrate the performance and efficiency of the resulting MMSE esti-
mators.

4. Conclusions

This paper obtains MMSE estimators of mean life and failure rate at a design stress under
normal operating condition based on failure censored SSALT data. It is assumed that life
time of the test units follows Exponential distribution and that the mean life of test units
is a log-linear function of stress level. The optimization criterion is defined to minimize
MSE of the optimal estimator at the design stress. Two theorems have proved mathemat-
ically the fact that MSE of the resulting MMSE estimators is smaller than that of the
corresponding unbiased estimators. The results show that the resulting MMSE estimators
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are more efficient than the unbiased estimators and MLEs in small and moderate sample
size in terms of MSE. In the future work, we further investigate the optimal censoring
schemes and other important aspects from SSALT model.

Acknowledgements. This work was supported in part by grants from the National Natu-
ral Science Foundation of China (#71373216, #71471149, #71325001 and #71601032),
Major project of the National Social Science Foundation of China (#15ZDB153) and
Chongqing Social Science Planning Program for Doctor (#2015BS029).

References

Balakrishnan, N., Rasouli, A. (2008). Exact likelihood inference for two exponential populations under joint
type-II censoring. Computational Statistics and Data Analysis, 52, 2725–2738.

Brumen, B., Rozman, I., Heričko, M., Černezel, A., Hölbl, M. (2014). Best-fit learning curve model for the C4.5
algorithm. Informatica, 25(3), 385–399.

DeGroot, M.H. (1980). Probability and Statistics, 2nd ed. Addison-Wesley.
Dey, S., Dey, T. (2014). Statistical inference for the Rayleigh distribution under progressively type-II censoring

with binomial removal. Applied Mathematical Modelling. 38, 974–982. doi:10.1016/j.apm.2013.07.025.
Dey, S., Pradhan, B. (2014). Generalized inverted exponential distribution under hybrid censoring. Statistical

Methodology, 18, 101–114.
Ismail, A.A. (2012). Estimating the parameters of Weibull distribution and the acceleration factor from hybrid

partially accelerated life test. Applied Mathematical Modelling, 36(7), 2920–2925.
Khamis, I.H. (1997). Optimum M-step design with Kstress variables, Comm. Statist. Simulation Computer,

26(4), 1301–1313.
Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data. John Wiley and Sons, New York.
Ling, L., Xu, W., Li, M.H. (2009). Parametric inference for progressive type-I hybrid censored data on a simple

step-stress accelerated life test model. Mathematics and Computers in Simulation, 79, 3110–3121.
Liski, E.P., Toutenburg, H., Trenkler, G. (1993). Minimum mean squared error estimation in linear regression.

The Journal of Statistical Planning and Inference, 37, 203–214.
Mao, S.S., Wang, L.L. (1997). Accelerated Life Testing. Science Press, Beijing.
Miller, R., Nelson, W. (1983). Optimum simple step-stress plans for accelerated life testing. IEEE Transactions

on Reliability, R-32(1), 59–65.
Nelson, W. (1980). Accelerated life testing-step-stress models and data analyses. IEEE Transactions on Relia-

bility, R-29, 103–108.
Nelson, W. (1990). Accelerated Life Testing: Statistical Models, Test Plans, and Data Analyses. John Wiley and

Sons, New York.
Sarhan, A.M., Hamilton, D.C., Smith, B. (2012). Parameter estimation for a two-parameter bathtub-shaped life-

time distribution. Applied Mathematical Modelling, 36(11), 5380–5392.
Tang, L.C., Goh, T.N., Sun, Y.S., Ong, H.L. (1999). Planning accelerated life tests for censored two-parameter

exponential distributions. Naval Research Logistics, 46, 169–186.
Theil, H. (1971). Principles of Econometrics, Wiley, New York.
Wang, B.X. (2006). Unbiased estimations for the exponential distribution based on step-stress accelerated life-

testing data. Applied Mathematics and Computation, 173, 1227–1237.
Wang, B.X. (2010). Interval estimation for exponential progressive Type-II censored step-stress accelerated life-

testing. The Journal of Statistical Planning and Inference, 140, 2706–2718.
Wu, J.W., Yu, H.Y. (2005). Statistical inference about the shape parameter of the Burr type XII distribution under

the failure-censored sampling plan. Applied Mathematics and Computation, 163, 443–482.
Zhou, Y., Kou, G., Ergu, D. (2012). Three-grade preventive maintenance decision making. Proceedings of the

Romanian Academy-Series A, 13(2), 133–140.
Zhou, Y., Kou, G., Ergu, D. (2013a). Modeling Maintenance Effect with failure-counting. Procedia Computer

Science, 17, 298–305.
Zhou, Y., Kou, G., Ergu, D., Yi, P. (2013b). Mission availability for bounded-cumulative-downtime system. Plos

One, 8(7), e65375. doi:10.1371/journal.pone.0065375.



764 G. Kou et al.

G. Kou is a Doctor, Professor and Executive dean of School of Business Administration,
Southwestern University of Finance and Economics, China. Bachelor, Tsinghua Univer-
sity (1997). MS, University of Nebraska at Omaha (2003). PhD, University of Nebraska
at Omaha (2006). Research scientist in Thomson Co., R&D (2007–2008). The managing
editor of International Journal of Information Technology & Decision Making and editor-
in-chief of Springer Book Series on Quantitative Management. Author of more than 100
scientific articles. Research interests: big data and data mining, credit risk analysis, mul-
tiple criteria decision making.

C. Lin is a Doctor, Associate Professor of School of Mathematics and Statistics, Yangtze
Normal University. Bachelor, Hubei University for Nationalities (1998). MS, Qinghai Nor-
mal University (2005). Doctor, University of Electronic Science and Technology of China
(2015). Author of about 7 scientific articles. Research interests: data analysis and multiple
criteria decision making.

Y. Peng is a Doctor, Professor of School of Management and Economics, University of
Electronic Science and Technology of China. Previously, she worked as a Senior Ana-
lyst for West Co., USA. Dr. Peng received her PhD in Information Technology from the
College of Information Science & Technology, Univiversity of Nebraska at Omaha and
got her Master degree in Department of Info, Science & Quality Assurance, University of
Nebraska at Omaha and BS degree in Department of Management Information Systems,
Sichuan University, China. She published more than forty papers in various peer-reviewed
journals. She is the guest editor of Annals of Operations Research and Computers & Op-

erations Research.

G. Li is a Doctor, lecturer at School of Management and Economics, University of Elec-
tronic Science and Technology of China. Dr. Li’s work has been published or accepted
in Journal of the Operational Research Society, IEEE Transactions on Systems, Man and

Cybernetics: Systems, Technological and Economic Development of Economy and other
conference proceedings. Research interests: fuzzy multi-criteria decision making, group
decision making, data mining and dynamic comprehensive evaluation.

Y. Chen is a Doctor, Professor of Department of Management, School of Business Ad-
ministration, Southwestern University of Finance and Economics, China. Bachelor degree
in economics, Nanjing University (2008), Doctor in Management Information Systems,
Hong Kong Baptist University (2011). Author of about 30 scientific articles. Research
interests: corporate sustainability, IT business value, and human resource management.



Minimum Mean Square Error Estimators for the Exponential SSALT Model 765

Eksponentinio SSALT modelio mažiausios vidutinių kvadratų klaidos
įverčiai

Gang KOU, Changsheng LIN, Yi PENG, Guangxu LI, Yang CHEN

Šiame straipsnyje nagrinėjami įrengimų veikimo laiko įverčiai, siekiant sumažinti laiką tarp įren-
gimų projektavimo ir paleidimo į prekybą. Vertinami ir gedimų dažniai. Daroma prielaida, kad
įrengimų veikimo trukmė yra pasiskirsčiusi eksponentiškai ir kad vidutinė funkcionavimo trukmė
yra log-tiesinė funkcija, priklausanti nuo tam tikro reikšmingumo lygio. Pateikiami eksponentinio
SSALT modelio mažiausios vidutinių kvadratų klaidos įverčiai.


