INFORMATICA, 2017, Vol. 28, No. 3, 415-438 415
© 2017 Vilnius University
DOI: http://dx.doi.org/10.15388/Informatica.2017.136

Self-Adaptive and Adaptive Parameter Control in
Improved Artificial Bee Colony Algorithm

Bekir AFSAR*, Dogan AYDIN, Aybars UGUR, Serdar KORUKOGLU

Department of Computer Engineering, Dumlupimar University, Kiitahya, Turkey
Department of Computer Engineering, Ege University, Izmir, Turkey

e-mail: bekirafsar@ gmail.com, dogan.aydin@dpu.edu.tr, aybars.ugur@ege.edu.tr,
serdar.korukoglu@ege.edu.tr

Received: June 2015; accepted: September 2016

Abstract. The Improved Artificial Bee Colony (IABC) algorithm is a variant of the well-known
Artificial Bee Colony (ABC) algorithm. In IABC, a new initialization approach and a new search
mechanism were added to the ABC for avoiding local optimums and a better convergence speed.
New parameters were added for the new search mechanism. Specified values of these newly added
parameters have a direct impact on the performance of the IABC algorithm. For better performance
of the algorithm, parameter values should be subjected to change from problem to problem and
also need to be updated during the run of the algorithm. In this paper, two novel parameter control
methods and related algorithms have been developed in order to increase the performance of the
TABC algorithm for large scale optimization problems. One of them is an adaptive parameter control
which updates parameter values according to the feedback coming from the search process during
the run of the algorithm. In the second method, the management of the parameter values is left to
the algorithm itself, which is called self-adaptive parameter control. The adaptive IABC algorithms
were examined and compared to other ABC variants and state-of-the-art algorithms on a benchmark
functions suite. Through the analysis of the results of the experiments, the adaptive IABC algorithms
outperformed almost all ABC variants and gave competitive results with state-of-the-art algorithms
from the literature.

Key words: Artificial Bee Colony, Improved Artificial Bee Colony, parameter control methods,
adaptive parameter control, self-adaptive parameter control.

1. Introduction

Swarm intelligence (SI) is a research area that aims at understanding on the self-organized
swarms. An ant colony, a flock of birds and a school of fish are typical examples of swarm
intelligence. These swarms have to overcome some problems during their lives such as
liaising, foraging, orientation to the right direction, etc. Researchers were inspired by
problem-solving skills and behaviours of swarms and proposed new algorithms for numer-
ical optimization problems. For instance, particle swarm optimization (PSO) was inspired
from the behaviours of bird flocking or fish schooling (Kennedy, 2010), ant colony opti-
mization (ACO) was inspired from foraging behaviour of ant colonies (Dorigo, 1992), and

*Corresponding author.



416 B. Afsar et al.

cuckoo search algorithm (CS) was inspired from the behaviours of cuckoos during their
incubation period (Yang and Deb, 2010). These are swarm intelligence based algorithms.

Swarm intelligence algorithms are the metaheuristics that are developed independently
of the optimization problems. These algorithms have some critical parameters that should
be tuned carefully according to the tackling problem instance. Therefore, parameter tuning
is a key research area for the optimization algorithms to show similar good performances
on the different optimization problems. In literature, there are many studies on parameter
adaptation for metaheuristics. The several instances of parameter adaptation methods can
be found on Evolutionary Algorithms (Eiben et al., 1999; Lobo et al., 2007), Differential
Evolution (Abbass, 2002; Das and Suganthan, 2011; Gdmperle et al., 2002; Qin et al.,
2009; Ronkkonen et al., 2005), Ant Colony Optimization (Zhaoquan et al., 2009; Hao et
al., 2007, Stiitzle et al., 2012) and so on.

Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk, 2007) is another
swarm intelligence based optimization algorithm, inspired from foraging behaviours of
honey bees. ABC was applied to continuous optimization problems successfully, although
it has some deficiencies. ABC has few parameters which are not very sensitive to the prob-
lem type. However, in recent years, several variants of ABC algorithm, which come with
additional tunable parameters, have been proposed to enhance search ability and to in-
crease convergence speed to achieve global optimum.

Improved ABC (IABC) algorithm (Gao and Liu, 2011) is a recent variant of ABC al-
gorithm which proposes a new initialization strategy and a probabilistic search mechanism
to improve solution quality. IABC has significant results with the other ABC variants on
the low dimensional problems but the performance of IABC decreases dramatically when
the dimension of the problem increases (Liao et al., 2013). IABC comes with two new
tunable parameters that are very sensitive to given problem. These parameters should be
set carefully for each problem, otherwise it leads to the algorithm producing good out-
come in some problems, while bad results are produced with some other problems. To
overcome this problem, adaptive parameter selection is needed as in other metaheuristic
algorithms.

For this purpose, two different adaptive parameter selection mechanisms, that are
based on self-adaptive and adaptive parameter control strategies, are proposed in this pa-
per. With the proposed mechanisms, appropriate values of the parameters are tried to be
found with feedback from the search process and they are updated online if necessary.
As a result, IABC can achieve good results not only for low-dimensional but also high-
dimensional problems.

This paper is structured as follows. In Section 2 we will first give details of the original
ABC and TABC algorithms. Section 3 addresses two different proposed adaptive IABC
algorithms under this study. Section 4 points out experimental results which include the
comparisons of the proposed algorithm to IABC, other ABC variants and state-of-the-art
algorithms. Section 5 concludes the article.

2. Background

In this paper, we proposed two different parameter control mechanisms in order to enhance
performance of the IABC algorithm on the high-dimensional optimization problems. In



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 417
the following subsections, brief descriptions of the ABC and IABC algorithms are given.

2.1. Original Artificial Bee Colony (ABC) Algorithm

In ABC algorithm (given in Algorithm 1), there are three types of honey bees as employed,
onlooker and scout. The employed bees are responsible for calculating the nectar amount
of every possible food sources. The number of the employed bees in the population is
equal to the number of food sources in the feeding area. The onlookers are charged with
choosing the food source which has a great amount of nectar. The number of the onlookers
in the population is equal to the number of employed bees. The scouts are responsible for
discovering new food sources. If a food source is exhausted, the employed bee becomes
onlooker and the new food source discovered by the scout bee replaces the old food source.

Position of the food source represents the possible solution of the optimization prob-
lem aimed to be solved. High nectar amount of the food source means that the possible
solution of the optimization problem is good. Therefore, quality of the possible solution is
represented by the nectar amount and this value is called fitness value in ABC algorithm.
At initialization step, SN (number of food sources) is established randomly by using the

Eq. (1):

Algorithm 1 Artificial Bee Colony Algorithm.
1: Initialize solution population (x; ;) by using Eq. (1), i =1...SN, j =1...D,
limit; =0

2: Calculate the fitness values by using Eq. (2) for each solution at the population

3: iteration = 1

4: repeat

5: fori =1to SN do > Employed Bee Phase

6: Produce new solution (v;) by using Eq. (3) from the solution x;

7: Compare the fitness values of new solution (v;) with old solution (x;), choose
better one

8: If new solution is not better than x;, limit; = limit; + 1, if it is better, limit; =0

9: Calculate the probability (p;) for each solution by using Eq. (4)

10: fori =1to SN do > Onlooker Bee Phase

11: if random < p; then

12: Produce new solution (v;) by using Eq. (3) from the solution x;

13: Compare the fitness values of new solution (v;) with old solution (x;),
choose better one

14: If new solution is not better than x;, limit; = limit; + 1, if it is better,
limit; =0

15: if max(limit;) > limit then > Scout Bee Phase

16: Change x; with a solution which is randomly produced by using Eq. (1)

17: Store the best-so-far solution

18: iteration = iteration + 1

19: until iteration == Maximum Iteration Number




418 B. Afsar et al.

min max
Xij=Xj +<pi,,/(xj -

x;?““) (D)
where ¢; ; is a uniform random number in [0, 1], xfl.nin is the minimum value of the jth
dimension while x}“ax is the maximum value of that dimension. Moreover, each solution
(or each food source) has a fitness and limit value. limit value is used to control whether
the food source has been exhausted or not.

In ABC algorithm, fitness value is calculated in accordance with the Eq. (2):

1
Tfi’ ,fl?ov

1 (2)
+abs(fi), fi<O

fitness; = i

where f; is the objective value of ith solution.
Following the initialization stage, employed bees try to find the new candidate solution
based on the Eq. (3):

Vij=Xij @i (X — Xk ), iFk (3)

where v; ; represents the new solution to be found, x; ; is the previous solution, ¢; ; is
the random number between the range of [—1, 1], and x_ ; is the neighbouring solution.
k is rated between 1 and SN, while j is rated between 1 and D (maximum number of
dimensions). If the candidate solution found is better than the previous one, then it super-
sedes. Later on, like employed bees, onlooker bees also try to find new good food sources.
However, in selecting food sources, onlooker bees as different from the employed bees
prefer the ones above a certain probability value p;. This probability value can be seen in
the Eq. (4):

fitness; @
Pi=sN .-
Y, fimess,

Observing the behaviour of employed and onlooker bees, it is evident that they search
for good food sources and focus on good solutions. Algorithm should explore new so-
lutions to avoid local optimums. If employed and onlooker bees cannot improve a food
source for /imit times, it means exhaustion of that food source. Exhausted food resource is
a source that is not good enough to produce new solutions. In ABC algorithm, scout bees
are responsible for the exploration of new solutions searched to avoid local optimums, and
they explore new food sources by utilizing the Eq. (1) instead of exhausted food sources.

However, it is seen that in certain problems, convergence speed of ABC algorithm is
slow in comparison with the other population based algorithms and sticks to local opti-
mums. Thus, new ABC algorithm versions have been proposed to increase its convergence
speed.

2.2. Improved Artificial Bee Colony (IABC) Algorithm

In IABC algorithm, Gao and Liu (2011) proposed some modifications on the steps of orig-
inal ABC algorithm. The first is an efficient initialization strategy that leads algorithm to



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 419

Algorithm 2 Initialization step of IABC algorithm (Gao and Liu, 2011).
1: Specify chaotic iteration number as K > 300,i =1, j =1

2: whilei < SN do

3 while j < D do

4 Initialize the variables randomly between O and 1: chg [0, 1],k =0
5 while £ < K do

6: chiiy,j=pchg j(1 —chg j), k=k+1

7 P, j = Xmin,j + chi j(Xmax,j — Xmin, j)

8 j=j+1

9 i=i+1

10 i=1,j=1

11: whilei < SN do
12: while j < D do

13: OP; j = Xmin,j + Xmax,j — Pij
14: j=j+1
15: i=i+1

16: Choose SN solutions from this set as initial population: { P(SN) U O P(SN)}

find good initial population. Instead of the initialization with normal distribution in orig-
inal ABC, the initialization approach of IABC utilizes chaotic systems and opposition-
based learning. In detail, a chaotic random generator is used to create initial solutions.
Then, the initial solutions are duplicated by opposition-based initialization. Finally, the
initial population is obtained by selecting the best solutions. The procedure of this initial-
ization strategy is given in Algorithm 2.

In search equations of the employed and onlooker bees steps, IABC offered two mod-
ifications as well. Contrary to original ABC, IABC emphasizes in controlling the number
of decision variables changed in search equation by adding a new parameter called m.
Second modification in search mechanism is that IABC comes with a probabilistic selec-
tion of two search equations, called as “ABC/best/1” (Eq. (5)) and “ABC/rand/I”’ (Eq. (6))
(Gao and Liu, 2011).

Vi.m = Xbest,m + @i, j (xi,m - xrl,m)a (5)

Viim = Xrl,m +(pi,j(xi,m _xr2,m) 6)

where m parameter is used to control how many dimensions will be updated. xpeg,m rep-
resents the best solution till then. x,1 ,, and x,2 ,, represent the randomly selected solu-
tions. While “ABC/best/1” is used to produce new solutions based on the information of
the best-so-far solutions “ABC/rand/I” is used to search the whole population. Moreover,
“ABC/best/I” ensures the finding of the optimum solution quickly, while “ABC/rand/I”
enables the avoidance from local optimums. Utilizing these two equations together leads
to an increase in the convergence speed towards global optimum and helps to avoid local
optimums. By this it means, it has been aimed to balance exploration and exploitation



420 B. Afsar et al.

Algorithm 3 Searching new solutions in IABC algorithm (Gao and Liu, 2011).

1: Source solution is x;, new solution is v;. Value range of M parameter: 1 < M < D,
Value range for p parameter: 0 < p<landm =1

2: rnd = rand(0, 1) > random number between 0 and 1.

3: if rnd < p then

4: while m < M do

5: Dy =1—-2%xrand

6 Vim =Xrl,m + (Di,m(xi,m - xr2,m) > “ABC/rand/1”

7 m=m+1

8: else

9 while m < M do

10: Dy =1—-2%rand

11: Vim = Xpest.m + Pim Xim — Xr1.m) > “ABC/best/1”

12: m=m+1

abilities of IABC. The probabilistic selection of these two search equations is controlled
by p (0 < p < 1) parameter. The procedure of this new searching strategy is given in
Algorithm 3.

The additional parameters of IABC, m and p, have direct effect on IABC performance.
Therefore, authors of IABC tried to find out appropriate values of these parameters from
one problem to another. Therefore, with the appropriate parameter values, IABC shows
good performance on low-dimensional benchmark functions. However, Liao ez al. (2013)
have detected that its performance worsens in high dimensional problems. The reason of
producing good results in low dimensional problems while putting forward bad results in
high dimensional problems is that the value of m and p parameters used in the proposed
search mechanisms do not change depending on the problem. The m parameter shows the
number of parameters to be updated in a repeat cycle in employed and onlooker bee stages.
The effect of m parameter on performance is seen directly in line with the increase in the
dimension of the problem.

3. The Proposed Adaptive IABC Algorithms

In this paper, we developed two new adaptive IABC versions. The first is adaptive im-
proved ABC that uses adaptive parameter control and the second is self-adaptive improved
ABC that uses self-adaptive parameter control. In adaptive parameter control, strategic pa-
rameter values are updated based on the behaviour of the algorithm in the running phase,
namely feedbacks from the searching process. On the other hand, in self-adaptive param-
eter control, the strategic parameters become a part of solution array and thus mutate.
Appropriate parameter values help to have good solutions and ensure that good candidate
solutions are selected; thus these appropriate parameter values can be handed down to the
forthcoming population (Eiben er al., 1999). Hence, it is different from adaptive parame-



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 421

mArray pArray
If algorithm stagnates,
re-generate m and p
values
If all m and p values are

used in mArray and Add successful
pArray, re-initialize them m and p values

with successful values sMarray sParray

Fig. 1. Re-generation and re-initialization of arrays holding the values of m and p parameters in AIABC algo-
rithm.

ter control. Parameters are involved in evolutionary progress and their values are tried to
be improved.

3.1. Adaptive IABC (AIABC) Algorithm

AIABC tries to increase performance by making online updates for m and p strategic
parameters having a direct effect on the performance of IABC through adaptive parameter
control. In adaptive parameter control, strategic parameters are updated according to the
feedbacks to be obtained in the search process during the performance of the algorithm.
With this approach, the algorithm will become adaptive to the problem and it will be
ensured that it displays good performance in high dimensional optimization problems.

In this version, randomly generated candidate values of m and p parameters are kept in
two separate arrays (mArray and pArray). In onlooker bee stage, the values in the array are
used in turn for m and p parameters. If the best solution found so far has changed by using
m and p values, these successful m and p values are kept in two separate arrays (sMarray
and sParray). Figure 1 shows the relations of these four arrays. When all candidate values
in sMarray and sParray are used, re-initialization of these arrays is made by using random
values beside the ones in sMarray and sParray. By this it means, it is aimed to achieve
good parameter values through the utilization of successful experiences in different stages
of the problem during the performance of the algorithm. The pseudo-code of AIABC can
be seen in Algorithm 4. The proposed modifications are presented in italic form in the
Algorithm 4.

The method developed to update the online values of m and p parameters is realized
through the determination of new values by utilizing previous successful experiences dur-
ing the performance of the algorithm. There are arrays including the possible ranges for
each parameter (mArray for m and pArray for p).

mArray; = (m},m7, ..., mC) - m! e [1,2],

maxCount

pArray; = (p!. p}..... p} ). pl€lo.1].



422 B. Afsar et al.

Algorithm 4 The Adaptive Improved ABC (AIABC) Algorithm.
1: Initialization

2: initialize arrays

3: repeat

4 Update strategic parameters

5: Employed Bee Phase

6: Onlooker Bee Phase

7 Store successful values of strategic parameters
8 Scout Bee Phase

9: Adaptive Parameter Control
10: until the termination condition is not met

Each array includes values as many as maxCount. The process begins with cnt = 1, which
is used as a counter. Before each employed bee stage, values are determined as m = mf’” s
p = p{™. In employed bee stage, the algorithm continues its performance with these val-
ues. If the best-so-far solution is improved further, m and p values used in that cycle are
transferred to sMarray; and sParray;. When cnt counter reaches to maxCount value rep-
resenting the size of arrays, re-initialization process is started for mArray and pArray. In
the re-initialization process, mArray and pArray are updated by taking values randomly
selected within the adaptively adjusted ranges or by taking from a certain number of suc-
cessful values in sMarray; and sParray; . The selection mechanism is controlled randomly
by using re-initialization probability value (RP). RP is increased gradually in the running
of algorithm and thus, successful m and p values can be selected more than random val-
ues in later iterations. Moreover, when all the elements of mArray and pArray are used but
successful arrays are still empty, the stagnation is detected. This time, mArray and pArray
are re-initialized with new random values by utilizing the ranges of parameters adaptively.

Determination of the possible range of m parameter properly will also have a positive
effect on the performance of the algorithm. For instance, it is detected that the high values
for m may have a negative effect on the performance of the algorithm specifically for
high dimensional functions (Liao et al., 2013; Aydin, 2015). Therefore, the range of these
parameters is adjusted adaptively while algorithm is running.

In the first random initialization, the range of m is kept [1, 2]. In the following initial-
izations, an adaptive approach is applied in the determination of the range of m parameter.
If all elements of mArray and pArray are used and any of them is not transferred to sMar-
ray and sParray in onlooker bee stage and the stagnation is detected, range of m parameter
is changed. If the range of m is between 1 and D x factor (LARGE strategy), it is changed
to between 1 and 2 (SMALL strategy). On the contrary, when the range of m is between 1
and 2, it is changed to 1 and D = factor after stagnation. The initial value of factor vari-
able is 0.1 and is increased by 0.1 after each stagnation. When this variable reaches 1, it
is then reduced to 0.1 again. In other words, the maximum value of m is 10% of the prob-
lem dimension in the first stage; it is increased by 10% after each stagnation. When range
of m parameter reaches to problem dimension, it is then reduced to 10% of the problem
dimension again. Moreover, in each stagnation of the algorithm, mArray and pArray are



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 423

Algorithm § Adaptive Parameter Control Procedure in AIABC Algorithm.
1: RP=0.5
2: if cnt + 1 == maxCount then > if all array elements are used
3: if sMarray.isEmpty then > if successful m and p arrays are empty, stagnation of
the algorithm

4 if selectedMStrategy == SMALL then

5: selectedMStrategy = LARGE

6: if factor + 0.1 < 1 then

7: factor = factor 4 0.1

8: else factor =0.1

9: else

10: selectedMStrategy = SMALL

11: for y =0 to (maxCount — 1) do

12: if selectedMStrategy == SMALL then

13: mArrayly] = rand[1, 2] > randomly integer between 1 and 2
14: else

15: mArrayly] = rand[1, D % factor] > randomly integer between 1 and

D*factor

16: pArrayly] = rand[0, 1] > randomly double between 0 and 1
17: else > if successful m and p arrays are not empty
18: for y =0 to (maxCount — 1) do

19: r =rand|0, 1] > randomly double between 0 and 1
20: if » < RP then > choose random values from successful m and p arrays
21: mArrayly| = sMarray|random)
22: pArrayly| = sParray[random)
23: else
24: if selectedMStrategy == SMALL then
25: mArrayly] = rand[1, 2] > integer value between 1 and 2
26: else
27: mArray|y] = rand[1, D x factor] > integer value between 1 and

D#*factor

28: pArray|y] = rand[0, 1] > double value between 0 and 1
29: sMarray = {}
30: sParray = {}
31: cnt =0

32: RP =0.5+4 0.4 x (currentFES /maxFES) > currentFES: number of the current

function evaluations
> maxFES: number of the maximum function evaluations

33: cnt=cnt + 1




424 B. Afsar et al.

Added dimensions

Dimensions (D) /—/%

X1 X1p1 Xip Mipa | Pipe
Xa1 . Xap1 Xop M;pa | Pape
o . . . . .
"] w
= =
c— 2
T E = - - - - Best-so-far
g —é Xpest1 | | XpestDt | Xbestd | Miesip-1 | Poestnea |==p solution
Z . . . .

| Xxp1 | Xwp | Mupa | Pupa |

|

Fig. 2. New structure of solution arrays in SaIABC algorithm.

re-initialized according to the range determined above. So, values leading to stagnation
are changed. The whole process of adaptive parameter control procedure mentioned here
is presented in Algorithm 5.

3.2. Self-Adaptive IABC (SalABC) Algorithm

In the self-adaptive parameter control (Eiben et al., 1999), parameters to be controlled
are encoded to solution chromosome as gene in evolutionary algorithms while they are
encoded as a new dimension to the solution vector in SaIABC (Fig. 2). m and p parame-
ters are added to each candidate solution as two new dimensions. If in the employed and
onlooker bee search equations, these dimension values can be modified just as the dimen-
sions of the problem and m and p values can be changed. Therefore, the control of these
parameters depends on the algorithm itself.

SalABC algorithm uses values found in two additional dimensions of the best-so-far
solution as m and p values for each iteration. Search equations in employed and onlooker
bee stages are performed according to these parameter values. The range of m parameter
is as well adjusted adaptively as in ATABC. The only difference is determination of algo-
rithm stagnation. Here, if the algorithm cannot improve the best-so-far solution at some
consecutive iterations (i.e. 25 iterations), this means algorithm stagnates and changes the
strategy from LARGE to SMALL or vice versa.

4. Experimental Results

In this section, three different comparisons are explained in order to show the proposed
adaptive IABCs are competitive with other algorithms. In the first experiment, we com-
pared adaptive TABCs and the other ABC variants with default parameter values. In sec-
ond, we did the same comparison with tuned parameter values. Also some statistical tests
are presented to show the statistical difference. The adaptive IABCs are compared with
the state-of-the-art algorithms in the third experiment.



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 425
Table 1
The benchmark functions (Lozano ef al., 2011).
Name Definition Range Uni./Multi. Separable
f1: Shifted sphere function 1'"=o z;.’ [—100, 100]" U yes
[fo: Shifted Schwefel§ problem 2.21  max; {|z;, 1 <i < nl} [—100, 100]" U no
f3: Shifted Rosenbrocks function 37771007 — z; + D2 + (z; — 1)?] [—100, 1001 M no
f: Shifted Rastrigin function 10n + Z;’=| (zl-2 —10cos(2mz;)) [-5,5]" M yes
. Shi iewanks functi 1 N2 T ees( S _ n
[5: Shifted Griewanks function T000 Zi:] Z; ]_[I.=] cos( \/7) +1 [—600, 600] M no
—02/Lyn 2 Lswn 2
f¢: Shifted Ackley§ function ~20e m2i=1% o Xi=1 9T gL, (L3 3y M yes
f7: Shifted Schwefel§ problem 2.22 Z?lzl |z \.+ ]_[,'-':l |z [—10, 101" U yes
fy; Shifted Schwefels problem 1.2 Y (% ) [—65.536,65.536]" U no
n— I . . z z
fo: Shifted extended f10 Zi:l 710 ,2~t+|2) 5 2flO(~121a o )’VéhereZ 1 [-100, 100" U no
£100,3) = 2 43202 sin? (502 + 3101y + 1)
f10: Shifted Bohachevsky Zl'.';ll (21-2 + 22‘12+l —0.3cos(3mz;) — [—15, 151" U no
0.4cos(dmz; 1) +0.7)
f11: Shifted Schaffer Z;’;]' @ +222, O sin? (506 +22, 0D+ 1) (=100, 1001 U no
f12: Hybrid composition function I NS-F9 @ F1, mps =0.25 [—100, 100]" M no
f13: Hybrid composition function2  NS-F9 & F3, mpus =0.25 [—100, 100]" M no
f14: Hybrid composition function 3 NS-F9 & F4, mps =0.25 [-5,5]" M no
f15: Hybrid composition function4 ~ NS-F10 @ NS-F7, mps = 0.25 [—10, 101" M no
f16: Hybrid composition function 5 NS-F9 @ F1, mps =0.5 [—100, 100]" M no
f17: Hybrid composition function 6  NS-F9 & F3, mps =0.75 [—100, 100]" M no
f18: Hybrid composition function7 NS-F9 & F4, mps =0.75 [-5,5]" M no
f19: Hybrid composition function 8 NS-F10 & NS-F7, mps = 0.75 [—10, 10]" M no

4.1. Experimental Setup

In this section, the proposed adaptive IABC algorithms are applied to minimize a set
of 19 scalable functions presented by Lozano et al. (2011) for Soft Computing (SOCO)
special issue. Some of them ( f1, f>, f7, f3, fo, fi0, f11) are unimodal and the others are
multimodal functions. These benchmark functions and their peculiarities are described in
Table 1.

All experiments were conducted under the same conditions as SOCO special issue; all
algorithms were run 25 times for each function and each run stops when the maximum
number evaluations (5000 % D, where D is a problem dimension) or error value is lower
than a threshold (10~'4), which is approximated to zero. An error value of a solution, x,
found on a function f; was defined as: (f;j(x) — fi*), where fl* is the known optimum
value of function f;.

In order to extensively test the adaptive IABC algorithms, three experiments are con-
ducted. The first experiment compares the average results of the proposed approaches
with respect to the IABC and the other ABC variants by using default parameter values.
At the second experiment, same comparisons were made by using tuned parameter val-
ues. These tuned parameter values were obtained by using Iterated F-race (Birattari et
al., 2010) parameter tuning tool. Finally, third experiment compares the average results
of proposed adaptive IABC algorithms with the state-of-the art algorithms on the same
SOCO benchmark functions.

The Friedman Test (Friedman, 1940), a nonparametric test that detects significant dif-
ferences between the behaviour of two or more algorithms, was applied to all experiments
to see whether the results are significantly better or not. The test gives us a chance to



426 B. Afsar et al.

—— IABC
—— AIABC
—=— SalABC

—— IABC
—— AIABC
—=— SalABC

Mean errors of objective value

le-14

SERILEEER

Median errors of objective value
le-04

50-D SOCO Functions 50-D SOCO Functions

Fig. 3. Median and mean errors of objective value for [ABC and adaptive IABCs with default parameter values
on the 50 dimensional functions.

compare between all algorithms statistically. We used a level of significance o = 0.05 and
compared p-values.

4.2. Experimental Results with Default Parameter Settings

In this section, experiments are done with default parameter values of the algorithms.
Comparison of adaptive IABCs with other ABC variants is given in the following subsec-
tions.

4.2.1. Comparison of Adaptive IABCs and IABC

In this section, we give the experimental results of the ABC algorithms by using default
parameter values with problem dimensions 50, 100 and 500 respectively. Firstly, we com-
pare the TABC algorithm with AIABC and SalABC with the 5000*D function evaluations
for each test function. The results are shown in Figs. 3—5 in terms of the median error val-
ues (numerical results of mean error values can be found in supplementary file (Afsar et
al., 2016) obtained in the 25 independent runs by each algorithm.

In Fig. 3, we compare the ITABC algorithms on the 50 dimensional functions from the
SOCO benchmark set for the default parameter settings. It is shown that compared to the
median error values, AIABC and SalABC reached the optimal solutions or smaller than
the threshold (10~!%) at 13 of 19 functions, but IABC did not reach the optimal solution
in any function.

In Fig. 4, adaptive IABC algorithms perform better than the IABC 100 dimensional
SOCO functions. While AIABC found optimal solutions at 11 functions, SalABC found
it at 12 functions. However, IABC did not find optimal solutions in any function as 50
dimensional function results.

Afterwards, problem dimension is increased to 500 for each function and conducted
median and mean errors are listed at Fig. 5. IABC shows poor performance in high-
dimensional problems but adaptive IABC algorithms had better performance in 500-
dimensional functions also. According to Fig. 5, ATABC reached the optimal solutions
at 10 functions, SaIABC reached it at 7 functions but IABC again could not find any
optimal solution in any function.



Median errors of objective value

Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 427

le-04

—— IABC
—— AIABC
—— SalABC

—— IABC
—— AIABC
—=— SalABC

Mean errors of objective value
le-14

Fig. 4. Median and mean errors of objective value for IABC and adaptive IABCs with default parameter values
on the 100 dimensional functions.

Median errors of objective value

1le+06
L L

1le-04

—— IABC
—— AIABC
—— SalABC

—— IABC
—— AIABC
—— SalABC

T T T T
ANM L0 ©N®©
e e et bbb h bl
FEEEEEEE

500-D SOCO Functions

le-14
|

19
Mean errors of objective value

500-D SOCO Functions

Fig. 5. Median and mean errors of objective value for IABC and adaptive IABCs with default parameter values
on the 500 dimensional functions.

Table 2
p-values from the Friedman test.

Comparisons 50D 100 D

500 D

IABC vs. AIABC  7.05SE—05 1.38E—04
IABC vs. SalABC  1.72E—05  8.15E—06

1.14E—-06
1.19E-05

The results show that proposed adaptive IABC algorithms clearly perform better than

the IABC algorithm at any dimension of the functions. In spite of this, we want to ensure
whether these results are statistically better or not. Then, therefore, we tested the median
error values with Friedman test and collected the p-values at a significance level « = 0.05.
So, a p-value smaller than 0.05 means the results are significantly different. Herewith,
according to the p-values listed at Table 3, results of adaptive versions of TABC algorithms
are statistically better than the IABC algorithm.

4.2.2. Comparison of Adaptive IABCs and ABC Variants
At second, adaptive IABC algorithms are compared with the other ABC variants. These
algorithms are original ABC (Karaboga and Basturk, 2007), Best-so-far Selection ABC



428 B. Afsar et al.
Table 3
Default parameter values of ABC algorithms.
Algorithm SN limitF  wMin wMax SF MR riir  NC SP Rygcior  SNmax growth
ABC 62 1.0 - - - - - - - - - -
BsfABC 100 0.1 0.2 1.0 - - - - - - - -
CABC 10 1.0 - - - - - - - - - -
IABC 25 1.0 - - - 1.0 025 - - - - - -
IncABC 5 1.0 - - - - - - -1 50 1
MABC 10 1.0 - - 1.0 04 - - - - -
RABC 25 1.0 - - - - 15 5 1.5 - - -
Table 4
Comparison results for IABCs and the other ABC variants with default parameter values on the 50
dimensional functions.

F. ABC BsfABC CABC IncABC MABC RABC AIABC SalABC
fl 1.42E—05 1.60E+03 0.00E4+00 0.00E4+00 0.00E+00 0.00E4+00 0.00E+00 0.00E400
2 6.98E4+01 4.08E+01 6.20E+01 5.63E4+01 9.22E4+00 3.30E+00 1.73E—01 1.55E+00
3 548E+01 7.66E+07 2.75E4+00 1.56E+00 7.49E4+01 1.56E+00 1.42E401 7.05E+00
14 6.12E400 1.58E+02 2.32E—12 3.28E—02 2.59E4+01 4.33E—13 0.00E+00 0.00E4-00
§&) 2.83E—04 1.54E+01 5.03E—14 0.00E4+00 0.00E+00 0.00E4+00 0.00E+00 0.00E+00
fo 545E—02 1.10E+01 0.00E4+00 2.72E—09 0.00E+00 3.01E—11 0.00E+00 0.00E400
7 1.22E—03 2.53E+00 0.00E4+00 2.16E—11 0.00E+00 2.50E—14 0.00E+00 0.00E+00
f8 1.58E4+04 6.44E+03 9.15E4+03 5.85E4+03 1.93E4+04 1.55E+03 1.46E4+03 1.68E+03
il 2.37E4+01 1.79E+02 2.04E—07 6.53E—01 2.57E—01 4.86E—02 0.00E+00 0.00E+00
f10  2.00E—-05 4.03E4-01 0.00E4+00 0.00E+00 9.79E—08 0.00E+00 0.00E4-00 0.00E400
fl1  220E4+01 1.68E4+02 446E—07 6.37E—01 147E—-01 6.00E—02 0.00E+00 0.00E-+00
f12 2.05E400 8.64E4+02 7.98E—07 4.87E—02 0.00E4+-00 4.10E—03 0.00E4+00 0.00E+00
f13  3.48E+401 3.98E4+07 2.98E—01 7.53E—01 7.89E4+01 243E—01 4.79E4+00 3.03E—01
fl14 6.77E400 1.23E402 1.25E—11 2.79E—02 2.00E+01 3.83E—04 5.54E—02 6.03E—07
f15 7T47E—04 4.60E+00 0.00E4+00 1.30E—11 0.00E+00 1.76E—14 0.00E+00 0.00E-+00
f16  5.15E400 2.87E4+02 3.46E—11 1.78E—01 2.00E+01 1.55E—02 0.00E4+00 0.00E+00
f17  2.86E+01 1.40E+405 1.66E4+01 4.80E4+00 4.40E+01 2.68E4+00 7.80E—01 4.58E—01
f18 479E4+00 448E+4+01 2.66E—12 8.33E—02 2.91E+00 3.73E—03 0.00E4+00 0.00E+00
f19 1.55E—04 1.63E4+01 0.00E4+00 4.12E—13 0.00E-+00 0.00E+00 0.00E+00 0.00E-+00

(BsfABC) (Banharnsakun et al., 2011), Modified ABC (MABC) (Akay and Karaboga,
2012), Chaotic ABC (CABC) (Alatas, 2010), Rosenbrock ABC (RABC) (Kang et al.,
2011) and Incremental ABC (IncABC) (Aydin et al., 2012). In the experiments, default
parameter advised from the algorithms owners is used. These parameters are presented in
Table 3.

In Table 4-6, median errors of objective value are listed of the ABC variants ran at
same SOCO benchmark set with problem dimension 50-100-500 respectively. AIABC
and SalABC perform better than the other ABC variants.

In order to detect significant differences between the median errors of the algorithms,
Friedman test was applied at a significance level o = 0.05. p-values are listed at Table 7.
The p-values smaller than 0.05 mean there is a significant difference between the results.
These results are written in bold. According to the statistical analysis, the results of ATABC
and SalABC are significantly better than the results of ABC, BsfABC and MABC in all



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 429
Table 5
Comparison results for IABCs and the other ABC variants with default parameter values on the 100
dimensional functions.
F. ABC BsfABC CABC IncABC MABC RABC AIABC SalABC
fl 5.20E—05 9.10E+03 0.00E4+00 0.00E4+00 0.00E+00 0.00E4+00 0.00E+00 0.00E400
2 9.84E4+01 4.61E4+01 9.24E+01 8.05E+01 4.09E+01 1.59E4+01 3.81E+00 9.88E+00
3 1.80E4+02 6.62E+08 2.85E+01 1.27E+01 2.01E4+02 1.22E+01 1.20E4+02 9.18E+01
A 1.59E4+01 3.63E+02 1.70E—07 1.29E4+00 1.07E+02 2.88E—08 9.95E—01 0.00E+00
§&l 1.05SE—04 6.78E+01 0.00E4+00 0.00E4+00 0.00E+00 0.00E4+00 0.00E+00 0.00E400
f6 1.66E—01 1.38E+01 0.00E4+00 1.00E—08 0.00E4+00 6.24E—11 0.00E+00 0.00E+00
f7  277E-03 6.91E4+00 0.00E4+00 8.03E—11 0.00E4+00 1.30E—13 0.00E4+00 0.00E+00
f8  5.71E404 247E4+04 4.07E4+04 2.17E404 9.54E+04 1.21E404 6.47E4+03 6.66E+03
f9  5.55E401 4.12E402 1.20E—07 1.60E4+00 8.81E+00 1.81E—01 0.00E4+00 0.00E+00
f10  7.98E—05 1.35E4+02 0.00E4+00 0.00E+00 1.05SE+00 0.00E+00 0.00E+00 0.00E+00
fl1  5.65E4+01 4.10E402 3.79E—07 1.77E400 5.05E+00 1.61E—01 0.00E4+00 0.00E+00
f12 492E4+00 6.03E403 7.58E—11 1.84E—01 1.64E—01 1.54E—02 0.00E+00 0.00E-+00
f13  8.28E4+01 2.80E4+08 3.81E4+00 1.45E4+00 2.26E+02 1.91E—01 6.99E4+00 5.53E+00
f14  1.54E401 2.92E+402 7.70E—12 1.18E400 9.01E+01 5.02E—03 1.99E4+00 2.02E—01
f15 2.07E—03 1.60E+01 0.00E4+00 4.94E—11 0.00E4+00 594E—14 0.00E+00 0.00E-+00
f16 1.27E401 2.49E+03 1.94E—10 5.29E—01 2.01E+01 5.00E—02 0.00E+00 0.00E-+00
f17  6.93E401 7.73E406 6.04E4+00 8.49E4+00 242E+02 1.25E400 8.46E+00 7.35E+00
f18 1.19E401 1.17E4+02 6.72E—11 2.72E—01 2.63E+01 1.49E—02 9.95E—01 1.07E—02
f19 498E—04 7.00E+01 0.00E4+00 4.18E—12 1.05E4+00 0.00E+00 0.00E+00 0.00E-+00
Table 6
Comparison results for IABCs and the other ABC variants with default parameter values on the 500
dimensional functions.

F. ABC BsfABC CABC IncABC MABC RABC AIABC SalABC
fl 4.68E—04 1.49E4+05 0.00E+00 0.00E4+00 3.78E—02 0.00E+00 0.00E+00 0.00E+00
2 1.49E+02 4.95E+01 1.44E+02 1.12E4+02 1.21E4+02 8.09E+01 3.28E+01 3.88E+01
3 5.72E4+02 3.26E+10 1.40E+01 1.64E4+01 295E+03 1.95E+01 3.15E4+02 2.96E+02
4 1.19E4+02 2.38E+03 1.99E+00 1.74E+01 1.49E+03 3.08E+00 7.96E4+00 4.12E+00
5 3.17E-04 1.20E4+03 0.00E+00 0.00E4+00 7.63E—03 0.00E+00 0.00E+00 0.00E+00
f6 71.38E—01 1.74E4+01 0.00E+00 9.15E—08 2.68E4+00 4.31E—10 0.00E4+00 0.00E+00
17 1.74E—02 5.25E+401 0.00E+00 2.35E—09 5.46E—06 2.98E—12 0.00E+00 0.00E+00
f8  8.66E4+05 3.63E4+05 6.79E4+05 2.89E+05 1.87E406 4.14E4+05 1.07E4+05 1.19E+05
f9  3.84E402 249E+403 1.70E—-07 1.29E4+01 2.80E403 1.I1SE4+00 0.00E4+00 1.83E—05
f10  1.40E-03 1.79E403 0.00E+00 0.00E4+00 2.63E4+01 0.00E+00 0.00E+00 0.00E+00
f11  3.94E402 248E+03 147E—07 1.33E+01 2.73E403 1.17E400 0.00E4+00 1.07E—02
f12 4.68E4+01 1.12E405 8.83E—10 1.73E4+00 6.63E4+02 1.89E—01 2.10E—02 2.10E—02
f13  5.34E+402 2.03E4+10 1.94E4+01 2.34E+01 2.14E403 6.30E4+00 1.66E4+02 1.65E+02
f14 1.08E402 1.89E4+03 1.99E4+00 1.32E4+01 1.18E4+03 2.17E4+00 1.89E4+01 2.10E+01
f15 9.30E—03 1.77E+02 0.00E+00 1.31E-09 3.62E+00 1.45E—12 0.00E+00 0.00E-+00
f16  1.07E402 6.45E4+04 5.58E—09 4.12E4+00 1.45E4+03 4.49E—01 0.00E4+00 2.10E—02
f17  2.17E402 3.07E409 4.00E4+00 1.80E+01 3.26E403 2.92E4+00 4.65E—01 3.04E+00
f18 8.43E+01 8.62E4+02 3.03E—02 6.01E4+00 7.88E4+02 2.66E—01 6.96E+00 5.98E+00
f19 295E—-03 2.51E+02 0.00E+00 1.63E—10 1.99E+01 1.79E—13 0.00E+00 0.00E-+00

problem dimensions. There are statistically better results than IncABC on 50 and 100 di-
mensional functions but not of significant difference on 500 dimensional functions. Also,
in all problem dimensions, CABC and RABC give similar performances with AIABC and



430 B. Afsar et al.

Table 7
p-values from the Friedman test.
Comparisons 50D 100 D 500 D
vs. AIABC vs. SalABC vs. AIABC vs. SalABC vs. AIABC vs. SalABC

ABC 7.57E—-07 2.18E—-07 2.60E—05 2.15E—-06 2.28E—05 1.05E—-04
BsfABC 8.80E—11 1.78E—11 1.52E—-09 4.86E—11 8.74E—-10 7.68E—09
CABC 0.25 0.16 0.86 0.48 0.98 0.74
IncABC 0.01 0.005 0.07 0.017 0.05 0.12
MABC 0.005 0.003 0.002 3.39E—04 2.18E—-07 1.38E—06
RABC 0.33 0.22 0.84 0.46 0.36 0.57

SalABC. There are not significant differences between these algorithms according to the
given p-values at Table 7.

4.3. Experimental Results with Tuned Parameter Settings

In this section, experiments are done with tuned parameter values of the algorithms. In the
following subsections, comparison of adaptive IABCs with other ABC variants is given.

4.3.1. Comparison of Adaptive IABCs and IABC

At the comparison of adaptive IABCs and IABC, median errors of objective value are
listed at Figs. 6, 7 and 8. As can be seen from Fig. 6, adaptive IABC algorithms greatly
outperform IABC algorithm. But there are little improvements for 50 dimensional func-
tions in contrast to the results obtained with default parameter settings. While IABC found
2 optimal solutions, ATABC found 13 and SalABC found 14 optimal solutions.

The results, which have been summarized in Fig. 7, are conducted with tuned param-
eter settings on 100 dimensional SOCO benchmark functions. Both AIABC and SalABC
reached the optimal solutions at 12 functions, but IABC did not find any optimal solution.

In Fig. 8, given median errors were obtained from the algorithms on the 500 dimen-
sional functions. According to the median error values, AIABC found 9 optimal solutions,
SalABC found 8 optimal solutions and again IABC could not reach the optimal solution
in any function.

In order to assure whether the performances of the adaptive IABC algorithms are better
than IABC algorithm, Friedman test was applied to the median error values. Given p-
values at Table 8 are collected at a significance level 0.05. As can be seen from Table 8,
p-values are smaller than 0.05 and this means the results of the adaptive IABC algorithms
are significantly better than of the IABC algorithm.

4.3.2. Comparison of Adaptive IABCs and ABC Variants

In this experiment, AIABC and SalABC were compared with six variants of ABC al-
gorithm with tuned parameter settings on 19 benchmark functions. While the tuned pa-
rameters are determined, Iterated F-race is used with the default setting. The obtained
parameter values are presented in Table 9. In comparison to results obtained with default
parameter settings, CABC, MABC, BsfABC, AIABC and SalABC gave similar results



431

Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA

—— IABC
—— AIABC
—— SalABC

T T
90+3T ¥0-9T y1-91

an[en aARa3(go Jo SioLd Uesy

—— IABC
—— AIABC
—— SalABC

T T
90+3T ¥0-9T y1-91

anfeA anioalgo Jo siols uelpay

50-D SOCO Functions

50-D SOCO Functions

Fig. 6. Median and mean errors of objective value for IABC and adaptive IABCs with tuned parameter values

on the 50 dimensional functions.

—— IABC
—— AIABC
—— SalABC

T T T
®O+®H QOIQH ?._”IQA_”

an[en aARo3(go Jo sioud Uesy

—— IABC
—— AIABC
—— SalABC

T T
90+3T ¥0-9T y1-91

anfeA anioalgo Jo siols uelpay

100-D SOCO Functions

100-D SOCO Functions

Fig. 7. Median and mean errors of objective value for IABC and adaptive IABCs with tuned parameter values

on the 100 dimensional functions.

SalABC

—— IABC
—— AIABC

T T
90+9T 0-91 Y1-9T

anfeA anidalgo Jo siole uesy

T T
90+9T 0-91 Y1-9T

anfen aAo3(go Jo sioud Uelpay

500-D SOCO Functions

500-D SOCO Functions

Fig. 8. Median and mean errors of objective value for IABC and adaptive IABCs with tuned parameter values

on the 500 dimensional functions.

Table 8
p-values from the Friedman test.

100 D 500 D

50D

Comparisons

1.38E—-04 1.72E-05

8.15E—06

4.87E—04

TIABC vs. ATABC
TABC vs. SalABC

7.05SE—05

1.38E—04




432 B. Afsar et al.

Table 9
Tuned parameter values of ABC algorithms.

Algorithm SN limitF wMin wMax SF MR P riir  NC SP Ryfgctor SNmax growth

ABC 8 2734 - - - - - - - - - - -
BsfABC 6 2164 033 073 - - - - - - - - -
CABC 17 2819 - - - - - - - - - - -
IABC 28 162 - - - 041 047 - - - - - -
IncABC 6 2272 - - - - - - - - -3.47 12 12
MABC 11 1978 - - 097 077 - - - - - - -
RABC 10 2.089 - - - - - 17 2 1.86 - - -
Table 10
Comparison results for IABCs and the other ABC variants with tuned parameter values on the 50 dimensional
functions.
F. ABC BsfABC CABC IncABC MABC RABC ATABC SalABC
f1 0.00E+00 0.00E4+00 0.00E+00 0.00E400 0.00E4+00 0.00E4-00 0.00E400 0.00E-+00
f2 579E4+00 3.45E+01 9.08E400 2.43E+01 2.13E401 1.20E—-03 9.09E—01 8.63E—01
f3  4.08E4+00 5.70E+01 1.43E400 2.80E+00 844E+401 3.53E+01 7.66E4+00 6.07E4-00
f4  878E—-01 4.58E+01 0.00E+00 0.00E+00 6.07E+01 9.95E-01 0.00E400 0.00E--00

f5  623E—-12 270E-02 0.00E+00 0.00E400 0.00E4+00 0.00E4-00 0.00E4+00 0.00E-+00
f6  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E-+00
f7  0.00E+00 0.00E4+00 0.00E+00 0.00E400 0.00E4+00 0.00E4-00 0.00E400 0.00E-+00
f8  T1.51E+03 1.26E+03 9.79E4+03 4.72E4-03 1.10E+04 2.22E+00 1.70E4+03 1.71E403
9  0.00E+00 3.03E-02 1.85E—04 0.00E4-00 2.15E4-00 0.00E4-00 0.00E4+00 0.00E-+00
f10 0.00E+00 1.05E+00 0.00E+00 0.00E+00 1.39E—07 0.00E+00 0.00E+00 0.00E-+00
f11 0.00E+00 3.07E—02 3.92E—04 0.00E4-00 2.69E400 0.00E4-00 0.00E4+00 0.00E-+00
f12 275E-09 6.23E—04 2.60E—05 0.00E+00 1.07E-02 4.24E—14 0.00E400 0.00E--00
f13  2.59E—-01 5.60E+00 8.53E—02 1.08E—01 7.72E+01 4.01E+00 1.96E4+00 2.12E—-01
fl4  9.95E-01 3.48E+01 6.51E-07 0.00E+00 4.64E+01 3.98E+00 0.00E+00 0.00E-+00
f15  0.00E+00 0.00E4+00 0.00E+00 0.00E400 0.00E4+00 0.00E4-00 0.00E400 0.00E-+00
f16 1.12E-08 2.92E—-04 1.03E—04 0.00E+00 3.82E—01 7.23E—11 0.00E400 0.00E--00
f17  6.50E4+00 4.10E+01 8.11E-01 3.33E+00 7.32E401 3.75E+01 3.24E—01 2.17E400
f18 1.05SE—-09 9.95E—01 5.73E—06 0.00E+00 1.66E+01 9.95E—01 2.74E—13 0.00E-+00
f19  0.00E+00 1.52E+00 0.00E+00 0.00E4-00 4.70E—01 0.00E4-00 0.00E400 0.00E-+00

but ABC, RABC and IncABC gave better results with tuned parameter settings. This in-
dicates clearly that the parameter tuning is important task for obtaining real results on a
given problem instances.

According to the experimental results that are listed in Tables 1012 obtained from 19
SOCO functions with problem dimensions 50-100-500 respectively, AIABC and SalABC
perform much better than BsfABC, MABC in almost all the functions. But ABC, CABC,
RABC and IncABC produce statistically similar results with adaptive IABC algorithms.

Similar to the test with results of default parameter settings, Friedman test was applied
with same significance level « = 0.05 to the results obtained with tuned parameter set-
tings. Collected p-values are listed at Table 12. This statistical test shows us that ATABC
and SalABC are significantly better than BsfABC and MABC. There is no statistical dif-
ference with ABC, CABC, RABC and IncABC. So ATIABC and SalABC give competitive
results with these ABC variants.



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 433
Table 11
Comparison results for IABCs and the other ABC variants with tuned parameter values on the 100
dimensional functions.
F. ABC BsfABC CABC IncABC MABC RABC AIABC SalABC
fl 0.00E+00 0.00E+00 0.00E4+00 0.00E4+00 0.00E+00 0.00E+00 0.00E4+00 0.00E+00
2 3.67E4+01 4.56E+01 3.70E+01 5.33E+01 6.32E401 2.87E—01 7.77E+00 7.08E+00
3 4.60E4+01 1.92E4+02 8.95E+00 2.04E+01 1.74E4+02 2.39E401 1.57E+02 9.66E+01
f4  2.13E+00 8.16E+01 0.00E+00 9.95E—01 1.90E4+02 8.95E+00 0.00E+00 0.00E-+00
5 0.00E+00 5.57E—02 0.00E4+00 0.00E4+00 0.00E+00 0.00E+00 0.00E4+00 0.00E+00
f6  0.00E+00 1.07E—11 0.00E+00 0.00E+00 8.19E—08 0.00E+00 0.00E+00 0.00E-+00
/7 0.00E4+00 0.00E4+00 0.00E+00 0.00E+00 1.53E—14 0.00E+00 0.00E+00 0.00E-+00
f8  3.39E+04 498E+03 3.90E+04 1.90E4+04 6.96E4+04 2.27E+02 7.21E4+03 6.35E4+03
f9  4.18E—07 1.39E+01 8.53E—04 0.00E4+00 1.66E4+02 0.00E+00 0.00E4+00 0.00E+00
f10  0.00E+00 4.20E+00 0.00E4+00 0.00E4+00 2.10E4+00 0.00E+00 0.00E4+00 0.00E+00
fll  691E—07 2.29E—01 9.34E—04 0.00E4+00 1.54E4+02 0.00E4+00 0.00E4+00 0.00E+00
f12 1.30E—-08 3.29E—-05 9.58E—05 0.00E4+00 1.37E400 3.07E—11 0.00E4-00 0.00E+00
f13  2.05E400 6.96E+01 8.28E—01 9.38E—01 2.09E4+02 2.71E4+01 7.19E+01 5.61E+00
f14 1.99E+00 9.45E+01 4.20E—06 9.95E—01 1.42E4+02 6.96E+00 0.00E+00 9.95E—01
f15  0.00E4+00 0.00E4+00 0.00E+00 0.00E+00 1.06E—14 0.00E4+00 0.00E+00 0.00E-+00
f16  1.35E—08 1.08E—02 2.24E—-04 0.00E4+00 2.13E4+01 3.94E—09 2.66E—13 0.00E+400
f17  148E+01 2.97E+01 241E+00 6.30E4+00 3.30E4+02 2.38E4+01 1.26E+01 6.90E+00
f18 9.95E—-01 S5.18E4+01 1.11E—-05 0.00E+00 9.57E4+01 2.98E+00 2.56E—12 1.07E—02
f19  0.00E+00 7.35E4+00 0.00E4+00 0.00E4+00 3.15E4+00 0.00E+00 0.00E4+00 0.00E+00
Table 12
Comparison results for IABCs and the other ABC variants with tuned parameter values on the 500
dimensional functions

F. ABC BsfABC CABC IncABC MABC RABC AIABC SalABC
fl 0.00E+00 0.00E4+00 0.00E4+00 0.00E+00 4.57E4+00 0.00E+00 0.00E4+00 0.00E+00
2 1.08E4+02 4.94E+01 1.02E4+02 9.61E4+01 1.35E+02 2.21E4+01 3.78E+01 3.66E+01
3 3.86E+01 4.41E4+02 246E+00 9.79E+00 4.58E4+04 5.07E4+01 5.60E4+02 2.82E+02
4 229E4+01 9.40E+02 343E—08 2.98E+400 2.08E+03 7.56E4+01 5.03E+00 1.99E+01
5 0.00E+00 3.48E—10 0.00E4+00 0.00E+00 7.43E—01 0.00E4+00 0.00E+00 0.00E-+00
f6  0.00E+00 1.01E+00 0.00E4+00 0.00E+00 1.98E+01 0.00E4+00 0.00E+00 0.00E-+00
/7 0.00E4+00 0.00E4+00 0.00E4+00 0.00E+00 1.26E—02 0.00E4+00 0.00E+00 0.00E-+00
f8  5.43E4+05 9.15E+04 S.06E4+05 3.20E405 1.23E+06 1.12E405 1.27E+05 1.16E+05
O 3.13E-06 3.04E+02 6.63E—03 0.00E+00 3.48E+03 7.72E+00 0.00E+00 2.15E—02
f10  0.00E4+00 4.20E+01 0.00E4+00 0.00E+00 4.20E4+01 0.00E4+00 0.00E+00 0.00E-+00
f11 1.07E—02 1.54E+02 6.29E—03 0.00E+00 3.47E+03 8.96E4+00 0.00E4+00 2.15E—02
f12 2.89E—07 6.28E—02 7.45E—04 0.00E+00 9.64E+02 1.10E—01 1.16E—13 0.00E+00
f13  3.95E+4+01 6.59E+02 7.86E4+00 4.14E400 2.75E+03 5.48E+01 3.56E+02 1.58E+02
fl14  1.69E4+01 6.42E+02 8.86E—05 9.95E—01 1.66E+03 4.88E4+01 3.98E+00 2.69E+01
f15  0.00E+00 1.05E+00 0.00E+00 0.00E+00 7.54E+00 0.00E+00 0.00E4+00 0.00E+00
f16  1.19E—06 1.84E—01 3.01E-03 0.00E+00 1.97E+03 3.03E—02 3.90E—11 2.10E—02
f17  1.02E400 1.15E+02 S5.99E—01 1.49E4+00 3.60E+03 3.20E4+01 2.25E+00 3.70E+00
f18 5.97E+00 5.46E+02 1.98E—04 0.00E+00 9.39E+02 1.79E+01 9.95E—01 6.25E+400
f19  0.00E+00 2.10E+00 0.00E+00 0.00E+00 2.52E+01 0.00E+00 0.00E4+00 0.00E+00

According to the percentage of success in finding the global optimum and running

times, algorithms produced results in a short time if they converged the global optimum
easily. If an algorithm cannot find the global optimum in the maximum number of function



434 B. Afsar et al.

Table 13
p-values from the Friedman test.
Comparisons 50D 100D 500D
vs. AIABC vs. SalABC vs. AIABC vs. SalABC vs. AIABC vs. SalABC
ABC 0.21 0.16 0.26 0.17 0.59 0.98
BsfABC 4.24E—04 2.40E—04 8.18E—04 3.39E—04 0.003 0.014
MABC 4.96E—05 2.60E—05 3.32E-06 1.02E—06 1.35E—07 2.49E—-06
IABC 3.50E—-07 1.58E—07 1.35E-07 3.61E—-08 2.18E—07 2.49E—06
CABC 0.29 0.22 0.59 0.44 0.81 0.42
RABC 0.31 0.25 0.68 0.51 0.26 0.57
IncABC 0.88 0.77 0.85 0.95 0.42 0.17

evaluation limit, the running times are proportional to the maximum number of function
evaluations. For example, BsfABC could not find the global optimum for the benchmark
functions with default parameter values, so the running times are so big. Running times
and success rates of the algorithms can be found in the supplementary file (Afsar et al.,
2016) obtained in the 25 independent runs by each algorithm. According to the results,
ATABC and SalABC consumed less time in general because of their success rates that
are high compared to other ABC variants. Therefore, the overload of the two proposed
parameter control methods is so low. ATABC and SalABC is more speedy than the [ABC
algorithm for all functions and dimensions and competitive with the other ABC variants.

4.4. Comparison of Adaptive IABC Algorithms and State-of-the-Art Algorithms

In this section, we presented the comparison results of SalABC and AIABC algorithms
with the SOCO competitors. The results of compared algorithms are taken directly from
their papers or competition website (http://sci2s.ugr.es/EAMHCO). The de-
tailed comparison results on 50, 100 and 500 dimensional function are listed in sup-
plementary document (Afgar ef al., 2016). On the other hand, Figs. 9 and 10 show the
boxplots representing the median error distributions of the 19 SOCO functions obtained
with SalABC and AIABC, and the competitor algorithms published in the special issue of
Soft Computing journal and the algorithms provided as base-reference techniques, CHC
(Eshelman and Schaffer, 1993), GCMAES (Auger and Hansen, 2005) and DE (Storn and
Price, 1997) for dimensions 100 and 500. As seen in Figs. 9 and 10, it is noteworthy that the
proposed algorithms perform competitively to state-of-the-art algorithms. If one consid-
ers the comparison results 50 and 100 SOCO functions listed in supplementary document
(Afgsar et al., 2016), median errors of SaAIABC and ATABC are below the optimal threshold
13 or 14 times of the 19 SOCO functions. Only MOS-DE matches such a performance.
For 500 dimensional functions, SalABC and AIABC algorithms’ performances decrease.
However, the average performance of the algorithms is very similar to SOCO competi-
tors except MOS-DE. Finally, we conducted Friedman test on the results of compared
algorithm for 50, 100 and 500 dimensional functions. Friedman test confirms significant
improvements of proposed algorithms over CHC, GCMAES and EVOPROpt for all cases.
Moreover, no other considered algorithms are better than the proposed algorithms accord-
ing to statistical results for 50 and 100 dimensional functions. Only MOS-DE which is the



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA

435

]
=)
<
>1e+06*§ o
%J og o ° © ° o
S1es014 E"eég%gﬁg"ei g °
S s ‘ e8|,
S1e-04 1 i i
n ' j '
S g 3 °
H1e-09- |7 ; 0
c - . .
8 : :
B1e-14 ‘ : - D
§ T T T T 1T T T T T T T T T T T TT
CELNESEEESZ8ELET2R3
T2 005 o 0 : ElG
O 4328320 ),6255I<2
SSUETO8 00005y
Qljol o -ﬁ§§&u.|wo
o uw 5 2
o ]

Fig. 9. Median errors of objective value for adaptive IABCs and state-of-the-art algorithms on the 100 dimen-

sional SOCO functions.

]
2
©
> 1e+06 | © °© o o
g o o o 0080 ° 5 e °
3 EEESS o © s 8 g
81e+014 3 °
o 3 3 :
C1e-04 1 | 3 3
£ ! : : o
2 : : : °
wle-09 - 3 3
c i : : D
8 ' b :
81e-14 Ll ‘
E T T T T T 1T T T T T T T T T T TT
w wn M e Ww w 0N w= o
%Dmgggooggogb—ogm%g
O L3S8x802n,,A=2a30<<
£eiaCPow18332a%<pm
< 5] A<V ITOoT> " w
5378 SE3f4ido
Ow 3 2
[a) ]

Fig. 10. Median errors of objective value for adaptive IABCs and state-of-the-art algorithms on the 500 dimen-
sional SOCO functions.

winner algorithm of the SOCO competition is significantly better than SalAB and AIABC
for 500 dimensional functions.

5. Conclusion

IABC is a recent algorithm which increases the convergence speed of original ABC algo-
rithm on low dimensional functions. However, our recent work proved that performance
of IABC was decreasing dramatically when the problem size was increased (Liao er al.,
2013). The main reason of this case is that IABC has some critical parameters which are
very sensitive to problem type and dimension and play a key role in the algorithm’s perfor-
mance. However, it is difficult to select a suitable strategy and the associated parameters,
since their best settings can be different for different problems. Therefore, the main ob-
jective of this paper is to determine if the performance of IABC algorithm can improve



436 B. Afsar et al.

on large dimensional problems if the strategic parameters of the algorithm are determined
adaptively. For this purpose, two adaptive parameter control mechanisms are proposed for
IABC: adaptive IABC (AIABC) and self-adaptive IABC (SalABC). In AIABC, strategic
parameters can be gradually adapted to problem type according to their previous suc-
cessful experience during progress of the algorithm. In SalABC, strategic parameters are
added to each candidate solution vector as new dimensions and the appropriate values of
them are generated with search equations in employed bees and onlooker bees steps. We
compared the proposed algorithms to TABC with default and tuned parameter settings on
large-scale benchmark functions and demonstrated that the proposed algorithms are sig-
nificantly better than IABC for all cases. Likewise, comparison of the proposed algorithms
with other ABC variants and state-of-the-art algorithms give evidence that ATABC and
SalABC are highly competitive algorithms for large scale continuous optimization prob-
lems.

References

Abbass, H.A. (2002). The self-adaptive pareto differential evolution algorithm. In: Evolutionary Computation,
2002. CEC’02. In: Proceedings of the 2002 Congress on, IEEE, Vol. 1, pp. 831-836.

Afsar, B., Aydin, D., Ugur, A., Korukoglu, S. (2016). Online supplementary material to self-adaptive and adap-
tive parameter control in improved artificial Bee Colony Algorithm. Available at http://mfl.dpu.edu.tr/~
daydin/supplIABC.pdf.

Akay, B., Karaboga, D. (2012). A modifed artficial bee colony algorithm for real-parameter optimization. Infor-
mation Sciences, 192, 12—-142.

Alatas, B. (2010). Chaotic bee colony algorithms for global numerical optimization. Expert Systems with Appli-
cations, 37(8), 5682-5687.

Auger, A., Hansen, N. (2005). A restart CMA evolution strategy with increasing population size. In: Proceedings
of the 2005 IEEE Congress on Evolutionary Computation, pp. 1769-1776.

Aydin, D. (2015). Composite artificial bee colony algorithms: From component-based analysis to high-
performing algorithms. Applied Soft Computing, 32, 266-285.

Aydin, D., Liao, T., de Oca M.A.M., Stiitzle, T. (2012). Improving performance via population growth and local
search: the case of the artificial bee colony algorithm. In: Artificial Evolution. Springer, pp. 85-96.

Banharnsakun, A., Achalakul, T., Sirinaovakul, B. (2011). The best-so-far selection in artificial bee colony al-
gorithm. Applied Soft Computing, 11(2), 2888-2901.

Birattari, M., Yuan, Z., Balaprakash, P., Stiitzle, T. (2010). F-race and iterated f-race: an overview. In: Experi-
mental Methods for the Analysis of Optimization Algorithms. Springer, pp. 311-336.

Das, S., Suganthan, P.N. (2011). Differential evolution: a survey of the state-of-the-art. IEEE Transactions on
Evolutionary Computation, 15(1), 4-31.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD Thesis, Politecnico di Milano, Italy.

Eiben, A.E., Hinterding, R., Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. /EEE Trans-
actions on Evolutionary Computation, 3(2), 124—141.

Eshelman, L.J., Schaffer, J.D. (1993). Real-coded genetic algorithms and interval-schemata. In: Whitley, L.D.
(Ed.), Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo, pp. 187-202.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. The Annals
of Mathematical Statistics, 11(1), 86-92.

Giamperle, R., Miiller, S.D., Koumoutsakos, P. (2002). A parameter study for differential evolution. Advances in
Intelligent Systems, Fuzzy Systems, Evolutionary Computation, 10, 293-298.

Gao, W., and Liu, S. (2011). Improved artificial bee colony algorithm for global optimization. Information Pro-
cessing Letters, 111(17), 871-882.

Hao, Z., Huang, H., Qin, Y., Cai, R. (2007). An ACO algorithm with adaptive volatility rate of pheromone trail.
In: Computational Science, ICCS 2007. Springer, pp. 1167-1170.



Self-Adaptive and Adaptive Parameter Control in Improved Artificial BCA 437

Kang, F.,, Li, J., Ma, Z. (2011). Rosenbrock artificial bee colony algorithm for accurate global optimization of
numerical functions. Information Sciences, 181(16), 3508-3531.

Karaboga, D., Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: arti-
ficial bee colony (abc) algorithm. Journal of Global Optimization, 39(3), 459-471.

Kennedy, J. (2010). Particle swarm optimization. In: Encyclopedia of Machine Learning. Springer, pp. 760-766.

Liao, T., Aydin, D., Stiitzle, T. (2013). Artificial bee colonies for continuous optimization: experimental analysis
and improvements. Swarm Intelligence, 7(4), 327-356.

Lobo, F.G., Lima, C.F., Michalewicz, Z. (2007). Parameter Setting in Evolutionary Algorithms, Vol. 54. Springer.

Lozano, M., Molina, D., Herrera, F. (2011). Editorial scalability of evolutionary algorithms and other meta-
heuristics for large-scale continuous optimization problems. Soft Computing, 15(11), 2085-2087.

Qin, A.K., Huang, V.L., Suganthan, P.N. (2009). Differential evolution algorithm with strategy adaptation for
global numerical optimization. /EEE Transactions on Evolutionary Computation, 13(2), 398-417.

Ronkkonen, J., Kukkonen, S., Price, K.V. (2005). Real-parameter optimization with differential evolution. In:
Proceedings of the IEEE CEC, Vol. 1, pp. 506-513.

Storn, R., Price, K. (1997). Differential evolution — a simple and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization, 11(4), 341-359.

Stiitzle, T., Lépez-Ibdnez, M., Pellegrini, P., Maur, M., de Oca, M.M., Birattari, M., Dorigo, M. (2012). Parameter
adaptation in ant colony optimization. In: Autonomous Search. Springer, pp. 191-215.

Yang, X.S., and Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathe-
matical Modelling and Numerical Optimisation, 1(4), 330-343.

Zhaoquan, C., Huang, H., Yong, Q., Xianheng, M. (2009). Ant colony optimization based on adaptive volatility
rate of pheromone trail. International Journal of Communications, Network and System Sciences, 2(8), 792.



438 B. Afsar et al.

B. Afsar is an independentresearcher. Previously, he was research assistant in Department
of Computer Engineering at Mugla Sitki Kogman University, Mugla. He received the PhD
degree in computer engineering at Ege University, Izmir. His research interests are in the
areas of metaheuristics, continuous optimization, self-adaptive approaches and model-
driven software development. He has published conference papers in area of model-driven
development and metaheuristics.

D. Aydin is an associate professor of computer engineering at Dumlupinar University,
Kiitahya. He was also a visiting researcher in IRIDIA at Universite Libr de Bruxelles,
Brussels. He received the PhD degree in computer engineering at Ege University, Izmir.
He is guest editor of two international journals and referee in several high-impact scientific
journals in the frame of artificial intelligence and energy. He has published more than 30
papers in journals and conferences. His main research interests are: metaheuristics, con-
tinuous optimization, swarm intelligence, automatic parameter configuration and image
processing.

A. Ugur is a full-time professor in the Department of Computer Engineering at Ege Uni-

versity, [zmir, Turkey. He received his BS, MSc and PhD degrees in computer engineer-
ing from Ege University, Izmir, Turkey, in 1993, 1996, 2001, respectively. His research
interests are artificial intelligence, swarm intelligence, optimization, intelligent systems,
computer vision and computer graphics.

S. Korukoglu is a full-time professor in the Department of Computer Engineering at Ege

University, Izmir, Turkey. He received his BS degree in Industrial Engineering, MSc in
Applied Statistics and PhD in computer engineering from Ege University, Izmir, Turkey, in
1978, 1980 and 1984, respectively. He was in Reading University of England as a visiting
research fellow in 1985. His research interests include discrete-event simulation, statistical
analysis, optimization techniques and algorithms, and applied computing.



