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Abstract. In this paper, we presented another form of eight similarity measures between PFSs based

on the cosine function between PFSs by considering the degree of positive membership, degree of

neutral membership, degree of negative membership and degree of refusal membership in PFSs.

Then, we applied these weighted cosine function similarity measures between PFSs to strategic

decision making. Finally, an illustrative example for selecting the optimal production strategy is

given to demonstrate the efficiency of the similarity measures for strategic decision making problem.
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1. Introduction

The similarity measures are important and useful tools for determining the degree of sim-

ilarity between two objects. Measures of similarity between fuzzy sets have gained atten-

tion from researchers for their wide applications in various fields, such as pattern recog-

nition, machine learning, decision making and image processing, many measures of simi-

larity between fuzzy sets have been proposed and researched in recent years (see, Bustince

et al., 2006, 2007, 2008; Lee et al., 2009). Fuzzy set theory, introduced by Zadeh (1965),

has been widely used to model uncertainty present in real-world applications. Atanassov

(1986) extended fuzzy sets to Atanassov’s intuitionistic fuzzy sets (IFSs), many differ-

ent similarity measures between IFSs have been investigated in Li et al. (2007). Li and

Cheng (2002) proposed a suitable similarity measure between IFSs and applied it to pat-

tern recognition problems. Liang and Shi (2003) defined some similarity measures to

differentiate different IFSs and discussed the relationships between them. Furthermore,

Mitchell (2003) modified Li and Cheng’s measures. Based on the extension of the Ham-

ming distance on fuzzy sets, Szmidt and Kacprzyk (2000) developed a similarity measure

between IFSs based on the Hamming distance. Hung and Yang (2004) calculated the dis-

tance between IFSs based on the Hausdorff distance and generated some similarity mea-

sures between IFSs. Liu (2005) developed some new similarity measures between IFSs

and between elements. Hung and Yang (2007)proposed a similarity measure between IFSs
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based on the Lp metric. Xu and Xia (2010) defined the geometric distance and similarity

measures of IFSs for group decision making problems. Ye (2011) proposed the cosine sim-

ilarity measure between IFSs. Hung (2012) developed the likelihood-based measurement

of IFSs for the medical diagnosis and bacteria classification problems. Shi and Ye (2013)

further improved the cosine similarity measure of IFSs. Tian et al. (2013) proposed the

cotangent similarity measure between IFSs for medical diagnosis. Rajarajeswari and Uma

(2013) further introduced the cotangent similarity measure which considers membership,

nonmembership and hesitation degrees in IFSs. Furthermore, Szmidt (2014) discussed

distances between IFSs and introduced a family of similarity measures which considered

the membership, nonmembership and hesitation degrees described in IFSs. Ye (2016) pro-

posed two new cosine similarity measures and weighted cosine similarity measures based

on cosine function and the information carried by the membership degrees, nonmember-

ship degree and hesitancy degree in intuitionistic fuzzy sets (IFSs). Son and Phong (2016)

gave the intuitionistic vector similarity measures for medical diagnosis.

Recently, Cuong (2014) proposed picture fuzzy set (PFS) and investigated some basic

operations and properties of PFS. The picture fuzzy set is characterized by three functions

expressing the degree of membership, the degree of neutral membership and the degree of

nonmembership.The only constraint is that the sum of the three degrees must not exceed 1.

Basically, PFS based models can be applied to situations requiring human opinions involv-

ing more answers of types: yes, abstain, no, refusal, which can’t be accurately expressed in

the traditional FS and IFS. Until now, some progress has been made in the research of the

PFS theory. Singh (2014) investigated the correlation coefficients for picture fuzzy set and

applied the correlation coefficient to clustering analysis with picture fuzzy information.

Son etc. introduced several novel fuzzy clustering algorithms on the basis of picture fuzzy

sets and applications to time series forecasting and weather forecasting (see, Son, 2015;

Thong and Son, 2015). Thong (2015) developed a novel hybrid model between picture

fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis and

application to health care support systems. Wei (2016b) proposed picture fuzzy cross-

entropy model for multiple attribute decision making problems.

Although Atanassov’s intuitionistic fuzzy set theory and similarity measures have

been successfully applied in different areas (see Tang et al., 2017; Wei, 2015, 2008,

2009, 2010a, 2010b, 2011a; Wei et al., 2011, 2013a, 2013b; Wei and Zhao, 2012b;

Zhao and Wei, 2013; Zhao et al., 2014), but there are situations in real life which can’t

be represented by Atanassov’s intuitionistic fuzzy sets. Voting can be a good example of

such situation as the human voters may be divided into four groups of those who: vote for,

abstain, refuse to vote. Basically, picture fuzzy sets (see Cuong, 2014) based models may

be adequate in situations when we face human opinions involving more answers of the

type: yes, abstain, no, refusal. Therefore, in order to deal with these types of situations, in

this paper we introduce the concept of similarity measures for picture fuzzy sets based on

the cosine functions, which is a new extension of the similarity measure of IFSs based on

the cosine functions. In order to do so, the remainder of this paper is set out as follows. In

the next section, we introduce some basic concepts related to intuitionistic fuzzy set and

some similarity measure between IFSs and picture fuzzy sets. In Section 3, we shall pro-

pose some similarity measure and some weighted similarity measure between PFSs based
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on the concept of the cosine function. In Section 4, the similarity measures for PFSs are

applied to strategic decision making problem for selecting the optimal production strategy.

Section 5 concludes the paper with some remarks.

2. Preliminaries

In the following, we introduce some basic concepts related to intuitionistic fuzzy sets and

some similarity measure between IFSs.

Definition 1. (See Atanassov, 1986, 1989.) An IFS is given by

A =
{〈

x,µA(x), νA(x)
〉 ∣

∣ x ∈ X
}

, (1)

where µA : X → [0,1] and νA : X → [0,1], where, 0 6 µA(x) + νA(x) 6 1, ∀x ∈ X.

The numbers µA(x) and νA(x) represent, respectively, the membership degree and non-

membership degree of the element x to the set A.

Definition 2. (See Atanassov, 1989.) For each IFS A in X, if

πA(x) = 1 − µA(x) − νA(x), ∀x ∈ X. (2)

Then πA(x) is called the degree of indeterminacy of x to A.

Suppose that there are two IFSs:

A =
{〈

xj ,µA(xj ), νA(xj )
〉 ∣

∣ xj ∈ X
}

and

B =
{〈

xj ,µB(xj ), νB(xj )
〉 ∣

∣ xj ∈ X
}

in the universe of discourse X = {x1, x2, . . . , xn}.

Ye (2011) proposed the cosine similarity measure between IFSs and as following:

IFC1(A,B) =
1

n

n
∑

j=1

µA(xj )µB(xj ) + νA(xj )νB(xj )
√

µ2

A(xj ) + ν2

A(xj )

√

µ2

B(xj ) + ν2

B(xj )

. (3)

Shi and Ye (2013) further presented the cosine similarity measure by considering mem-

bership degree, nonmembership degree and hesitancy degree in IFSs as the vector space

of the three terms:

IFC2(A,B)

=
1

n

n
∑

j=1

µA(xj )µB(xj ) + νA(xj )νB(xj ) + πA(xj )πB(xj )
√

µ2

A(xj ) + ν2

A(xj ) + π2

A(xj )

√

µ2

B(xj ) + ν2

B(xj ) + π2

B(xj )

. (4)
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Based on cosine function, Ye (2016) proposed two cosine similarity measures between

IFSs A and B .

IFCS1(A,B)

=
1

n

n
∑

j=1

cos

{

π

2

[
∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣ ∨
∣

∣πA(xj ) − πB(xj )
∣

∣

]

}

, (5)

IFCS1(A,B)

=
1

n

n
∑

j=1

cos

{

π

4

[
∣

∣µA(xj ) − µB(xj )
∣

∣ +
∣

∣νA(xj ) − νB(xj )
∣

∣ +
∣

∣πA(xj ) − πB(xj )
∣

∣

]

}

. (6)

On the other hand, Tian et al. (2013) proposed a cotangent similarity measure between

IFSs and as following:

IFCT1(A,B) =
1

n

n
∑

j=1

cot

[

π

4
+

π

4

(∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣

)

]

, (7)

where the symbol “∨” is the maximum operation. When the three terms like member-

ship degree, nonmembership degree and hesitancy degree are considered in IFSs, Rajara-

jeswari and Uma (2013) defined the cotangent similarity measure of IFSs:

IFCT2(A,B)

=
1

n

n
∑

j=1

cot

[

π

4
+

π

4

(∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣ ∨
∣

∣πA(xj ) − πB (xj )
∣

∣

)

]

.

(8)

In the following, we introduced the weighted cosine and cotangent similarity measures

between IFSs and, respectively (see Ye, 2011; Shi and Ye, 2013; Rajarajeswari and Uma,

2013; Ye, 2016):

IFC1(A,B) =

n
∑

j=1

ωj

µA(xj )µB(xj ) + νA(xj )νB(xj )
√

µ2

A(xj ) + ν2

A(xj )

√

µ2

B(xj ) + ν2

B(xj )

, (9)

IFC2(A,B)

=

n
∑

j=1

ωj

µA(xj )µB(xj ) + νA(xj )νB(xj ) + πA(xj )πB(xj )
√

µ2

A(xj ) + ν2

A(xj ) + π2

A(xj )

√

µ2

B(xj ) + ν2

B(xj ) + π2

B(xj )

, (10)

WIFCS1(A,B)

=

n
∑

j=1

ωj cos

{

π

2

[∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣ ∨
∣

∣πA(xj ) − πB(xj )
∣

∣

]

}

,

(11)
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WIFCS2(A,B)

=

n
∑

j=1

ωj cos

{

π

4

[
∣

∣µA(xj ) − µB(xj )
∣

∣ +
∣

∣νA(xj ) − νB(xj )
∣

∣ +
∣

∣πA(xj ) − πB(xj )
∣

∣

]

}

,

(12)

WIFCT1(A,B)

=

n
∑

j=1

ωj cot

[

π

4
+

π

4

(∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣

)]

, (13)

WIFCT2(A,B)

=

n
∑

j=1

ωj cot

[

π

4
+

π

4

(
∣

∣µA(xj ) − µB (xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣ ∨
∣

∣πA(xj ) − πB(xj )
∣

∣

)

]

,

(14)

where ωj (j = 1,2, . . . , n) is the weight of an element xj , ωj ∈ [0,1] and
∑n

j=1
= 1 and

the symbol “∨” is the maximum operation.

3. Some Similarity Measure Based on Cosine Function for Picture Fuzzy Sets

Although Atanassov’s intuitionistic fuzzy set theory (see Atanassov, 1986, 1989) has been

successfully applied in different areas, there are situations in real life which can’t be

represented by Atanassov’s intuitionistic fuzzy sets. Picture fuzzy sets are extension of

Atanassov’s intuitionistic fuzzy sets. Picture fuzzy set (see Cuong, 2014) based models

may be adequate in situations when we face human opinions involving more answers of

types: yes, abstain, no, refusal. It can be considered as a powerful tool to represent the

uncertain information in the process of patterns recognition and cluster analysis.

Definition 3. (See Cuong, 2014.) A picture fuzzy set (PFS) A on the universes an object

of the form

A =
{〈

x,µA(x), ηA(x), νA(x)
〉 ∣

∣ x ∈ X
}

, (15)

where µA(x) ∈ [0,1] is called the “degree of positive membership of A”, ηA(x) is called

the “degree of neutral membership of A” and µA(x) is called the “degree of negative

membership of A”, and µA(x), ηA(x), νA(x) satisfy the following condition:

0 6 µA(x) + ηA(x) + νA(x)6 1, ∀x ∈ X.

Then for x ∈ X,

ρA(x) = 1 −
(

µA(x) + ηA(x) + νA(x)
)

could be called the degree of refusal membership of x in A.
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3.1. Cosine Similarity Measure for Picture Fuzzy Sets

Let A be a PFS in an universe of discourse X = {x}, the PFS is characterized by the degree

of positive membership µA(x), the degree of neutral membership ηA(x) and the degree of

negative membership νA(x) which can be considered as a vector representation with the

three elements. Therefore, a cosine similarity measure and a weighted cosine similarity

measure for PFSs are proposed in an analogous manner to the cosine similarity measure

based on Bhattacharya’s distance (see Salton and Mcgill, 1983; Bhattacharya, 1946) and

cosine similarity measure for intuitionistic fuzzy set (see Ye, 2011).

Suppose that there are two PFSs:

A =
{〈

xj ,µA(xj ), ηA(xj ), νA(xj )
〉 ∣

∣ xj ∈ X
}

and

B =
{〈

xj ,µB(xj ), ηB(xj ), νB(xj )
〉 ∣

∣ xj ∈ X
}

in the universe of discourse X = {x1, x2, . . . , xn}.

A cosine similarity measure between PIFSs and is proposed as follows:

PFC1(A,B) =
1

n

n
∑

j=1

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB (xj )
√

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )

√

µ2

B(xj ) + η2

B(xj ) + ν2

B (xj )

. (16)

If we take n = 1, then the cosine similarity measure between PFSs A and B becomes the

correlation coefficient between PFSs A and B , i.e. CPFS(A,B) = KPFS(A,B). There-

fore, the cosine similarity measure between PFSs A and B also satisfies the following

properties:

(1) 0 6 PFC1(A,B) 6 1;

(2) PFC1(A,B) = PFC1(B,A);

(3) PFC1(A,B) = 1, if A = B , i = 1,2, . . . , n.

Proof.

(1) It is obvious that the proposition is true according to the cosine value.

(2) It is obvious that the proposition is true.

(3) When A = B , there are µA(xj ) = µB(xj ), ηA(xj ) = ηB(xj ) and νA(xj ) = νB(xj )

for j = 1,2, . . . , n. So C1

PFS(A,B) = 1. Therefore, we have finished the proofs. �

In the following, we shall investigate the distance measure of the angle as d(A,B) =

arccos(C1

PFS(A,B)). It satisfies the following properties:

(1) d(A,B)> 0, if 0 6 CPFS(A,B) 6 1;

(2) d(A,B) = arccos(1) = 0, if CPFS(A,A) = 1;
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(3) d(A,B) = d(B,A), if CPFS(A,B) = CPFS(B,A);

(4) d(A,C)6 d(A,B) + d(B,C), if A ⊆ B ⊆ C for any PFS C.

Proof. Obviously, d(A,B) satisfies the properties (1)–(3). In the following, d(A,B) will

be proved to satisfy the property (4).

For any C = {〈xj ,µC(xj ), ηC(xj ), νC(xj )〉 | xj ∈ X}, A ⊆ B ⊆ C, Since Eq. (16) is

the sum of terms, let us investigate the distance measures of the angle between the vectors:

dj

(

A(xj ),B(xj )
)

= arccos
(

PFC1

i

(

A(xi),B(xi)
))

,

dj

(

B(xj ),C(xj )
)

= arccos
(

PFC1

i

(

B(xi),C(xi)
))

,

dj

(

A(xj ),C(xj )
)

= arccos
(

PFC1

i

(

A(xi),C(xi)
))

,

for j = 1,2, . . . , n, where

PFC1

j (A,B) =
µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )

√

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )

√

µ2

B(xj ) + η2

B(xj ) + ν2

B(xj )

,

PFC1

j (B,C) =
µB(xj )µC(xj ) + ηB(xj )ηC(xj ) + νB(xj )νC(xj )

√

µ2

B(xj ) + η2

B(xj ) + ν2

B(xj )

√

µ2

C(xj ) + η2

C(xj ) + ν2

C(xj )

,

PFC1

j (A,C) =
µA(xj )µC(xj ) + ηA(xj )ηC(xj ) + νA(xj )νC(xj )

√

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )

√

µ2

C(xj ) + η2

C(xj ) + ν2

C(xj )

.

For three vectors

A(xj ) =
〈

µA(xj ), ηA(xj ), νA(xj )
〉

,

B(xj ) =
〈

µB(xj ), ηB(xj ), νB(xj )
〉

,

C(xj ) =
〈

µC(xj ), ηC(xj ), νC(xj )
〉

in one plane, if A(xj ) ⊆ B(xj ) ⊆ C(xj ), j = 1,2, . . . , n. Then, it is obvious that

dj

(

A(xj ),C(xj )
)

6 dj

(

A(xj ),B(xj )
)

+ dj

(

B(xj ),C(xj )
)

,

according to the triangle inequality. Combining the inequality with Eq. (16), we can obtain

d(A,C) 6 d(A,B) + d(B,C).

Thus d(A,B) satisfies the property (4). So we finished the proof. �

If we consider the weights of xj , a weighted cosine similarity measure between PFSs

A and B is proposed as follows:

WPFC1(A,B) =

n
∑

j=1

ωj

µA(xj )µB(xj ) + ηA(xj )ηB(xj ) + νA(xj )νB(xj )
√

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj )

√

µ2

B(xj ) + η2

B (xj ) + ν2

B(xj )

, (17)
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where ω = (ω1,ω1, . . . ,ωn)
T is the weight vector of xj (j = 1,2, . . . , n), with ωj ∈

[0,1], j = 1,2, . . . , n,
∑n

j=1
ωj = 1. In particular, if ω = (1/n,1/n, . . . ,1/n)T , then

the weighted cosine similarity measure reduces to cosine similarity measure. That’s to

say, if we take ωi = 1/n, i = 1,2, . . . , n, then there is WPFC1(A,B) = PFC1(A,B).

Obviously, the weighted cosine similarity measure of two PFSs A and B also satisfies

the following properties:

(1) 0 6 WPFC1(A,B)6 1;

(2) WPFC1(A,B) = WPFC1(B,A);

(3) WPFC1(A,B) = 1, if A = B , i = 1,2, . . . , n.

Similar to the previous proof method, we can prove the above three properties.

When the four terms like degree of positive membership, degree of neutral member-

ship, degree of negative membership and degree of refusal membership are considered

in PFSs, we further propose the cosine similarity measure and weighted cosine similarity

measure between PFSs as follows:

PFC2(A,B)

=
1

n

n
∑

j=1

µA(xj )µB (xj ) + ηA(xj )ηB (xj ) + νA(xj )νB (xj ) + ρA(xj )ρB (xj )
√

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj )

√

µ2

B (xj ) + η2

B (xj ) + ν2

B (xj ) + ρ2

B(xj )

,

(18)

WPFC2(A,B)

=

n
∑

j=1

ωj

µA(xj )µB (xj ) + ηA(xj )ηB (xj ) + νA(xj )νB (xj ) + ρA(xj )ρB (xj )
√

µ2

A(xj ) + η2

A(xj ) + ν2

A(xj ) + ρ2

A(xj )

√

µ2

B (xj ) + η2

B(xj ) + ν2

B (xj ) + ρ2

B(xj )

,

(19)

where ω = (ω1,ω1, . . . ,ωn)
T is the weight vector of xi (i = 1,2, . . . , n), with ωj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
ωj = 1.

3.2. Similarity Measures of Picture Fuzzy Sets Based on Cosine Function

Based on the cosine function, in this section, we shall propose two cosine similarity mea-

sures between PFSs and analyse their properties.

Definition 4. Let

A =
{〈

xj ,
(

µA(xj ), ηA(xj ), νA(xj )
)〉 ∣

∣ xj ∈ X
}

and

B =
{〈

xj ,
(

µB(xj ), ηB(xj ), νB(xj )
)〉 ∣

∣ xj ∈ X
}
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be any two PFSs in X = {x1, x2, . . . , xn}. Then, we shall define four cosine similarity

measures between PFSs, respectively, as follows:

PFCS1(A,B)

=
1

n

n
∑

j=1

cos

{

π

2

[
∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣ηA(xj ) − ηB(xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣

]

}

,

(20)

PFCS2(A,B)

=
1

n

n
∑

j=1

cos

{

π

4

[
∣

∣µA(xj ) − µB(xj )
∣

∣ +
∣

∣ηA(xj ) − ηB(xj )
∣

∣ +
∣

∣νA(xj ) − νB(xj )
∣

∣

]

}

,

(21)

where the symbol “∨” is the maximum operation.

When the four terms like degree of positive membership, degree of neutral member-

ship, degree of negative membership and degree of refusal membership are considered in

PFSs, we further propose two cosine similarity measures between PFSs as follows:

PFCS3(A,B) =
1

n

n
∑

j=1

cos

{

π

2

(

|µA(xj ) − µB(xj )| ∨ |ηA(xj ) − ηB(xj )|∨

|νA(xj ) − νB(xj )| ∨ |ρA(xj ) − ρB(xj )|

)}

, (22)

PFCS4(A,B) =
1

n

n
∑

j=1

cos

{

π

4

(

|µA(xj ) − µB(xj )| + |ηA(xj ) − ηB(xj )|+

|νA(xj ) − νB(xj )| + |ρA(xj ) − ρB(xj )|

)}

. (23)

Proposition 1. For two PFSs A and B in X = {x1, x2, . . . , xn}, the cosine similarity mea-

sures

PFCSk(A,B), k = 1,2,3,4,

should satisfy the following properties (1)–(4):

(1) 0 6 PFCSk(A,B)6 1;

(2) PFCSk(A,B) = 1 if and only if A = B;

(3) PFCSk(A,B) = PFCSk(B,A);

(4) If C is a PFS in X and A ⊆ B ⊆ C, then

PFCSk(A,C)6 PFCSk(A,B) and PFCSk(A,C)6 PFCSk(B,C).

Proof. (1) Since the value of the cosine function is within [0,1], the similarity measure

based on the cosine function is also within [0,1]. Thus, there is 0 6 PFCSk(A,B)6 1.

(2) For two PFSs A and B in X = {x1, x2, . . . , xn}, if A = B , then µA(xj ) =

µB(xj ), ηA(xj ) = ηB(xj ), νA(xj ) = νB(xj ), ρA(xj ) = ρB(xj ) for j = 1,2, . . . , n. Thus,
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|µA(xj ) − µB(xj )| = 0, |ηA(xj ) − ηB(xj )| = 0, |νA(xj ) − νB(xj )| = 0, |ρA(xj ) −

ρB(xj )| = 0. So, PFCSk(A,B) = 1, k = 1,2,3,4.

If PFCSk(A,B) = 1, k = 1,2,3,4, this implies

∣

∣µA(xj ) − µB(xj )
∣

∣ = 0,
∣

∣ηA(xj ) − ηB(xj )
∣

∣ = 0,
∣

∣νA(xj ) − νB(xj )
∣

∣ = 0,
∣

∣ρA(xj ) − ρB(xj )
∣

∣ = 0,

for j = 1,2,3,4. Since cos(0) = 1. Then, there are

µA(xj ) = µB(xj ), ηA(xj ) = ηB(xj ), νA(xj ) = νB(xj ), ρA(xj ) = ρB(xj ),

for j = 1,2,3,4. Hence A = B .

(3) Proof is straightforward.

(4) If A ⊆ B ⊆ C, then there are

µA(xj ) 6µB(xj )6 µC(xj ), ηA(xj )6 ηB(xj ) 6 ηC(xj ),

νA(xj ) > νB(xj )> νC(xj ),

for j = 1,2, . . . , n. Then, we have

∣

∣µA(xj ) − µB(xj )
∣

∣ 6
∣

∣µA(xj ) − µC(xj )
∣

∣,
∣

∣µB(xj ) − µC(xj )
∣

∣6
∣

∣µA(xj ) − µC(xj )
∣

∣,
∣

∣ηA(xj ) − ηB(xj )
∣

∣6
∣

∣ηA(xj ) − ηC(xj )
∣

∣,
∣

∣ηB(xj ) − ηC(xj )
∣

∣6
∣

∣ηA(xj ) − ηC(xj )
∣

∣,
∣

∣νA(xj ) − νB(xj )
∣

∣6
∣

∣νA(xj ) − νC(xj )
∣

∣,
∣

∣νB(xj ) − νB(xj )
∣

∣6
∣

∣νA(xj ) − νC(xj )
∣

∣,
∣

∣ρA(xj ) − ρB(xj )
∣

∣6
∣

∣ρA(xj ) − ρC(xj )
∣

∣,
∣

∣ρB(xj ) − ρC(xj )
∣

∣6
∣

∣ρA(xj ) − ρC(xj )
∣

∣.

Hence, PFCSk(A,C) 6 PFCSk(A,B) and PFCSk(A,C) 6 PFCSk(B,C) for k =

1,2,3,4 as the cosine function is a decreasing function with the interval [0,π/2]. Thus,

the proofs of these properties are completed. �

In many situations, the weight of the elements xj ∈ X should be taken into account.

For example, in multiple attribute decision making, the considered attributes usually have

different importance, and thus need to be assigned different weights. As a result, four

weighted cosine similarity measure between PFSs A and B is proposed as follows:

WPFCS1(A,B)

=

n
∑

j=1

ωj cos

{

π

2

[∣

∣µA(xj ) − µB (xj )
∣

∣ ∨
∣

∣ηA(xj ) − ηB (xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣

]

}

, (24)
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WPFCS2(A,B)

=

n
∑

j=1

ωj cos

{

π

4

[∣

∣µA(xj ) − µB(xj )
∣

∣ +
∣

∣ηA(xj ) − ηB (xj )
∣

∣ +
∣

∣νA(xj ) − νB(xj )
∣

∣

]

}

, (25)

WPFCS3(A,B) =

n
∑

j=1

ωj cos

{

π

2

(

|µA(xj ) − µB(xj )| ∨ |ηA(xj ) − ηB (xj )|∨
|νA(xj ) − νB(xj )| ∨ |ρA(xj ) − ρB (xj )|

)}

, (26)

WPFCS4(A,B) =

n
∑

j=1

ωj cos

{

π

4

(

|µA(xj ) − µB(xj )| + |ηA(xj ) − ηB (xj )|+
|νA(xj ) − νB(xj )| + |ρA(xj ) − ρB (xj )|

)}

, (27)

where ω = (ω1,ω1, . . . ,ωn)
T is the weight vector of xi , i = 1,2, . . . , n, with ωj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
ωj = 1 and the symbol “∨” is the maximum operation. In particu-

lar, if ω = (1/n,1/n, . . . ,1/n)T , then the weighted cosine similarity measure reduces to

cosine similarity measure. That’s to say, if we take ωj = 1/n, j = 1,2, . . . , n, then there is

WPFCSk(A,B) = PFCSk(B,A), k = 1,2,3,4. Obviously, the weighted cosine similarity

measures also satisfy the axiomatic requirements of similarity measures in Proposition 2.

Proposition 2. For two PFSs A and B in X = {x1, x2, . . . , xn}, the weighted cosine sim-

ilarity measures WPFCSk(A,B), k = 1,2,3,4, satisfy the following properties (1)–(4):

(1) 0 6 WPFCSk(A,B) 6 1;

(2) WPFCSk(A,B) = 1 if and only if A = B;

(3) WPFCSk(A,B) = WPFCSk(B,A);

(4) If C is a PFS in X and A ⊆ B ⊆ C, then

WPFCSk(A,C)6 WPFCSk(A,B) and WPFCSk(A,C) 6 WPFCSk(B,C).

By using similar proof in proposition 1, we can give the proofs of these proper-

ties (1)–(4).

3.3. Similarity Measures of Picture Fuzzy Sets Based on Cotangent Function

In this section, we shall propose a cotangent similarity measures between PFSs as follows:

PFCT1(A,B)

=
1

n

n
∑

j=1

cot

[

π

4
+

π

4

(
∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣ηA(xj ) − ηB(xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣

)

]

,

(28)

where the symbol “∨” is the maximum operation. When the four terms like degree of

positive membership, degree of neutral membership, degree of negative membership and

degree of refusal membership are considered in PFSs, we further propose a cotangent
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similarity measures between PFSs as follows:

PFCT2(A,B)

=
1

n

n
∑

j=1

cot

[

π

4
+

π

4

(
∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣ηA(xj ) − ηB(xj )
∣

∣∨
∣

∣νA(xj ) − νB(xj )
∣

∣ ∨
∣

∣ρA(xj ) − ρB(xj )
∣

∣

)]

. (29)

In many situations, the weight of the elements xi ∈ X should be taken into account. For ex-

ample, in multiple attribute decision making, the considered attributes usually have differ-

ent importance, and thus need to be assigned different weights. As a result, four weighted

cotangent similarity measure between PFSs A and B is proposed as follows:

WPFCT1(A,B)

=

n
∑

j=1

ωj cot

[

π

4
+

π

4

(∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣ηA(xj ) − ηB (xj )
∣

∣ ∨
∣

∣νA(xj ) − νB(xj )
∣

∣

)

]

,

(30)

WPFCT2(A,B)

=

n
∑

j=1

ωj cot

[

π

4
+

π

4

(
∣

∣µA(xj ) − µB(xj )
∣

∣ ∨
∣

∣ηA(xj ) − ηB(xj )
∣

∣∨
∣

∣νA(xj ) − νB(xj )
∣

∣ ∨
∣

∣ρA(xj ) − ρB(xj )
∣

∣

)]

, (31)

where ω = (ω1,ω1, . . . ,ωn)
T is the weight vector of xi , i = 1,2, . . . , n ,with ωj ∈ [0,1],

j = 1,2, . . . , n,
∑n

j=1
ωj = 1 and the symbol “∨” is the maximum operation. In particu-

lar, if ω = (1/n,1/n, . . . ,1/n)T , then the weighted cotangent similarity measure reduces

to cotangent similarity measure.

4. Numerical Example

In this section, the cosine similarity measures for PFSs are applied to strategic decision

making problems (adapted from Wei and Merigó, 2012). In the following, we shall analyse

a strategic decision-making problem about the selection of the optimal production strat-

egy. Assume a company wants to create a new product and they are analysing the optimal

target in order to obtain the highest benefits. After analysing the market they consider four

possible strategies to follow: 1©A1: create a new product oriented to the rich customers;

2©A2: create a new product oriented to the mid-level and low-level customers; 3©A3: cre-

ate a new product adapted to all the customers; 4©A4: do not create any product.After care-

ful review of the information, the decision makers have summarized the information of the

strategies in six general characteristics: 1©S1: benefits in the short term; 2©S2: benefits in

the mid term; 3©S3: benefits in the long term; 4©S4: risk of the production strategy; 5©S5:

potential market and market risk; 6©S6: industrialization infrastructure, human resources

and financial conditions. The decision makers are required to evaluate the four possible
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Table 1

The data on production strategies.

A1 A2 A3 A4 A

S1 (0.53,0.33,0.09) (1.00,0.00,0.00) (0.91,0.03,0.02) (0.85,0.09,0.05) (0.90,0.05,0.02)

S2 (0.89,0.08,0.03) (0.13,0.64,0.21) (0.07,0.09,0.05) (0.74,0.16,0.10) (0.68,0.08,0.21)

S3 (0.42,0.35,0.18) (0.03,0.82,0.13) (0.04,0.85,0.10) (0.02,0.89,0.05) (0.05,0.87,0.06)

S4 (0.08,0.89,0.02) (0.73,0.15,0.08) (0.68,0.26,0.06) (0.08,0.84,0.06) (0.13,0.75,0.09)

S5 (0.33,0.51,0.12) (0.52,0.31,0.16) (0.15,0.76,0.07) (0.16,0.71,0.05) (0.15,0.73,0.08)

S6 (0.17,0.53,0.13) (0.51,0.24,0.21) (0.31,0.39,0.25) (1.00,0.00,0.00) (0.91,0.03,0.05)

Table 2

The similarity measures between Ai (i = 1,2,3,4) and A.

Similarity measures (A1,A) (A2,A) (A3,A) (A4,A)

WPFC1(Ai ,A) 0.813 0.656 0.787 0.994

WPFC2(Ai ,A) 0.810 0.656 0.638 0.993

WPFCS1(Ai ,A) 0.813 0.765 0.762 0.992

WPFCS2(Ai ,A) 0.840 0.765 0.831 0.991

WPFCS3(Ai ,A) 0.813 0.765 0.709 0.992

WPFCS4(Ai ,A) 0.813 0.757 0.707 0.989

WPFCT2(Ai ,A) 0.486 0.442 0.469 0.666

WPFCT2(Ai ,A) 0.486 0.442 0.440 0.665

production strategies Ai (i = 1,2,3,4) under six general characteristics and the decision

information is represented by PFSs and is presented in Table 1. Each of which is featured

by the content of six characteristics in the feature space S = {S1, S2, S3, S4, S5, S6}. The

weight vector of Si (i = 1,2, . . . ,6) is: ω = (0.12,0.25,0.09,0.16,0.20,0.18)T .

Now, we consider another kind of unknown production strategy A, with data as listed

in Table 1. Based on the weight vector and the data in Table 1, we can use the above

similarity measures to identify to which type the unknown production strategy A should

belong.

From the above numerical results in Table 2, we know that the degree of similarity

between A4 and A is the largest one as derived by eight similarity measures. That is, all

the eight similarity measures assign the unknown production strategy A to the class of

production strategy A4 according to the principle of the maximum degree of similarity

between PFSs. Yet, there exist two slightly different ranking results: for the similarity

measures WPFC1(Ai,A), WPFCS2(Ai,A) and WPFCT1(Ai,A), i = 1,2,3,4, all these

three similarity measures derive the same ranking of the production strategies, in which the

degree of similarity between A1 and A ranks the second, the degree of similarity between

A3 and A ranks the third, the degree of similarity between A2 and A is the smallest one.

While for the other five similarity measures, the degree of similarity between A1 and A

ranks the second, the degree of similarity between A2 and A ranks the third, the degree

of similarity between A3 and A is the smallest one.
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5. Conclusion

In this paper, we presented another form of eight similarity measures between PFSs based

on the cosine function between PFSs by considering the degree of positive membership,

degree of neutral membership, degree of negative membership and degree of refusal

membership in PFSs. Then, we applied these weighted cosine function similarity mea-

sures between PFSs to strategic decision making problem. Finally, an illustrative example

for selection of the optimal production strategy is given to demonstrate the efficiency of

the similarity measures for strategic decision making problem. In the future, the applica-

tion of the proposed cosine similarity measures of PFSs needs to be explored in complex

group decision making, risk analysis and many other fields under uncertain environments,

such as dual hesitant fuzzy linguistic sets, dual hesitant fuzzy uncertain linguistic sets,

interval-valued dual hesitant fuzzy linguistic sets, and so on (see Wei et al., 2016a; Lu and

Wei, 2016; Wei et al., 2016b; Zhou et al., 2013; Lin et al., 2014; Wei and Zhao, 2012a;

Wei, 2016a, 2012, 2011c, 2011b; Park et al., 2009; Ye, 2010; Wu and Chiclana, 2014;

Chen, 2014; Liu et al., 2015; Wei et al., 2013c; Meng et al., 2016; Wei et al., 2017;

Wei and Wang, 2017; Lu et al., 2017a, 2017b; Wei, 2017a, 2017b).

Acknowledgements. The work was supported by the National Natural Science Founda-

tion of China under Grant Nos. 61174149 and 71571128 and the Humanities and So-

cial Sciences Foundation of Ministry of Education of the People’s Republic of China

(No. 15YJCZH138) and the construction plan of scientific research innovation team for

colleges and universities in Sichuan Province (15TD0004).

References

Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96.

Atanassov, K. (1989). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33, 37–46.

Bhattacharya, A. (1946). On a measure of divergence of two multinomial populations. Sankhya, 7, 401–406.

Bustince, H., Barrenechea, E., Pagola, M. (2006). Restricted equivalence functions. Fuzzy Sets and Systems, 157,

2333–2346.

Bustince, H., Barrenechea, E., Pagola, M. (2007). Image thresholding using restricted equivalence functions and

maximizing the measures of similarity. Fuzzy Sets and Systems, 158, 496–516.

Bustince, H., Barrenechea, E., Pagola, M. (2008). Relationship between restricted dissimilarity functions, re-

stricted equivalence functions and normal E–N functions: image thresholding invariant. Pattern Recognition

Letters, 29, 525–536.

Chen, T.Y. (2014). Interval-valued intuitionistic fuzzy QUALIFLEXmethod with a likelihood-based comparison

approach for multiple criteria decision analysis. Information Sciences, 261, 149–169.

Cuong, B.C. (2014). Picture fuzzy sets. Journal of Computer Science and Cybernetics, 30(4), 409–420.

Hung, K.C. (2012). Applications of medical information: Using an enhanced likelihood measured approach

based on intuitionistic fuzzy sets. IIE Transactions on Healthcare Systems Engineering, 2, 224–231.

Hung, W.L., Yang, M.S. (2004). Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance.

Pattern Recognition Letters, 25, 1603–1611.

Hung, W.L., Yang, M.S. (2007). Similarity measures of intuitionistic fuzzy sets based on Lp metric. International

Journal of Approximate Reasoning, 46, 120–136.

Lee, S.H., Pedrycz, W., Sohn, G. (2009). Design of similarity and dissimilarity measures for fuzzy sets on the

basis of distance measure. International Journal of Fuzzy Systems, 11, 67–72.



Some Cosine Similarity Measures for Picture Fuzzy Sets and Their Applications 561

Li, D.F., Cheng, C. (2002). New similarity measures of intuitionistic fuzzy sets and application to pattern recog-

nitions. Pattern Recognition Letters, 23, 221–225.

Li, Y.H., Olson, D.L., Zheng, Q. (2007). Similarity measures between intuitionistic fuzzy (vague) sets: a com-

parative analysis. Pattern Recognition Letters, 28, 278–285.

Liang, Z., Shi, P. (2003). Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters, 24, 2687–

2693.

Lin, R., Zhao, X.F., Wei, G.W. (2014). Models for selecting an ERP system with hesitant fuzzy linguistic infor-

mation. Journal of Intelligent and Fuzzy Systems, 26, 2155–2165.

Liu, H.W. (2005). New similarity measures between intuitionistic fuzzy sets and between elements. Mathemat-

ical and Computer Modelling, 42, 61–70.

Liu, B.S., Shen, Y.H., Zhang, W. (2015). An interval-valued intuitionistic fuzzy principal component analysis

model-based method for complex multi-attribute large-group decision-making. European Journal of Oper-

ational Research, 245, 209–225.

Lu, M., Wei, G.W. (2016). Models for multiple attribute decision making with dual hesitant fuzzy uncertain

linguistic information. International Journal of Knowledge-Based and Intelligent Engineering Systems, 20,

217–227.

Lu, M., Wei, G.W., Alsaadi, F.E., Hayat, T., Alsaedi, A. (2017a). Hesitant pythagorean fuzzy hamacher aggre-

gation operators and their application to multiple attribute decision making. Journal of Intelligent and Fuzzy

Systems, 33(2), 1105–1117.

Lu, M., Wei, G.W., Alsaadi, F.E., Hayat, T., Alsaedi, A. (2017b). Bipolar 2-tuple linguistic aggregation operators

in multiple attribute decision making. Journal of Intelligent and Fuzzy Systems, 33(2), 1197–1207.

Meng, F.Y., Zhou, D., Chen, X.H. (2016). An approach to hesitant fuzzy group decision making with multi-

granularity linguistic information. Informatica, 27, 767–798.

Mitchell, H.B. (2003). On the Dengfeng–Chuntian similarity measure and its application to pattern recognition.

Pattern Recognition Letters, 24, 3101–3104.

Park, J.H., Park, Y., Young, C.K. (2009). Correlation coefficient of interval-valued intuitionistic fuzzy sets and its

application to multiple attribute group decision making problems. Mathematical and Computer Modeling,

50, 1279–1293.

Rajarajeswari, P., Uma, N. (2013). Intuitionistic fuzzy multi similarity measure based on cotangent function.

International Journal of Engineering Research and Technology, 2, 1323–1329.

Salton, G., Mcgill, M.J. (1983). Introduction to Modern Information Retrieval. McGrawpHill.

Shi, L.L., Ye, J. (2013). Study on fault diagnosis of turbine using an improved cosine similarity measure for

vague sets. Journal of Applied Sciences, 13, 1781–1786.

Singh, P. (2014) Correlation coefficients for picture fuzzy sets. Journal of Intelligent and Fuzzy Systems, 27,

2857–2868.

Son, L. (2015). DPFCM: a novel distributed picture fuzzy clustering method on picture fuzzy sets. Expert System

with Applications, 2, 51–66.

Son, L.H., Phong, P.H. (2016). On the performance evaluation of intuitionistic vector similarity measures for

medical diagnosis. Journal of Intelligent and Fuzzy Systems, 31, 1597–1608.

Szmidt, E. (2014). Distances and Similarities in Intuitionistic Fuzzy Sets, Vol. 307. Springer International Pub-

lishing Switzerland.

Szmidt, E., Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114, 505–

518.

Tang, Y. Wen, L.L., Wei, G.W. (2017). Approaches to multiple attribute group decision making based on the gen-

eralized Dice similarity measures with intuitionistic fuzzy information. International Journal of Knowledge-

Based and Intelligent Engineering Systems, 21, 85–95.

Thong, N.T. (2015). HIFCF: an effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy

recommender systems for medical diagnosis expert systems with applications. Expert System with Applica-

tions, 42, 3682–3701.

Thong, P.H., Son, L.H. (2015). A new approach to multi-variable fuzzy forecasting using picture fuzzy clustering

and picture fuzzy rule interpolation method. Advances in Intelligent Systems and Computing, 326, 679–690.

Tian, M.Y. (2013). A new fuzzy similarity based on cotangent function for medical diagnosis. Advanced Mod-

eling and Optimization, 15, 151–156.

Wei, G.W. (2008). Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy

setting. Knowledge-Based Systems, 21, 833–836.



562 G.W. Wei

Wei, G.W. (2009). Some geometric aggregation functions and their application to dynamic multiple attribute de-

cision making in intuitionistic fuzzy setting. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 17, 179–196.

Wei, G.W. (2010a). GRA method for multiple attribute decision making with incomplete weight information in

intuitionistic fuzzy setting. Knowledge-Based Systems, 23, 243–247.

Wei, G.W. (2010b). Some induced geometric aggregation operators with intuitionistic fuzzy information and

their application to group decision making. Applied Soft Computing, 10, 423–431.

Wei, G.W. (2011a). Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making.

Expert Systems with Applications, 38, 11671–11677.

Wei, G.W. (2011b). Grey relational analysis method for 2-tuple linguistic multiple attribute group decision mak-

ing with incomplete weight information. Expert Systems with Applications, 38, 4824–4828.

Wei, G.W. (2011c). Grey relational analysis model for dynamic hybrid multiple attribute decision making.

Knowledge-Based Systems, 24, 672–679.

Wei, G.W. (2012). Hesitant Fuzzy prioritized operators and their application to multiple attribute group decision

making. Knowledge-Based Systems, 31, 176–182.

Wei, G.W. (2015). Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making

with incomplete weight information. International Journal of Fuzzy Systems, 17, 484–489.

Wei, G.W. (2016a). Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute

decision making. International Journal of Machine Learning and Cybernetics, 7, 1093–1114.

Wei, G.W. (2016b). Picture fuzzy cross-entropy for multiple attribute decision making problems. Journal of

Business Economics and Management, 17, 491–502.

Wei, G.W. (2017a). Interval-valued dual hesitant fuzzy uncertain linguistic aggregation operators in multiple

attribute decision making. Journal of Intelligent and Fuzzy Systems, 33(3), 1881–1893.

Wei, G.W. (2017b). Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple at-

tribute decision making. International Journal of Fuzzy System, 19(4), 997–1010.

Wei, G.W., Merigó, J.M. (2012). Methods for strategic decision making problems with immediate probabilities

in intuitionistic fuzzy setting. Scientia Iranica E, 19, 1936–1946.

Wei, G.W., Zhao, X.F. (2012a). Some dependent aggregation operators with 2-tuple linguistic information and

their application to multiple attribute group decision making. Expert Systems with Applications, 39, 5881–

5886.

Wei, G.W., Zhao, X.F. (2012b). Some induced correlated aggregating operators with intuitionistic fuzzy infor-

mation and their application to multiple attribute group decision making. Expert Systems with Applications,

39, 2026–2034.

Wei, G.W., Wang, J.M. (2017). A comparative study of robust efficiency analysis and data envelopment analysis

with imprecise data. Expert Systems with Applications, 81, 28–38.

Wei, G.W., Wang, H.J., Lin, R. (2011). Application of correlation coefficient to interval-valued intuitionistic

fuzzy multiple attribute decision making with incomplete weight information. Knowledge and Information

Systems, 26, 337–349.

Wei, G.W., Wang, J.M., Chen, J. (2013a). Potential optimality and robust optimality in multiattribute decision

analysis with incomplete information: A comparative study. Decision Support Systems, 55, 679–684.

Wei, G.W., Zhao, X.F., Lin, R. (2013b). Some hesitant interval-valued fuzzy aggregation operators and their

applications to multiple attribute decision making. Knowledge-Based Systems, 46, 43–53.

Wei, G.W., Zhao, X.F., Lin, R. (2013c). Uncertain linguistic Bonferroni mean operators and their application to

multiple attribute decision making. Applied Mathematical Modelling, 37, 5277–5285.

Wei, G.W., Alsaadi, F.E., Hayat, T., Alsaedi, A. (2016a). Hesitant fuzzy linguistic arithmetic aggregation oper-

ators in multiple attribute decision making. Iranian Journal of Fuzzy Systems, 13, 1–16.

Wei, G.W., Xu, X.R., Deng, D.X. (2016b). Interval-valued dual hesitant fuzzy linguistic geometric aggregation

operators in multiple attribute decision making. International Journal of Knowledge-based and Intelligent

Engineering Systems, 20, 189–196.

Wei, G.W., Alsaadi, F.E., Hayat, T. (2017). A linear assignment method for multiple criteria decision analysis

with hesitant fuzzy sets based on fuzzy measure. International Journal of Fuzzy Systems, 19, 607–614.

Wu, J., Chiclana, F. (2014). A risk attitudinal ranking method for interval-valued intuitionistic fuzzy numbers

based on novel attitudinal expected score and accuracy functions. Applied Soft Computing, 22, 272–286.

Xu, Z.S., Xia, M.M. (2010). Some new similarity measures for intuitionistic fuzzy values and their application

in group decision making. Journal of System Science and Engineering, 19, 430–452.



Some Cosine Similarity Measures for Picture Fuzzy Sets and Their Applications 563

Ye, J. (2010). Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic

fuzzy environment. European Journal of Operational Research, 205, 202–204.

Ye, J. (2011). Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and

Computer Modelling, 53, 91–97.

Ye, J. (2016). Similarity measures of intuitionistic fuzzy sets based on cosine function for the decision making

of mechanical design schemes. Journal of Intelligent and Fuzzy Systems, 30, 151–158.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–356.

Zhao, X.F., Wei, G.W. (2013). Some Intuitionistic fuzzy Einstein hybrid aggregation operators and their appli-

cation to multiple attribute decision making. Knowledge-Based Systems, 37, 472–479.

Zhao, X.F., Lin, R., Wei, G.W. (2014). Hesitant triangular fuzzy information aggregation based on Einstein

operations and their application to multiple attribute decision making. Expert Systems with Applications, 41,

1086–1094.

Zhou, L.Y., Lin, R., Zhao, X.F. (2013). Uncertain linguistic prioritized aggregation operators and their appli-

cation to multiple attribute group decision making. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 21, 603–627.



564 G.W. Wei

G.W. Wei has an MSc and a PhD degree in applied mathematics from SouthWest

Petroleum University, Business Administration from school of Economics and Manage-

ment at SouthWest Jiaotong University, China, respectively. From May 2010 to April

2012, he was a postdoctoral researcher with the School of Economics and Management,

Tsinghua University, Beijing, China. He is a professor in the School of Business at Sichuan

Normal University. He has published more than 90 papers in journals, books and confer-

ence proceedings including journals such as Omega, Decision Support Systems, Expert

Systems with Applications, Applied Soft Computing, Knowledge and Information Systems,

Computers & Industrial Engineering, Knowledge-BasedSystems, International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, International Journal of Compu-

tational Intelligence Systems and Information: An International Interdisciplinary Journal.

He has published 1 book. He has participated in several scientific committees and serves as

a reviewer in a wide range of journals including Computers & Industrial Engineering, In-

ternational Journal of Information Technology and Decision Making, Knowledge-Based

Systems, Information Sciences, International Journal of Computational Intelligence Sys-

tems and European Journal of Operational Research. He is currently interested in aggre-

gation operators, decision making and computing with words.


