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Abstract. Interval-valued intuitionistic hesitant fuzzy sets (IVIHFSs) are useful to denote the deci-

sion makers’ interval preferred, interval non-preferred and hesitant opinions simultaneously. Con-

sidering the application of IVIHFSs, this paper introduces a new decision-making method with

interval-valued intuitionistic hesitant fuzzy information that extends the application scopes. To do

this, the interval-valued intuitionistic hesitant fuzzy hybrid Shapley weighted averaging (IVIHFH-

SWA) operator and the interval-valued intuitionistic hesitant fuzzy hybrid Shapley weighted geo-

metric (IVIHFHSWG) operator are defined to aggregate the collective attribute values of alterna-

tives. To reflect the interactions and reduce the complexity of calculating the weights, the 2-additive

measures are used to define these two hybrid Shapley weighted operators. To derive the exact weight

information of attributes and ordered positions, the associated programming models for determining

the optimal 2-additive measures are constructed that are based on the defined Hamming distance

measure. To show the feasibility and efficiency of the new method, a practical decision-making

problem is offered, which is also used to compare with the previous methods.

Key words: decision making, interval-valued intuitionistic hesitant fuzzy set, Choquet integral,

hamming distance, Shapley function.

1. Introduction

With the socioeconomic development, the complexity of decision-making problems is

constantly increasing. To denote the fuzzy and uncertain information in decision mak-

ing, researchers applied fuzzy sets introduced by Zadeh (1965) to cope with this situa-

tion. Later, Atanassov (1983) noted that fuzzy sets can only express the decision mak-

ers’ preference information and introduced the concept of intuitionistic fuzzy sets (IFSs),
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which are expressed by two real values in [0,1] to denote the membership and non-

membership degrees, respectively. However, due to various kinds of reasons, it is not

an easy thing to give the exact values of the membership and non-membership degrees.

Thus, Atanassov and Gargov (1989) further gave the concept of interval-valued intuition-

istic fuzzy sets (IVIFSs) that apply two intervals in [0,1] to give the uncertain member-

ship and non-membership information. Following the original works of Atanassov (1983)

and Atanassov and Gargov (1989), the theory and application of decision making with

(interval-valued) intuitionistic fuzzy sets are developed and becomes a hot researching

topic (Beliakov and Janes, 2013; Chen and Huang, 2017; Gou and Xu, 2017; Garg, 2017;

Liu et al., 2017a; Meng and Chen, 2017; Meng et al., 2017d; Ureña et al., 2015;

Wang and Chen, 2017).

Recently, Torra (2010) found that there might be several values for a judgment rather

than only one. To address this issue, Torra (2010) introduced the definition of hesitant

fuzzy sets (HFSs), which are denoted by several values in [0,1]. To endow the decision

makers with more rights to denote their hesitant information, Chen et al. (2013) proposed

interval-valued hesitant fuzzy sets (IVHFSs) that use several intervals in [0,1] to express

the decision makers’ uncertain hesitancy. To calculate the collective attribute values, the

authors introduced two aggregation operators: the generalized interval-valued hesitant

fuzzy hybrid averaging (IVHFWA) operator and the generalized interval-valued hesitant

fuzzy hybrid geometric (GIVHFWG) operator. Furthermore, He et al. (2016) developed

an approach to group decision making with interval-valued hesitant fuzzy information us-

ing the interval-valued hesitant fuzzy weighted power Bonferroni mean (IVHFWPBM)

operator. Jin et al. (2016) studied the cross-entropy and similarity measures of interval-

valued hesitant fuzzy elements (IVHFEs) and illustrated their application for evaluating

emergency risk management (ERM). Note that the cross-entropy and similarity measures

in Jin et al. (2016) require the considered IVHFEs to have the same length; otherwise,

it needs to extend the IVHFEs with the shorter length. Meng et al. (2016) considered

the correlation coefficients of IVHFEs, which permit IVHFEs to have the different num-

bers of intervals. To address the situations where the weights of attributes are interactive,

Meng and Chen (2014) defined the induced generalized interval-valued hesitant fuzzy hy-

brid Shapley averaging (IG-IVHFHSWA) operator and the induced generalized interval-

valued hesitant fuzzy hybrid Shapley geometric mean (IG-IVHFHSGM) operator, which

are general cases of the Chen et al.’s aggregation operators.

From the concepts of interval-valued intuitionistic fuzzy sets and interval-valued hes-

itant fuzzy sets, one can find that the former denotes the interval preferred and non-

preferred degrees of the decision makers, while the latter indicates the decision makers’

hesitancy. However, they cannot express the decision makers’ interval preferred, inter-

val non-preferred and hesitant opinions simultaneously. Thus, Zhang (2013) presented

interval-valued intuitionistic hesitant fuzzy elements (IVIHFEs) that use several interval-

valued intuitionistic fuzzy values (IVIFVs) (Xu and Chen, 2007) to denote the decision

makers’ opinions. Then, the author defined a series of aggregation operators to rank ob-

jects. Later, Joshi and Kumar (2016) developed a method to multi-criteria decision making

with interactive characteristics, which is based on the interval-valued intuitionistic hesi-

tant fuzzy Choquet integral (IVIHFCI) operator with respect to the λ-fuzzy measures and



Interval-valued Intuitionistic Hesitant Fuzzy Decision Making 159

the hamming distance on IVIHFEs. The IVIHFCI operator can be seen as an extension of

the ordered weighted averaging (OWA) operator in the setting of interactions. However,

the Yager’s OWA operator is associated with the weights of the ordered positions, while

the IVIHFCI operator considers the weights of the criteria. This means that the objects’

comprehensive criteria values calculated by using the IVIHFCI operator are based on the

different criteria weight vectors, namely, the different evaluation standards are used for the

different objects. Furthermore, the λ-fuzzy measures can only reflect the complementary

or redundant interactions between elements in a set, but they cannot deal with these two

aspects simultaneously. Nevertheless, when the importance of the elements is interdepen-

dent, we cannot guarantee that there are only complementary or redundant interactions

between them. Moreover, the hamming distance on IVIHFEs is unreasonable either. Just

as Meng et al. (2016) noted, it is not suitable to extend the shorter IVIHFE to the length

of the longer IVIHFE by adding some IVIFV several times since it drives a different IVI-

HFE. Note that the methods in Zhang (2013), Joshi and Kumar (2016) are both based on

the operational laws in (Xu and Da, 2002), which have some undesirable properties.

This paper continues to study decision making with interval-valued intuitionistic hesi-

tant fuzzy information and introduces a new method that can address the situations where

the weight information is incompletely known and has interactive characteristics. To do

this, the interval-valued intuitionistic hesitant fuzzy hybrid Shapley weighted averaging

(IVIHFHSWA) operator and the interval-valued intuitionistic hesitant fuzzy hybrid Shap-

ley weighted geometric mean (IVIHFHSWGM) operator are defined. Note that when

the applied fuzzy measures are 2-additive measures, we derive the IVIHFHSWA and

IVIHFHSWGM operators with respect to 2-additive measures. Using the Shapley func-

tion, models for determining the optimal fuzzy measures and 2-additive measures on the

attribute set and the ordered position set are constructed. The rest of this paper is orga-

nized as follows: Section 2 first reviews several basic concepts including fuzzy measures,

Choquet integral, λ-fuzzy measures and IVIHFEs. Then, the IVIHFCI operator (Joshi and

Kumar, 2016) is listed. Meanwhile, it analyses the limitations of the IVIHFCI operator.

Section 3 defines two new interval-valued intuitionistic hesitant fuzzy aggregation oper-

ators by using the Shapley function and briefly studies several special cases. Section 4

first recalls the hamming distance in Joshi and Kumar (2016) and points out its limita-

tions. Then, a new hamming distance measure is defined that avoids the limitations in

the Joshi and Kumar’s hamming distance. When the weight information is not exactly

known, models for the optimal fuzzy measures and 2-additive measures on the criteria set

and the ordered position set are constructed, respectively. Section 5 gives a new group de-

cision making with interval-valued intuitionistic hesitant fuzzy information. Furthermore,

a practical decision-making problem about the development of large projects is offered to

show the concrete application of the new method. Meanwhile, the comparison analysis is

made. Conclusions and future remarks are offered in the last section.

2. Several Concepts

This section contains three parts. The first part reviews the concepts of fuzzy measures

and the Choquet integral. The second section recalls interval-valued intuitionistic hesitant
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fuzzy elements (IVIHFEs), several operations and a ranking order relationship. The last

section lists three previous aggregation operators.

2.1. Fuzzy Measures and the Choquet Integral

Just as researchers (Beliakov and Janes, 2011; Grabisch, 1995, 1996, 1997; Fujimoto et

al., 2006; Tan, 2011; Tan et al., 2011; Xu, 2010) noted, the independence of the weights

of criteria in a decision-making problem is usually violated. To deal with this case, fuzzy

measures introduced by Sugeno (1974) are good choices, which not only give the impor-

tance of each element but also consider the weights of all their combinations.

Definition 1 (Sugeno, 1974). A fuzzy measure on finite set X = {x1, x2, . . . , xn} is a set

function µ : P(X) → [0,1] satisfying

(i) µ(∅) = 0,µ(X) = 1,

(ii) For all A,B ∈ P(X) with A ⊆ B , we have µ(A)6 µ(B), where P(X) is the power

set of X.

When X denotes the criteria set in a decision-making problem, µ(A) can be viewed

as the importance of the criteria in A. Just as some researchers noted, there are three cases

for the interactions between the weights of criteria. Let A and B be any two subsets in

X such that A ∩ B = ∅. When µ(A) + µ(B) = µ(A ∪ B), then there is no interaction

between the weights of the criteria in subsets A and B . When µ(A) + µ(B) < µ(A ∪

B), then the complementary interaction exists between their weights. Furthermore, when

µ(A) + µ(B) > µ(A ∪ B), we know that their important interaction is redundant.

Although fuzzy measures are powerful tools to reflect the interactions between the

weights of criteria, they define on the power set. This means that we need 2
n−2 coefficients

to determine a fuzzy measure on a set with n elements. To address this issue, some special

types of fuzzy measures are introduced such as λ-fuzzy measures (Sugeno, 1974) and k-

additive measures (Grabisch, 1997).

Definition 2 (Sugeno, 1974). Let X = {x1, x2, . . . , xn} be a finite set. A fuzzy measure

gλ on X is called a λ- fuzzy measure if it satisfies

gλ(A ∪ B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), (1)

where λ > −1, and A,B ⊆ X with A ∩ B = ∅.

Remark 1. One can check that when λ = 0, then gλ is an additive measure. This means

that the weights of the elements in subsets A and B are independent. When λ > 0, there

is a complementary interaction between their weights, and the interaction between their

weights is redundant for −1 < λ < 0.



Interval-valued Intuitionistic Hesitant Fuzzy Decision Making 161

From formula (1), one can check that the λ-fuzzy measure gλ can be equivalently

expressed as:

gλ(A) =

{

1

λ
(
∏

i∈A[1 + λgλ(i)] − 1) if λ 6= 0,
∑

i∈A gλ(i) if λ = 0.
(2)

From µ(X) = 1, we know that λ can be determined as:

∏

i∈N

[

1 + λgλ(i)
]

= 1 + λ. (3)

Thus, when the importance of each element in X is known, we can use formula (3)

to determine the value of λ. Then, we can further apply formula (2) to get the λ-fuzzy

measure gλ.

Considering decision-making problems with interactive characteristics, it needs some

other tools to obtain the comprehensive criteria values of the objects. The Choquet integral

on discrete sets introduced by Grabisch (1996) is one of the most applied tools, which is

explicitly defined as follows:

Definition 3 (Grabisch, 1996). Let f be a positive real-valued function on X =

{x1, x2, . . . , xn}, and µ be a fuzzy measure on X. The discrete Choquet integral of f

with respect to µ is defined as:

Cµ

(

f (x(1)), f (x(2)), . . . , f (x(n))
)

=

n
∑

i=1

f (x(i))
(

µ(A(i)) − µ(A(i+1))
)

, (4)

where (·) indicates a permutation on N such that f (x(1))6 f (x(2)) 6 · · ·6 f (x(n)), and

A(i) = {x(i), . . . , x(n)} with A(n+1) = ∅.

After the pioneer work of Grabisch (1996), many decision-making methods based on

the Choquet integral are developed (Beliakov, 2005; Xu, 2010; Tan, 2011; Tan et al., 2011;

Joshi and Kumar, 2016).

2.2. The Concept of IVIHFEs

With the constant increasing complexity of decision making problems, many extended

types of fuzzy sets are proposed. To express the uncertain membership and non-

membership information as well as the hesitancy of the decision makers, Zhang (2013)

presented the concept of IVIHFEs that are composed by several interval-valued intuition-

istic fuzzy values (IVIFVs) (Xu and Chen, 2007).

Definition 4 (Zhang, 2013). Let X = {x1, x2, . . . , xn} be a finite set. An interval-valued

intuitionistic fuzzy set (IVIHFS) Ẽ on X is defined in terms of a function that when applied

to X it returns a subset of the set of all IVIFVs, denoted by Ẽ = {〈xi, hẼ
(x)〉, xi ∈ X},
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where h
Ẽ
(x) is a set of several IVIFVs denoting the possible interval membership and

non-membership degrees of the element xi ∈ X to the set Ẽ. For simplicity, h̃ = hẼ(x) is

called the interval-valued intuitionistic hesitant fuzzy element (IVIHFE), and H̃ is the set

of all IVIHFEs. Any α̃ ∈ h̃ is an IVIFV, denoted by α̃ = ([µl,µu], [vl, vu]).

Remark 2. From Definition 4, one can check that IVIHFEs can be viewed as an exten-

sion of several types of fuzzy sets including hesitant fuzzy values (HFVs) (Torra, 2010),

interval-valued intuitionistic fuzzy values (IVIFVs) (Atanassov and Gargov, 1989) and

interval-valued hesitant fuzzy values (IVHFVs) (Chen et al., 2013).

Following the operations on IVIFVs (Xu and Chen, 2007), Zhang (2013) defined the

following operational laws on IVIHFEs. Let h̃, h̃1 and h̃2 be any three IVIHFEs in H̃ .

Then,

(i) h̃1 ⊕ h̃2 = {α̃i ⊕ α̃j |α̃i ∈ h̃1, α̃j ∈ h̃2} = {([µi
l + µ

j
l − µi

lµ
j
l ,µ

i
u + µ

j
u −

µi
uµ

j
u], [v

i
l v

j
l , vi

uv
j
u])|α̃i ∈ h̃1, α̃j ∈ h̃2};

(ii) h̃1 ⊗ h̃2 = {α̃i ⊗ α̃j |α̃i ∈ h̃1, α̃j ∈ h̃2} = {([µi
lµ

j
l ,µ

i
uµ

j
u], [v

i
l + v

j
l − vi

l v
j
l , vi

u +

v
j
u − vi

uv
j
u])|α̃i ∈ h̃1, α̃j ∈ h̃2};

(iii) λh̃ = {λα̃|α̃ ∈ h̃} = {([1 − (1 − µl)
λ,1 − (1 − µu)

λ], [vλ
l , vλ

u])|α̃ ∈ h̃}, λ ∈ [0,1];

(iv) h̃λ = {α̃λ|α̃ ∈ h̃} = {([µλ
l ,µ

λ
u], [1 − (1 − vl)

λ,1 − (1 − vu)λ])|α̃ ∈ h̃}, λ ∈ [0,1].

Considering the order relationship between IVIHFEs, similar to Xu and Chen (2007),

Zhang (2013) introduced the concepts of the score function and the accuracy function on

IVIHFEs. Let h̃ be an IVIHFE in H̃ , then its score function is given as:

s(h̃) =
1

#h̃

∑

α̃∈h̃

µl + µu − vl − vu

2
(5)

and the accuracy function is defined as follows:

a(h̃) =
1

#h̃

∑

α̃∈h̃

µl + µu + vl + vu

2
(6)

where #h̃ denotes the number of IVIFVs in h̃.

Let h̃1 and h̃2 be any two IVIHFEs in H̃ . Then, their order relationship is listed as

follows:

If s(h̃1) < s(h̃2), then sh̃1 < h̃2.

If s(h̃1) = s(h̃2), then

{

a(h̃1) < a(h̃2) ⇒ h̃1 < h̃2,

a(h̃1) = a(h̃2) ⇒ h̃1 = h̃2.

2.3. Several Interval-Valued Intuitionistic Hesitant Fuzzy Aggregation Operators

To compute the comprehensive values of alternatives, Zhang (2013) introduced the fol-

lowing two interval-valued intuitionistic hesitant fuzzy hybrid aggregation operators:
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Definition 5 (Zhang, 2013). Let h̃i , i = 1,2, . . . , n, be a collection of IVIHFEs,

which has an associated weight vector w = (w1,w2, . . . ,wn)
T on the ordered set N =

{1,2, . . . , n} such that wj ∈ [0,1] and
∑n

j=1
wj = 1. Then,

(i) the interval-valued intuitionistic hesitant fuzzy hybrid averaging (IVIHFHA) op-

erator is defined as follows:

IVIHFHAw,ω(h̃1, h̃2, . . . , h̃n) =

n
⊕

i=1

wi h̃
′
σ(i) (7)

where h̃′
σ(i)

is the ith largest value of is the weighted arguments nωj h̃j , j =

1,2, . . . , n, ω = (ω1,ω2, . . . ,ωn)
T is the weight vector on {h̃i}i∈{1,2,...,n} with

ωi > 0 and
∑n

i=1
ωi = 1, and n is the balancing coefficient;

(ii) the interval-valued intuitionistic hesitant fuzzy hybrid geometric (IVIHFHG) op-

erator is defined as follows:

IVIHFHGw,ω(h̃1, h̃2, . . . , h̃n) =

n
⊗

i=1

(h̃σ(i))
wi (8)

where h̃σ(i) is the ith largest value of is the weighted arguments h̃
nωj

j , j =

1,2, . . . , n, and the other notations as shown in formula (7).

Recently, Joshi and Kumar (2016) noted that the Zhang’s aggregation operators are

based on the assumption that the importance of criteria is independent. To extend the

application of IVIHFEs in decision making, Joshi and Kumar (2016) used the Choquet

integral with respect to the λ-fuzzy measures to define the following interval-valued intu-

itionistic hesitant fuzzy Choquet integral (IVIHFCI) operator:

Definition 6 (Joshi and Kumar, 2016). Let µ be a fuzzy measure on X = {x1, x2, . . . , xn},

and h̃i , i = 1,2, . . . , n, be a collection of IVIHFEs on X. The IVIHFCI operator is a map-

ping IVIHFCI: H̃ n → H̃ , defined as:

IVIHFCI(h̃1, h̃2, . . . , h̃n)

=
⊗n

i=1
(h̃(i))

µ(A(i))−µ(A(i+1))

{[
∏n

i=1

(

µ
(i)
l

)µ(A(i))−µ(A(i+1)),
∏n

i=1

(

µ
(i)
u

)µ(A(i))−µ(A(i+1))
]

,
[

1 −
∏n

i=1

(

1 − v
(i)
l

)µ(A(i))−µ(A(i+1)),1 −
∏n

i=1

(

1 − v
(i)
u

)µ(A(i))−µ(A(i+1))
]

∣

∣α̃(i) ∈ h̃(i), i = 1,2, . . . ,N
}

,

(9)

where (·) is a permutation on the subscripts of the elements in X such that h̃(1) 6 h̃(2) 6

· · ·6 h̃(n), A(i) = {h̃(i), . . . , h̃(n)} and A(n+1) = ∅.

Remark 3. Although the IVIHFCI operator can cope with the situations where the im-

portance of criteria in a decision-making problem is interactive, it is not a good tool to
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calculate the comprehensive values of the objects. As well known, the fundamental princi-

ple of the Yager’s OWA operator is to rearrange the considered elements, and their weights

are only related to the ordered positions. The Choquet integral, as an extension of the OWA

operator, also has this property, namely, the fuzzy measure should be defined on the or-

dered position set rather than on the criteria set. Otherwise, when the Choquet integral

operator is applied to calculate the objects’ comprehensive values, it may endow the same

criterion with the different weights just because the objects’ criteria values are different.

This seems to be undesirable.

Example 1 (Joshi and Kumar, 2016). Let us consider the decision-making problem about

selecting the project manager, where the IVIHFSs ẼA1
, ẼA2

and ẼA3
for the candidates

A1, A2 and A3 with respect to the criteria {C1: knowledge; C2: reliability; C3: demanding

} are defined as follows:

ẼA1
=

{〈

C1,
{(

[0.7,0.9], [0.1,0.1]
)

,
(

[0.6,0.8], [0.1,0.2]
)

,
(

[0.3,0.4].[0.6,0.6]
)}〉

,

〈C2

{(

[0.5,0.6], [0.2,0.3]
)

,
(

[0.1,0.1], [0.8,0.9]
)}

〉,

〈C3,
{(

[0.8,0.9], [0.1,0.1]
)}

〉
}

,

ẼA2
=

{〈

C1,
{(

[0.3,0.5], [0.4,0.5]
)}〉

,
〈

C2,
{(

[0.8,0.9], [0.1,0.1]
)

,
(

[0.5,0.7], [0.1,0.2]
)}〉

,
〈

C3,
{(

[0.2,0.3], [0.5,0.6]
)

,
(

[0.1,0.3], [0.6,0.6]
)}〉}

and

ẼA3
=

{〈

C1,
{(

[0.2,0.4], [0.3,0.5]
)

,
(

[0.5,0.7], [0.1,0.2]
)}〉

,
〈

C2,
{(

[0.1,0.1], [0.7,0.9])
}〉

,
〈

C3,
{(

[0.1,0.3], [0.6,0.7]
)

,
(

[0.2,0.2], [0.7,0.8]
)

,
(

[0.3,0.4], [0.6,0.6]
)}

〉
}

.

According to the ranking method on IVIHFEs, we derive h̃2(A1) < h̃1(A1) < h̃3(A1),

h̃3(A3) < h̃1(A3) < h̃2(A3) and h̃2(A4) < h̃3(A4) < h̃1(A4) with respect to ẼA1
, ẼA2

and ẼA3
, respectively. When µ(C1) = µ(C3) = 0.4 and µ(C2) = 0.3, using formula (3)

we derive λ = −0.258. Thus, the fuzzy measures are

µ(C1,C2) = µ(C2,C3) = 0.669, µ(C1,C3) = 0.769, µ(C1,C2,C3) = 1.

From the IVIHFCI operator, we know that the weights of the criteria C1, C2, and C3

are 0.369, 0.231 and 0.4 for the candidate A1, their weights are respective of 0.369, 0.3 and

0.331 for the candidate A2, while they are 0.4, 0.231 and 0.369 for the candidate A3 (see

Table 1). None of them are the same for these candidates. This means that the evaluations

of these three candidates are based on the different standards. It is unreasonable to give

their ranking orders by using the comprehensive IVIHFEs obtained from the IVIHFCI

operator.
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Table 1

The weights of the criteria with respect to the different

candidates.

The candidates The weights of the criteria

C1 C2 C3

A1 0.369 0.231 0.400

A2 0.369 0.300 0.331

A3 0.400 0.231 0.369

Remark 4. Although the λ-fuzzy measures can simplify the complexity of determining

fuzzy measures, especially, when the set has a large number of elements, there are some

limitations. From formula (3), one can verify that −1 < λ < 0, when the sum of each

element’s weight is bigger than one; If the sum of each element’s weight is smaller than

one, we derive λ > 0, and we have λ = 0 when the sum of each element’s weight is equal

to one. This shows that their interactions are completely determined by their respective

weights.

Furthermore, the λ-fuzzy measures can only reflect the complementary interactions,

redundant interactions or independency between the elements’ weights. The question is

when the exact fuzzy measure on an element set is unknown, how can we ensure that there

are only complementary interactions, redundant interactions or independency between

their weights? Furthermore, the interactive characteristics should be determined by the

characteristics of criteria themselves rather than their respective weights.

These properties indicate that the λ-fuzzy measures are unsuitable to give the interac-

tions between the weights of criteria. For example, Grabisch (1995) introduced the well-

known example to show the application of the Choquet integral, which is about the evalu-

ation of the students in relation to three subjects: {mathematics, physics, literature}, where

the importance is respectively defined by 0.375, 0.375 and 0.3. On the other hand, more

importance is attributed to science-related subjects than to literature, but some advantages

are given to the students that are good both in literature and in any of the science-related

subjects. In this situation, the λ-fuzzy measures seem to be helpless since λ = 0 by formula

(3), which cannot reflect interactions between the weights of these three subjects.

In this example, one can find that the interactions between the weights of the criteria

have no direct relationship with respect to the sum of each criterion’s weight. Furthermore,

there may be complementary and redundant interactions simultaneously.

3. New Interval-Valued Intuitionistic Hesitant Fuzzy Aggregation Operators

Considering the previous aggregation operators that cannot well address the situation

where the weights of elements in a set are interactive, the section defines several new

ones. Before defining the new aggregation operators, let us first introduce the following

two new operations on IVIHFEs:

Definition 7. Let h̃1 and h̃2 be any two IVIHFEs in H̃ . Then,

(i) λ1h̃1 ⊕ λ2h̃2 = {λ1α̃i ⊕ λ2α̃j |α̃i ∈ h̃1, α̃j ∈ h̃2} = {([λ1µ
i
l + λ2µ

j

l , λ1µ
i
u +

λ2µ
j
u], [λ1v

i
l + λ2v

j
l , λ1v

i
u + λ2v

j
u])|α̃i ∈ h̃1, α̃j ∈ h̃2},
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(ii) h̃
λ1

1
⊗ h̃

λ2

2
= {α̃

λ1

i ⊗ α̃
λ2

j |α̃i ∈ h̃1, α̃j ∈ h̃2} = {([(µi
l)

λ1(µ
j
l )

λ2, (µi
u)

λ1(µ
j
u)

λ2],

[(vi
l )

λ1(v
j

l )λ2, (vi
u)

λ1(v
j
u)λ2])|α̃i ∈ h̃1, α̃j ∈ h̃2}, where λ1, λ2 ∈ [0,1] with λ1 +

λ2 6 1.

Remark 5. The above new operations can avoid some limitations that are listed in Sec-

tion 2.2. Let h̃1 and h̃2 be any two IVIHFEs, if we have h̃1 < h̃2 according to formulae (5)

and (6). Then, we might derive

{

h̃1 ⊕ h̃ > h̃2 ⊕ h̃

h̃1 ⊗ h̃ > h̃2 ⊗ h̃
for some IVIHFE h̃ and

{

λh̃1 > λh̃2

h̃λ
1

> h̃λ
2

for λ ∈ [0,1]. For example, let h̃1 = {[0.3,0.4], [0.4,0.6], [0.4,0.6],[0.3,0.4]}, h̃2 =

{([0.2,0.3], [0.2,0.3], ([0.4,0.5], [0.3,0.5])} and h̃ = {([0.6,0.7], [0.1,0.2])}. Accord-

ing to formula (5), we derive h̃1 < h̃2 for s(h̃1) = 0 and s(h̃1) = 0.05. However, we

derive h̃1 ⊕ h̃ > h̃2 ⊕ h̃ according to the first operational law listed in Section 2.2, where

s(h̃1 ⊕ h̃) = 0.7275 > s(h̃2 ⊕ h̃) = 0.7125 with h̃1 ⊕ h̃ = {([0.72,0.82], [0.04,0.12]),

([0.76,0.88], [0.03,0.08])} and h̃2 ⊕ h̃ = {([0.68,0.79], [0.02,0.06])([0.76,0.85],

[0.03,0.01])}. Furthermore, let λ = 0.3, we get h̃λ
1

> h̃λ
2

using the fourth oper-

ational law listed in Section 2.2, where s(h̃λ
1
) = 0.6120 > s(h̃λ

2
) = 0.6076 with

h̃λ
1

= {([0.69,0.76], [0.14,0.24]), ([0.76,0.86], [0.10,0.14])} and h̃λ
2

= {([0.62,0.69],

[0.06,0.10]), ([0.76,0.81], [0.10,0.19])}. For the other two operations, one can similarly

derive the above conclusions.

Remark 6. Without loss of generality, all of the following operations use the operational

laws offered in Definition 7.

From the analysis in Section 2.3, we know that it is unreasonable to calculate the com-

pared objects’ comprehensive IVIHFEs by using the IVIHFCI operator. To reflect the

interactions between the weights of the criteria as well as to ensure the weights of criteria

are the same for all objects, we apply the Shapley function in game theory (Shapley, 1953)

to define two hybrid aggregation operators on IVIHFEs.

The Shapley function (Shapley, 1953) is one of the most important payoff indices in

cooperative game theory, which satisfies many desirable properties. When the Shapley

function is restricted in the setting of fuzzy measures, we derive:

Shxi (µ,X) =
∑

S⊆X\xi

(n − s − 1)!s!

n!

(

µ(S ∪ xi) − µ(S)
)

, ∀xi ∈ X, (10)

where µ is a fuzzy measure on X = {x1, x2, . . . , xn}, n and s denote the numbers of the

elements in X and S, respectively.

Remark 7. From formula (10), we know that the Shapley function gives the global inter-

actions between each element xi and all coalitions in Xi . When X denotes the criteria set

in a decision-making problem, µ(S ∪ xi) − µ(S) can be viewed as the contribution of the

xi ’s importance to the importance of the coalition S.
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Property 1. Let µ be a fuzzy measure on X = {x1, x2, . . . , xn}, and Sh be the Shapley

function as shown in formula (10).

(i) Let xi and xj be two elements in X. If we have µ(S ∪ xi) = µ(S ∪ xj ) for all

S ⊆ X\{xi, xj }, then Shxi (µ,X) = Shxj (µ,X);

(ii) Let xi be an element in X. If we have µ(S ∪ xi) = µ(S) for all S ⊆ X\xi , then

Shxi (µ,X) = 0;

(iii) Let xi be an element in X. If we have µ(S ∪xi) = µ(S)+µ(xi) for all S ⊆ X\xi ,

then Shxi (µ,X) = µ(xi);

(iv) The Shapley value vector {Shxi (µ,X)}xi∈X is a normalized weight vector on X,

namely, Shxi (µ,X) > 0 for all xi ∈ X and
∑

xi∈X Shxi (µ,X) = 1.

Proof. From formula (10), one can easily derive the conclusions listed in Property 1. �

Remark 8. The first conclusion shows that when two elements have the same contribu-

tion to all coalitions in X\{xi, xj }, then they have the same importance. Especially, when

µ is an additive measure, we derive µ(xi) = µ(xj ). The second conclusion shows that

when the element xi has no contribution to the importance of all coalitions in X\xi , then

its importance is zero. The third conclusion indicates that when the contribution of the

element xi to the importance of all coalitions in X\xi is µ(xi), then its importance equals

to itself. The last conclusion shows that the vector composed by the elements’ Shapley val-

ues is a weight vector. All these conclusions can be seen as a natural extension of additive

measures.

Now, let us define the following interval-valued intuitionistic hesitant fuzzy Shap-

ley weighted averaging (IVIHFSWA) operator and interval-valued intuitionistic hesitant

fuzzy Shapley weighted geometric mean (IVIHFSWGM) operator.

Definition 8. Let µ be a fuzzy measure on X = {x1, x2, . . . , xn}, and h̃i , i = 1,2, . . . , n,

be a collection of IVIHFEs for X.

(i) The IVIHFSWA operator is defined as follows:

IVIHFSWA(h̃1, h̃2, . . . , h̃n)

=
⊕n

i=1
(Shxi (µ,X)h̃i

=
{[∑n

i=1
Shxi (µ,X)µi

l ,
∑n

i=1
Shxi (µ,X)µi

u

]

,
[
∑n

i=1
Shxi (µ,X)vi

l ,
∑n

i=1
Shxi (µ,X)vi

u

]∣

∣α̃i ∈ h̃i, ı = 1,2, . . . , n
}

;

(11)

(ii) The IVIHFSWGM operator is defined as follows:

IVIHFSWGM(h̃1, h̃2, . . . , h̃n)

=
⊗n

i=1
(h̃i)

Shxi
(µ,X)

=
{[∏n

i=1

(

µi
l

)Shxi
(µ,X)

,
∏n

i=1

(

µi
u

)Shxi
(µ,X)]

,
[∏n

i=1

(

vi
l

)Shxi
(µ,X)

,
∏n

i=1

(

vi
u

)Shxi
(µ,X)]∣

∣α̃i ∈ h̃i, i = 1,2, . . . , n
}

,

(12)
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where Shxi (µ,X) is the Shapley value of the element xi with respect to the fuzzy

measure µ.

Remark 9. One easily shows that all properties for the IVIHFCI operator still hold for

the IVIHFSWA and IVIHFSWGM operators.

In EXAMPLE 1, when we apply the criteria’s Shapley values as their weights, we

derive

ShC1
(µ,C) = ShC3

(µ,C) = 0.367, ShC2
(µ,C) = 0.267,

which addresses the issue in the IVIHFCI operator.

Just as some researchers (Lin and Jiang, 2014; Merigo and Casanovas, 2009; Xu and

Da, 2002; Xu, 2004) noted, the IVIHFSWA and IVIHFSWGM operators only consider the

importance of the elements, but the importance of the ordered positions is not enclosed.

To deal with this issue, we define the interval-valued intuitionistic hesitant fuzzy hybrid

Shapley weighted averaging (IVIHFHSWA) operator and the interval-valued intuitionistic

hesitant fuzzy hybrid Shapley weighted geometric mean (IVIHFHSWGM) operator as

follows:

Definition 9. Let µ be a fuzzy measure on X = {x1, x2, . . . , xn}, let v be a fuzzy measure

on the ordered position set N = {1,2, . . . , n}, and let h̃i (i = 1,2, . . . , n) be a collection

of IVIHFEs on X.

(i) The IVIHFHSWA operator is defined as follows:

IVIHFHSWA(h̃1, h̃2, . . . , h̃n)

=

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)h̃(j)

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

=
{[

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)µ

(j)
l

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

,

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)µ

(j)
u

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

]

,

[

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)v

(j)
l

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

,

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)v

(j)
u

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

]

∣

∣

∣α̃i ∈ h̃i , ı = 1,2, . . . , n
}

;

(13)

(ii) The IVIHFHSWGM operator is defined as follows:

IVIHFHSWA(h̃1, h̃2, . . . , h̃n)

=
⊗n

i=1
(h̃(j))

Shj (v,N)Shx(j)
(µ,X)

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

=
{[

∏n
j=1

(

µ
(j)

l

)

Shj (v,N)Shx(j)
(µ,X)

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

,
∏n

j=1
(µ

(j)
u )

Shj (v,N)Shx(j)
(µ,X)

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

]

,

∏n
j=1

(

v
(j)
l

)

Shj (v,N)Shx(j)
(µ,X)

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

,
∏n

j=1

(

v
(j)
u

)

Shj (v,N)Shx(j)
(µ,X)

∑n
j=1

Shj (v,N)Shx(j)
(µ,X)

∣

∣

∣
α̃i ∈ h̃i , i = 1,2, . . . , n

}

,

(14)
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where (·) is a permutation on Shxi (µ,X)h̃i , i = 1,2, . . . , n, such that Shx(j)
(µ,X)h̃(j)

is the j th smallest value of Shxi (µ,X)h̃i , i = 1,2, . . . , n for the IVIHFHSWA operator,

and (·) is a permutation on h̃
Shxi

(µ,X)

i , i = 1,2, . . . , n, such that h̃
Shx(j)

(µ,X)

(j) is the j th

smallest value of h̃
Shxi

(µ,X)

i , i = 1,2, . . . , n, for the IVIHFHSWGM operator, Shj (v,N)

is the Shapley value of the j th ordered position with respect to the fuzzy measure v, and

Shxi (µ,X) is the Shapley value of the element xi for the fuzzy measure G.

Remark 10. The IVIHFHSWA and IVIHFHSWGM operators not only consider the im-

portance of the elements and the ordered positions, but also reflect their respective interac-

tions. Furthermore, these two operators can be seen as extensions of many interval-valued

intuitionistic hesitant fuzzy aggregation operators.

(i) When there are no interactions between the weights of the ordered positions in N

as well as between the weights of the elements in X, then the IVIHFHSWA operator de-

generates to the interval-valued intuitionistic hesitant fuzzy hybrid weighted averaging

(IVIHFHWA) operator

IVIHFHWA(h̃1, h̃2, . . . , h̃n) =

∑n
j=1

wj ωx(j)
h̃(j)

∑n
j=1

wj ωx(j)

=

{[
∑n

j=1
wj ωx(j)

µ
(j)
l

∑n
j=1

wj ωx(j)

,

∑n
j=1

wj ωx(j)
µ

(j)
u

∑n
j=1

wj ωx(j)

]

,

[
∑n

j=1
wj ωx(j)

v
(j)
l

∑n
j=1

wj ωx(j)

,

∑n
j=1

wj ωx(j)
v

(j)
u

∑n
j=1

wj ωx(j)

]

α̃i ∈ h̃i, i = 1,2, . . . , n

}

,

and the IVIHFHSWGM operator degenerates to the interval-valued intuitionistic hesitant

fuzzy hybrid weighted geometric mean (IVIHFHWGM) operator

IVIHFHWGM(h̃1, h̃2, . . . , h̃n) =
n

⊗

i=1

(h̃(j))

wj ωx(j)
∑n

j=1
wj ωx(j)

=

{[

∏n
j=1

(

µ
(j)
l

)

wj ωx(j)
∑n

j=1
wj ωx(j) ,

(

µ
(j)
u

)

wj ωx(j)
∑n

j=1
wj ωx(j)

]

,

[

(

v
(j)

l

)

wj ωx(j)
∑n

j=1
wj ωx(j) ,

(

v
(j)
u

)

wj ωx(j)
∑n

j=1
wj ωx(j)

]∣

∣

∣

∣

α̃i ∈ h̃i , i = 1,2, . . . , n

}

,

where ω = (ωx1
,ωx2

, . . . ,ωxn) is an additive weight vector on X, w = (w1,w2, . . . ,wn)

is an additive weight vector on N , (·) is a permutation on ωxi h̃i , i = 1,2, . . . , n, such that

ωx(j)
h̃(j) is the j th smallest value of ωxi h̃i , i = 1,2, . . . , n, for the IVIHFHWA operator,

and (·) is a permutation on h̃
ωxi

i , i = 1,2, . . . , n, such that h̃
ωx(j)

(j) is the j th smallest value

of h̃
ωxi

i , i = 1,2, . . . , n, for the IVIHFHWGM operator.

(ii) When there are no interactions between the weights of the ordered positions in N

and w = ( 1

n
, 1

n
, . . . , 1

n
), then the IVIHFHSWA operator degenerates to the IVIHFSWA

operator, and the IVIHFHSWGM operator degenerates to the IVIHFSWGM operator.
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(iii) When there are no interactions between the weights of the elements in X and

ω = ( 1

n
, 1

n
, . . . , 1

n
), then the IVIHFHSWA operator degenerates to the interval-valued in-

tuitionistic hesitant fuzzy ordered Shapley weighted averaging (IVIHFOSWA) operator

IVIHFOSWA(h̃1, h̃2, . . . , h̃n) =
∑n

j=1
Shj (v,N)h̃(j)

=
{[

∑n
j=1

Shj (v,N)µ
(j)
l ,

∑n
j=1

Shj (v,N)µ
(j)
u

]

,
[∑n

j=1
Shj (v,N)v

(j)
l ,

∑n
j=1

Shj (v,N)v
(j)
u

]∣

∣α̃i ∈ h̃i , i = 1,2, . . . , n
}

,

and the IVIHFHSWGM operator degenerates to the interval-valued intuitionistic hesitant

fuzzy ordered Shapley weighted geometric mean (IVIHFOSWGM) operator

IVIHFOSWGM(h̃1, h̃2, . . . , h̃n) =
⊗n

i=1
h̃

Shj (v,N)

(j)

=
{[

∏n
j=1

(µ
(j)
l )Shj (v,N),

∏n
j=1

(µ
(j)
u )Shj (v,N)

]

,
[∏n

j=1
(v

(j)

l )Shj (v,N),
∏n

j=1
(v

(j)
u )Shj (v,N)

]∣

∣α̃i ∈ h̃i , i = 1,2, . . . , n
}

,

where (·) is a permutation on the IVIHFEs h̃i , i = 1,2, . . . , n, such that h̃(j) is the j th

smallest value of h̃i , i = 1,2, . . . , n.

Furthermore, when there are no interactions between the weights of the ordered po-

sitions in N , then the IVIHFOSWA operator reduces to the interval-valued intuitionistic

hesitant fuzzy ordered weighted averaging (IVIHFOWA) operator

IVIHFOWA(h̃1, h̃2, . . . , h̃n) =
∑n

j=1
wj h̃(j)

=
{[∑n

j=1
wjµ

(j)
l ,

∑n
j=1

wjµ
(j)
u

]

,
[
∑n

j=1
wjv

(j)
l ,

∑n
j=1

wjv
(j)
u

]∣

∣α̃i ∈ h̃i , i = 1,2, . . . , n
}

,

and the IVIHFOSWGM operator reduces to the interval-valued intuitionistic hesitant

fuzzy ordered weighted geometric mean (IVIHFOWGM) operator

IVIHFOWGM(h̃1, h̃2, . . . , h̃n) =
⊗n

i=1
h̃

wj

(j)

=
{[

∏n
j=1

(

µ
(j)
l

)wj ,
∏n

j=1

(

µ
(j)
u

)wj
]

,
[
∏n

j=1

(

v
(j)
l

)wj ,
∏n

j=1

(

v
(j)
u

)wj
]

∣

∣α̃i ∈ h̃i, i = 1,2, . . . , n
}

,

where w = (w1,w2, . . . ,wn) is an additive weight vector on N , and (·) is a permutation

on the IVIHFEs h̃i , i = 1,2, . . . , n, such that h̃(j) is the j th smallest value of h̃i , i =

1,2, . . . , n.

To overcome the limitations of the λ-fuzzy measures, 2-additive measures introduced

by Grabisch (1997) are good choices to reduce the complexity of determining fuzzy mea-

sures.
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Definition 10 (Grabisch, 1997). A fuzzy measure µ on N = {1,2, . . . , n} is said to be a

2-additive measure, if, for any S ⊆ N with s > 2, we have

µ(S) =
∑

{i,j}⊆S

µ(i, j) − (s − 2)
∑

i∈S

µ(i) (15)

where s is the cardinality of S.

From the concept of 2-additive measures, it only needs n(n − 1)/2 coefficients to

determine a fuzzy measure on a set with n elements. Furthermore, we have the following

conclusion.

Theorem 1 (Grabisch, 1997). Let µ be a fuzzy measure on N = {1,2, . . . , n}, then µ is a

2-additive measure if and only if there exist coefficients µ(i) and µ(i, j) for all i, j ∈ N

that satisfy the following conditions:

(i) µ(i)> 0, i ∈ N,

(ii)
∑

{i,j}⊆N µ(i, j) − (n − 2)
∑

i∈N

µ(i) = 1,

(iii)
∑

i⊆S\k (µ(i, k) − µ(i))>(s − 2)µ(k) ∀S ∈ N s.t. k ∈ S with s > 2,

where s and n denote the cardinalities of S and N , respectively.

When µ is a 2-additive measure, Meng and Tang (2013) gave the following conclusion:

Theorem 2 (Meng and Tang, 2013). Let µ be a 2-additive measure defined on N =

{1,2, . . . , n}, then the Shapley function Sh can be expressed as follows:

Shi (µ,N) =
3 − n

2
µ(i) +

1

2

∑

j∈N\i

(µ(i, j) − µ(j)), ∀i ∈ N. (16)

Remark 11. From formula (16), we know that n(n + 1)/2 coefficients are needed to

determine a 2-additive measure on a set with n elements. Although to determine a 2-

additive measure demands more coefficients than to derive a λ-fuzzy measure, 2-additive

measures can reflect the complementary interactions, redundant interactions and indepen-

dency between the weights of the elements simultaneously. Furthermore, their interactive

characteristics have no relationship to the sum of each criterion’s weight in the setting of

2-additive measures. Thus, it is more reasonable to use 2-additive measures than to apply

λ-fuzzy measures.

When the fuzzy measure µ and the fuzzy measure v are both a 2-additive measure,

then we derive the associated IVIHFHSWA and IVIHFHSWGM operators with respect

to 2-additive measures. It is worth noting that both the IVIHFSWG operator and the IVI-

HFHSWG operator overcome the issues in the IVIHFCI operator.
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4. Hamming Distance Based Models for the Optimal Fuzzy Measures

This section focuses on how to determine the optimal fuzzy measures when the weight

information is partly known. Similarly, the 2-additive measures can also be derived by

using the built models.

4.1. A New Hamming Distance Measure on IVIHFEs

Joshi and Kumar (2016) defined the hamming distance on IVIHFEs to rank objects, but

this hamming distance requires the calculated IVIHFEs to have the same length; other-

wise, we need to add some IVIFVs in the shorter IVIHFE several times until its length

equals to the longer one.

Example 2. Let h̃1 and h̃2 be two IVIHFEs, where

h̃1 =
{

α̃1 =
(

[0.3,0.4], [0.1,0.2]
)

, α̃2 =
(

[0.5,0.6], [0.2,0.3]
)

,

α̃3 =
(

[0.6,0.7], [0.1,0.2]
)}

and

h̃2 =
{

β̃1 =
(

[0.1,0.2], [0.4,0.5]
)

, β̃2 =
(

[0.3,0.4], [0.1,0.2]
)}

.

According to Definition 2.5 in Joshi and Kumar (2016), we need to add one IVIFV

into h̃2. When we add the first IVIFV in h̃2, we derive h̃′
2

= {β̃1, β̃1, β̃2}. Then, we can

apply formula (8) in (Joshi and Kumar, 2016) to calculate the hamming distance between

h̃1 and h̃2, which is in fact the hamming distance between h̃1 and h̃′
2
. However, one can

check that h̃′
2

and h̃2 are not equivalent. Using formula (5), we obtain their scores s(h̃2) =

−0.05 and s(h̃′
2
) = −0.13, by which we get h̃2 > h̃′

2
. On the other hand, when we add the

second IVIFV in h̃2, we have h̃′′
2

= {β̃1, β̃2, β̃2}. Using formula (5), we obtain its score

s(h̃′′
2
) = −0.03, by which we get h̃2 < h̃′′

2
. Furthermore, according to DEFINITION 2.5,

the hamming distance between h̃1 and h̃2 is

d(h̃1, h̃2) =
1

3 × 4

(

|α̃1 − β̃1| + |α̃2 − β̃1| + |α̃3 − β̃2|
)

= 0.23

for h̃′
2
, and it is

d(h̃1, h̃2) =
1

3 × 4

(

|α̃1 − β̃1| + |α̃2 − β̃2| + |α̃3 − β̃2|
)

= 0.18

for h̃′′
2
, where |α̃i − β̃j | = |µi

l − µ
j
l | + |µi

u − µ
j
u| + |vi

l − v
j
l | + |vi

u − v
j
u| with i = 1,2,3;

j = 1,2. Thus, it is unreasonable to add IVIFVs into IVIHFEs subjectively.

For α̃1 = ([0.3,0.4], [0.1,0.2]), we know |α̃1 − β̃1| = 1 according to formula (8) in

Joshi and Kumar (2016). However, we have |α̃1 − β̃2| = 0 for α̃1 = β̃2. In this case, we
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should choose the latter for α̃1 ∈ h̃2. This also shows that it is undesirable to use formula

(8) in (Joshi and Kumar, 2016) to calculate the hamming distance between IVIHFEs.

Next, we introduce a new hamming distance measure on IVIHFEs, which needn’t con-

sider the length of IVIHFEs and the arrangement of their possible IVIFVs.

Definition 11. Let h̃1 and h̃2 be two IVIHFEs. Without loss of generality, suppose that

h̃1 = {α̃i}i=1,2,...,m and h̃2 = {β̃j }j=1,2,...,n, where α̃i = ([µi
l ,µ

i
u], [v

i
l , v

i
u]) and β̃j =

([η
j

l , η
j
u], [κ

j

l , κ
j
u ]) for all i = 1,2, . . . ,m; j = 1,2, . . . , n. Then, the distance measure

from α̃i to h̃2 is defined as follows:

−−−−−−→
D(α̃i , h̃2) = min

β̃j ∈h̃2

|µi
l − η

j
l | + |µi

u − η
j
u| + |vi

l − κ
j
l | + |vi

u − κ
j
u |

4
. (17)

Definition 12. Let h̃1 and h̃2 be two IVIHFEs, where h̃1 = {α̃i}i=1,2,...,m and h̃2 =

{β̃j }j=1,2,...,n. Then, the hamming distance measure between h̃1 and h̃2 is defined as:

D(h̃1, h̃2) =

−−−−−−→
D(h̃1, h̃2) +

−−−−−−→
D(h̃2, h̃1)

2
, (18)

where
−−−−−−→
D(h̃1, h̃2) = 1

4m

∑m
i=1

−−−−−−→
D(α̃i , h̃2) and

−−−−−−→
D(h̃2, h̃1) = 1

4n

∑n
j=1

−−−−−−→
D(β̃j , h̃1).

Property 2. Let h̃1 and h̃2 be any two IVIHFEs, where h̃1 = {α̃i}i=1,2,...,m and h̃2 =

{β̃j }j=1,2,...,n. Then,

(i) D(h̃1, h̃2) = 0 if and only if h̃1 = h̃2, namely, there exists β̃j such that α̃i = β̃j

for all α̃i ∈ h̃1, and there is α̃i such that β̃j = α̃i for all β̃j ∈ h̃2;

(ii) D(h̃1, h̃2) = 1 if and only if h̃1 = {([1,1], [0,0])} and h̃2 = {([0,0], [1,1])}

or h̃1 = {([0,0], [1,1])} and h̃1 = {([1,1], [0,0])}. Otherwise, we have 0 <

D(h̃1, h̃2) < 1 with h̃1 6= h̃2;

(iii) D(h̃1, h̃2) = D(h̃1, h̃2).

Proof. From formulae (17) and (18), it is not difficult to derive the results in Property 2. �

In Example 2, when the new hamming distance measure on IVIHFEs is applied, we

have

−−−−−−→
D(h̃1, h̃2) =

1

12

(

|α̃1 − β̃2| + |α̃2 − β̃2| + |α̃3 − β̃2|
)

=
1

12
(0 + 0.6 + 0.6) = 0.1

and

−−−−−−→
D(h̃1, h̃2) =

1

8

(

|β̃1 − α̃1| + |β̃2 − α̃1|
)

=
1

8
(1 + 0) = 0.125,

by which the hamming distance between h̃1 and h̃2 is D(h̃1, h̃2) = 0.1125. It is different

to the values obtained from Joshi and Kumar’s hamming distance.



174 L. Zhang et al.

From the example given in Joshi and Kumar (2016), when we use the IVIHFSWA

and IVIHFSWGM operators as well as the new hamming distance measure, the ranking

order is A1 > A3 > A2 > A4, which is different from that obtained by using the Joshi and

Kumar’s method.

4.2. Models for the Optimal Fuzzy Measures and 2-Additive Measures

Considering a multi-criteria decision making problem, let A = {A1,A2, . . . ,Am} be the

set of alternatives, which are evaluated by a decision maker team according to the criteria

set C = {C1,C2, . . . ,Cn} by using IVIFVs. When the decision makers have different opin-

ions for the alternatives’ criteria values, there can be several IVIFVs to denote the criteria

values, which are denoted using IVIHFEs. Suppose that the evaluation of the alternative

Ai with respect to the attribute Cj is an IVIHFE h̃ij (i = 1,2, . . . ,m; j = 1,2, . . . , n).

By H̃ = (h̃ij )m×n, we denote the IVIHFE matrix given by the decision maker team.

When all criteria Cj , j = 1,2, . . . , n, are benefit (i.e. the larger the greater preference),

then the criteria values needn’t normalization; otherwise, we normalize the IVIHFE matrix

H̃ = (h̃ij )m×n into H̃ ′ = (h̃′
ij )m×n, where h̃′

ij =

{

h̃ij for benefit criteria Cj

(h̃ij )
c for cost criteria Cj

with

(h̃ij )c = {(α̃k
ij )

c = ([vk
lij , v

k
uij ], [µk

lij ,µ
k
uij ])|α̃

k
ij = ([µk

lij ,µ
k
uij ], [v

k
lij , v

k
uij ]) ∈ h̃ij , k =

1,2, . . . , h̃ij } for all i = 1,2, . . . ,m; j = 1,2, . . . , n.

When the fuzzy measure µ on the criteria set C and the fuzzy measure v on the ordered

position set N are exactly known, we can adopt the aggregation operator given in Section 3

to calculate the collective values. However, when we do not own the fully weight informa-

tion, it needs to first determine the weight vectors on them. Next, we construct Hamming

distance measure based models to determine the optimal fuzzy measures and 2-additive

measures on the criteria set C and the ordered position set N , which can be seen as the

extensions of the additive measures.

Because we cannot guarantee the importance of the criteria is independent, we apply

the Shapley function to give the weights of the criteria. With respect to the normalized

IVIHFE matrix H̃ ′ = (h̃′
ij )m×n, let

h̃′
j
+ = max

16i6m

{

max

16k6#h̃ij

α̃′
ij

k
∣

∣

∣α̃
′
ij

k ∈ h̃′
ij

}

and

h̃′
j
− = min

16i6m

{

min

16k6#h̃ij

α̃′
ij

k
∣

∣

∣α̃
′
ij

k ∈ h̃′
ij

}

for each j = 1,2, . . . , n.
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Because the weight information makes the criteria values the bigger the better, when

the weight information on the criteria set C is not exactly known, we construct the follow-

ing model to determine the optimal fuzzy measure µ.

min

m
∑

i=1

n
∑

j=1

D(h̃′
ij ,h̃′

j
+)

D(h̃′
ij ,h̃′

j
+)+D(h̃′

ij ,h̃′
j
−)

ShCj (µ,C)

s.t.











µ(S)6 µ(T ), ∀S ⊆ T ⊆ C,

µ(Ci) ∈ WCi , i = 1,2, . . . , n,

µ(Ci)> 0, i = 1,2, . . . , n,

(19)

where WCi is the known weight information of the criterion Cj , j = 1,2, . . . , n.

When the optimal fuzzy measure µ is a 2-additive measure, model (19) can be equiv-

alently transformed into the following model:

min

m
∑

i=1

n
∑

j=1

D(h̃′
ij ,h̃′

j
+)

D(h̃′
ij ,h̃′

j
+)+D(h̃′

ij ,h̃′
j
−)

ShCj (µ,C)

s.t.



























∑

Cj ∈S\Ci

(

µ(Ci,Cj ) − µ(Cj )
)

>(s − 2)µ(Ci),∀S ⊆ C, ∀Ci ∈ S, s > 2,
∑

{Ci ,Cj }⊆C

µ(Ci,Cj ) − (n − 2)
∑

Ci∈C

µ(Ci) = 1,

µ(Ci) ∈ WCi , i = 1,2, . . . , n,

µ(Ci)> 0, i = 1,2, . . . , n,

(20)

where the notations as listed in model (19).

From formula (16), we further have the following model for the optimal 2-additive

measure µ:

min
3−n

2

m
∑

i=1

n
∑

j=1

D(h̃′
ij ,h̃′

j
+)

D(h̃′
ij ,h̃′

j
+)+D(h̃′

ij ,h̃′
j
−)

µ(Cj )

+
1

2

m
∑

i=1

n
∑

j=1

n
∑

k=1,k 6=j

D(h̃′
ij ,h̃′

j
+)

D(h̃′
ij ,h̃′

j
+)+D(h̃′

ij ,h̃′
j
−)

(

µ(Cj ,Ck) − µ(Ck)
)

s.t.



























∑

Cj ∈S\Ci

(

µ(Ci,Cj ) − µ(Cj )
)

>(s − 2)µ(Ci),∀S ⊆ C, ∀Ci ∈ S, s > 2,
∑

{Ci ,Cj }⊆C
µ(Ci,Cj ) − (n − 2)

∑

Ci∈C

µ(Ci) = 1,

µ(Ci) ∈ WCi , i = 1,2, . . . , n,

µ(Ci)> 0, i = 1,2, . . . , n.

(21)

To reduce the influence of the unduly high or low evaluation values induced by the

decision makers’ limited knowledge or decision expertise, when the weight information

on the ordered position set N is incompletely known, we construct the following model
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to determine the optimal fuzzy measure v on the ordered position set N :

min

m
∑

i=1

(

mid(n)
∑

j=1

(1 − Ri(j))Shj (µ,N) +
n
∑

j=mid(n)+1

Ri(j)Shj (µ,N)

)

s.t.







µ(S)6 µ(T ), ∀S ⊆ T ⊆ N,

µ(i) ∈ Wi , i = 1,2, . . . , n,

µ(i)> 0, i = 1,2, . . . , n,

(22)

where Ri(j) =
D(h̃i(j),h̃

+
(j))

D(h̃i(j),h̃
+
(j))+D(h̃i(j),h̃

−
(j))

is the j th smallest value for Rij =
D(h̃ij ,h̃+

j )

D(h̃ij ,h̃+
j )+D(h̃ij ,h̃

−
j )

,

j = 1,2, . . . , n, for each i = 1,2, . . . ,m, mid(n) =

{

n
2

n is an even number,
n+1

2
n is an odd number,

and Wi

is the known weight information of the j th ordered position, j = 1,2, . . . , n.

When the optimal fuzzy measure v is a 2-additive measure, model (22) can be equiv-

alently transformed into the following model:

min
3 − n

2

m
∑

i=1

(

mid(n)
∑

j=1

(

1 − Ri(j)

)

v(j) +
n
∑

j=mid(n)+1

Ri(j)v(j)

)

+
1

2

m
∑

i=1

(

mid(n)
∑

j=1

n
∑

k=1,k 6=j

(1 − Ri(j))(v(j, k) − µ(k))

+
n
∑

j=mid(n)+1

n
∑

k=1,k 6=j

Ri(j)(v(j, k) − µ(k))

)

s.t.



















∑

j∈N\i (v(i, j) − v(j))>(s − 2)v(i),∀S ⊆ N,∀i ∈ S, s > 2,
∑

{i,j}∈N v(i, j) − (n − 2)
∑

i∈N v(i) = 1,

v(i) ∈ Wi , i = 1,2, . . . , n,

v(i)> 0, i = 1,2, . . . , n,

(23)

where the notations as listed in model (22).

When we further require the 2-additive measure v on the ordered position set N to be

symmetric for the middle position mid(n), then we establish the following model for the

optimal symmetric 2-additive measure v:

min
3 − n

2

m
∑

i=1

( mid(n)
∑

j=1

(1 − Ri(j))v(j) +

n
∑

j=mid(n)+1

Ri(j)v(j)

)

+
1

2

m
∑

i=1

( mid(n)
∑

j=1

n
∑

k=1,k 6=j

(1 − Ri(j))(v(j, k) − µ(k))

+

n
∑

j=mid(n)+1

n
∑

k=1,k 6=j

Ri(j)(v(j, k) − µ(k))

)
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s.t.







































∑

j∈N\i (v(i, j) − v(j))>(s − 2)v(i), ∀S ⊆ N,∀i ∈ S, s > 2,
∑

{i,j}⊆N v(i, j) − (n − 2)
∑

i∈N

v(i) = 1,

v(i) = v(n − i + 1), ∀i ∈ N,

v(i, j) = v(n − i + 1, n − j + 1), ∀i, j ∈ N,

v(i) ∈ Wi , i = 1,2, . . . , n,

v(i) > 0, i = 1,2, . . . , n,

(24)

where the notations as shown in model (22).

Note that when there is no interaction between the weights of the ordered positions

and that of criteria, models (19) and (22) reduce to the optimal additive measures on

them, respectively.

5. A New Approach to Decision Making with IVIHFEs

Because of the complexity of decision-making problems, it is difficult or even impossible

to require a decision maker to consider all aspects of a decision-making problem. Thus,

group decision making attracts considerable attention from researchers (Beliakov et al.,

2014; Liu et al., 2017b; Meng et al., 2017a, 2017b, 2017c; Pérez et al., 2010, 2014; Perez

et al., 2016; Wu et al., 2017).

Based on the new defined aggregation operators with respect to 2-additive measures

and the built programming models, this section gives a new group decision-making

method with interval-valued intuitionistic hesitant fuzzy information.

With respect to the decision-making problem listed in Section 4.2, the following pro-

cedure is needed to rank objects:

Step 1: Let H̃ ′ = (h̃′
ij )m×n be the normalized IVIHFE matrix of H̃ = (h̃ij )m×n, let µ be

the fuzzy measure on the criteria set C, and let v be the fuzzy measure on the ordered

position set N = {1,2, . . . , n};

Step 2: When the fuzzy measures µ and v are not exactly known, we adopt models (21)

and (24) to determine the associated optimal 2-additive measures, otherwise, go to the

next step;

Step 3: We use the IVIHFHSWA or IVIHFHSWGM operator to calculate the alternatives’

comprehensive IVIHFEs h̃i , i = 1,2, . . . ,m;

Step 4: With respect to the comprehensive IVIHFEs h̃i , i = 1,2, . . . ,m, we apply the

score function in Zhang (2013) to rank objects Ai , i = 1,2, . . . ,m, where s(h̃i) =
1

2∗#h̃i

∑

α̃=([µl,µu],[vl,vu])∈h̃i
(µl + µu − vl − vu) with #h̃i being the number of IVIFVs in

h̃i , i = 1,2, . . . ,m.

To show the concrete application of the above algorithm, we offer the following

decision-making problem about the development of large projects.
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Table 2

IVIHFE matrix H̃ .

C1 C2 C3 C4

A1 {([0.2,0.3], [0.4,0.5]),

([0.4,0.45], [0.3,0.4])}

{([0.3,0.5], [0.3,0.4]),

([0.6,0.8], [0.1,0.2])}

{([0.4,0.6], [0.3,0.4])} {([0.3,0.5], [0.4,0.5]),

([0.6,0.7], [0.2,0.3])}

A2 {([0.2,0.4], [0.5,0.6]),

([0.6,0.8], [0.1,0.2])}

{([0.2,0.3], [0.5,0.6]),

([0.4,0.5], [0.3,0.4])}

{([0.3,0.4], [0.4,0.5]),

([0.6,0.7], [0.2,0.3])}

{([0.5,0.7], [0.1,0.3]),

([0.8,0.9], [0.1,0.1])}

A3 {([0.3,0.5], [0.3,0.4]),

([0.6,0.7], [0.2,0.3])}

{([0.6,0.8], [0.1,0.2])} {([0.2,0.4], [0.4,0.5]),

([0.5,0.6], [0.2,0.3])}

{([0.2,0.5], [0.3,0.4]),

([0.6,0.7], [0.2,0.3])}

A4 {([0.2,0.4], [0.5,0.6]),

([0.5,0.7], [0.1,0.3])}

{([0.3,0.4], [0.4,0.5])} {([0.2,0.3], [0.4,0.6]),

([0.4,0.5], [0.3,0.5]),

([0.7,0.8], [0.1,0.2])}

{([0.6,0.8], [0.1,0.2])}

Example 3. The enterprise’s board of directors is to plan the development of large

projects strategy initiatives for the following five years. There are four possible projects Ai ,

i = 1,2,3,4, to be evaluated. It is necessary to compare these projects to select the most

important one as well as order them from the point of view of their importance, taking

into account four attributes suggested by the Balanced Scorecard methodology (it should

be noted that all of them are of the maximization type): C1: financial perspective, C2:

the customer satisfaction, C3: internal business process perspective, and C4: learning and

growth perspective. To avoid influencing each other, the decision makers are required to

provide their preferences in anonymity and the IVIHFE matrix H̃ = (h̃ij )4×4 is presented

in Table 2, where h̃ij , i, j = 1,2,3,4, is in the form of IVIHFEs.

Assume that the attribute weights are defined by WC1
= [0.1,0.3], WC2

= [0.2,0.4],

WC3
= [0.05,0.25] and WC3

= [0.25,0.45], respectively. Furthermore, the weights on the

ordered positions are given as follows: W1 = [0.1,0.3], W2 = [0.2,0.4], W3 = [0.2,0.4]

and W4 = [0.1,0.3].

To rank these four possible projects, the following procedure is needed:

Step 1: Using model (21), the optimal 2-additive measure µ on the criteria set C can

be derived, by which the Shapley values are ShC1
(µ,C) = 0.025, ShC2

(µ,C) = 0.400,

ShC3
(µ,C) = 0.475, ShC4

(µ,C) = 0.100.

Step 2: Using model (24), we can obtain the optimal symmetric 2-additive measure v on

the ordered set N and the associated Shapley values, where Sh1(v,N) = Sh2(v,N) =

Sh3(v,N) = Sh4(v,N) = 0.25.

Step 3: Adopting the IVIHFHSWA operator, we can derive the comprehensive IVIHFEs

of the projects. Taking the collective IVIHFE of the project a1, for example, we have:

h̃1 =
{(

[0.3450,0.5425], [0.3125,0.4125]
)

,
(

[0.3500,0.5463], [0.3100,0.4100]
)

,
(

[0.4650,0.6625], [0.2325,0.3325]
)

,
(

[0.4700,0.6663], [0.2300,0.3300]
)

,
(

[0.3750,0.5625], [0.2925,0.3925]
)

,
(

[0.3800,0.5663], [0.2900,0.3900]
)

,
(

[0.4950,0.6825], [0.2125,0.3125]
)

,
(

[0.5000,0.6863], [0.2100,0.3100]
)}

.

Step 4: With respect to the comprehensive IVIHFEs h̃i , i = 1,2,3,4, the scores are de-
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rived as follows:

s(h̃1) = 0.2072, s(h̃2) = 0.1075, s(h̃3) = 0.2813, s(h̃4) = 0.0802.

Thus, the ranking order of projects is A3 ≻ A1 ≻ A2 ≻ A4.

In this example, when the IVIHFHSWGM operator is adopted. The scores of the

projects are

s(h̃1) = 0.2110, s(h̃2) = 0.0997, s(h̃3) = 0.2789, s(h̃4) = 0.0848,

and the ranking order of projects is A3 ≻ A1 ≻ A4 ≻ A2, which is different from the above

ranking order. However, the same optimal choice is derived.

In this example, when Joshi and Kumar’s method (Joshi and Kumar, 2016) is used,

similar to Joshi and Kumar (2016), let WC1
= 0.4, WC2

= 0.3, WC3
= 0.3, and WC4

= 0.4.

From formula (3), we get λ = −0.6359. According to formula (2), we can derive the value

of any coalition. Using Joshi and Kumar’s algorithm, we derive the following closeness

coefficients of the projects:

Cc1 = 0.8653, Cc2 = 0.8843, Cc3 = 0.8810, Cc4 = 0.8779,

by which the ranking order is A2 ≻ A3 ≻ A4 ≻ A1, where the ranking order as well as the

best choice are different from that obtained above.

These two methods both consider the interactive characteristics between the weights

of elements in a set. When we assume that there is no interaction, using models (19) and

(22) in the setting of additive measures, the weight vectors on the criteria set and on the

ordered set are obtained as follows:

WC = (0.1,0.4,0.25,0.25) and WN = (0.1,0.4,0.4,0.1).

Then, we can use the defined aggregation operators in (Zhang, 2013) to calculate the

comprehensives and to rank projects. To show the ranking values and the ranking orders

obtained from different methods, please see Table 3.

Note: the IVIHFWA operator: the interval-valued intuitionistic hesitant fuzzy

weighted averaging operator, the IVIHFWG operator: the interval-valued intuitionistic

hesitant fuzzy weighted geometric operator, the IVIHFOWA operator: the interval-valued

intuitionistic hesitant fuzzy ordered weighted averaging operator, IVIHFOWG operator:

the interval-valued intuitionistic hesitant fuzzy ordered weighted geometric operator, the

IVIHFHA operator: the interval-valued intuitionistic hesitant fuzzy hybrid averaging op-

erator, the IVIHFHG operator: the interval-valued intuitionistic hesitant fuzzy hybrid ge-

ometric operator.

To further show the application of the new method and to compare with the previous

ones, we provide the following decision making problem.
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Table 3

Ranking values and ranking orders obtained from different methods.

Methods Ranking values

A1 , A2 , A3 , A4

Ranking orders

Our method using the

IVIHFHSWA operator

0.2072 0.1075 0.2813 0.0802 A3 ≻ A1 ≻ A2 ≻ A4

Our method using the

IVIHFHSWGM operator

0.2110 0.0997 0.2789 0.0848 A3 ≻ A1 ≻ A4 ≻ A2

Joshi and Kumar’s method (Joshi and

Kumar, 2016)

0.8653 0.8843 0.8810 0.8779 A2 ≻ A3 ≻ A4 ≻ A1

Zhang’s method using the

IVIHFWA operator (Zhang, 2013)

0.2243 0.2646 0.3562 0.2129 A3 ≻ A2 ≻ A1 ≻ A4

Zhang’s method using the

IVIHFWG operator (Zhang, 2013)

0.1754 0.1142 0.2783 0.0932 A3 ≻ A1 ≻ A2 ≻ A4

Zhang’s method using the

IVIHFOWA operator (Zhang, 2013)

0.1732 0.2513 0.2583 0.1858 A3 ≻ A2 ≻ A4 ≻ A1

Zhang’s method using the

IVIHFOWG operator (Zhang, 2013)

0.1389 0.1265 0.2110 0.0894 A3 ≻ A1 ≻ A2 ≻ A4

Zhang’s method using the

IVIHFHA operator (Zhang, 2013)

0.1960 0.2410 0.2431 0.2051 A3 ≻ A2 ≻ A4 ≻ A1

Zhang’s method using the

IVIHFHG operator (Zhang, 2013)

-0.1969 -0.2394 -0.2217 -0.2470 A1 ≻ A3 ≻ A2 ≻ A4

Table 4

IVIHFE matrix H̃ .

C1 C2 C3 C4

A1 {([0.5,0.6], [0.2,0.3]),

([0.6,0.7], [0.2,0.3])}

{([0.3,0.5], [0.3,0.4]),

([0.6,0.7], [0.2,0.3])}

{([0.4,0.5], [0.2,0.4])} {([0.3,0.4], [0.3,0.5])}

A2 {([0.6,0.8], [0.1,0.2])} {([0.2,0.3], [0.4,0.5]),

([0.4,0.5], [0.3,0.4])}

{([0.5,0.7], [0.1,0.3])} {([0.4,0.5], [0.2,0.4]),

([0.6,0.7], [0.1,0.2])}

A3 {([0.5,0.7], [0.2,0.3])} {([0.3,0.5], [0.2,0.3])} {([0.2,0.4], [0.3,0.5]),

([0.4,0.5], [0.3,0.5])},

([0.6,0.7], [0.2,0.3])}

{([0.4,0.6], [0.3,0.4])}

A4 {([0.3,0.4], [0.4,0.5]),

([0.5,0.6], [0.3,0.4])}

{([0.4,0.6], [0.1,0.3])} {([0.5,0.6], [0.2,0.3]),

([0.7,0.8], [0.1,0.2])}

{([0.3,0.4], [0.3,0.5]),

([0.5,0.6], [0.2,0.4])}

Example 4. Let us consider an investment company that wants to invest a sum of money

in the best option (Liu and Jin, 2012). There is a panel with four possible alternatives in

which to invest the money: A1 is a car company; A2 is a computer company; A3 is a TV

company; A4 is a food company. The investment company must make a decision according

to the following four attributes: the risk index C1; the growth index C2; the social-political

impact index C3; the environmental impact index C4. The evaluating IVIHFE matrix H̃ =

(h̃ij )4×4 is offered as shown in Table 4.

Let WC = ([0.3,0.4], [0.15,0.25], [0.2,0.25], [0.25,0.3]) be the known weight infor-

mation on the attribute set, and let WN = ([0.2,0.3], [0.25,0.4], [0.25,0.4], [0.2,0.3])be

the known weight information on the ordered set.

Because the criterion c2 is benefit, and the criteria c1, c3, and c4 are cost, we need to

normalize the IVIHFE matrix H̃ into the following IVIHFE H̃ ′, please see Table 5.

Similar to Example 3, with respect to different methods the ranking results are obtained

as shown in Table 6.

Examples 3 and 4 both show that different ranking orders might be derived with re-

spect to the different methods that are based on the different aggregation operators and the

different operational laws. Thus, when the decision makers make decisions for some prob-
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Table 5

IVIHFE matrix H̃ ′.

C1 C2 C3 C4

A1 {([0.2,0.3], [0.5,0.6]),

([0.2,0.3], [0.6,0.7])}

{([0.3,0.5], [0.3,0.4]),

([0.6,0.7], [0.2,0.3])}

{([0.2,0.4], [0.4,0.5])} {([0.3,0.5], [0.3,0.4])}

A2 {([0.1,0.2], [0.6,0.7])} {([0.2,0.3], [0.4,0.5]),

([0.4,0.5], [0.3,0.4])}

{([0.1,0.3], [0.5,0.7])} {([0.2,0.4], [0.4,0.5]),

([0.1,0.2], [0.6,0.7])}

A3 {([0.2,0.3], [0.5,0.7])} {([0.3,0.5], [0.2,0.3])} {([0.3,0.5], [0.2,0.4]),

([0.3,0.5], [0.4,0.5]),

([0.2,0.3], [0.6,0.7])}

{([0.3,0.4], [0.3,0.6])}

A4 {([0.4,0.5], [0.3,0.4]),

([0.3,0.4], [0.5,0.6])}

{([0.4,0.6], [0.1,0.3])} {([0.2,0.3], [0.5,0.6]),

([0.1,0.2], [0.7,0.8])}

{([0.3,0.5], [0.3,0.4]),

([0.2,0.4], [0.5,0.6])}

Table 6

Ranking values and ranking orders obtained from different methods.

Methods Ranking values

A1 , A2 , A3 , A4

Ranking orders

Our method using the

IVIHFHSWA operator

−0.0030 −0.1146 −0.0318 −0.0059 A1 ≻ A4 ≻ A3 ≻ A2

Our method using the

IVIHFHSWGM operator

0.2110 0.0997 0.2789 0.0848 A1 ≻ A4 ≻ A3 ≻ A2

Joshi and Kumar’s method (Joshi and

Kumar, 2016)

0.8653 0.8843 0.8810 0.8779 A1 ≻ A4 ≻ A3 ≻ A2

Zhang’s method using the

IVIHFWA operator (Zhang, 2013)

0.2243 0.2646 0.3562 0.2129 A4 ≻ A1 ≻ A3 ≻ A2

Zhang’s method using the

IVIHFWG operator (Zhang, 2013)

0.1754 0.1142 0.2783 0.0932 A1 ≻ A4 ≻ A3 ≻ A2

Zhang’s method using the

IVIHFOWA operator (Zhang, 2013)

0.1732 0.2513 0.2583 0.1858 A1 ≻ A4 ≻ A3 ≻ A2

Zhang’s method using the

IVIHFOWG operator (Zhang, 2013)

0.1389 0.1265 0.2110 0.0894 A1 ≻ A3 ≻ A4 ≻ A2

Zhang’s method using the

IVIHFHA operator (Zhang, 2013)

0.1960 0.2410 0.2431 0.2051 A4 ≻ A1 ≻ A3 ≻ A2

Zhang’s method using the

IVIHFHG operator (Zhang, 2013)

-0.1969 -0.2394 -0.2217 -0.2470 A1 ≻ A4 ≻ A3 ≻ A2

lem, they need to first choose the used method. Because the new operational laws avoid

the limitations defined in Section 2.2 and the new aggregation operators globally consider

the interactions between the weights of the criteria and the weights of the ordered posi-

tions, we suggest the decision makers to apply the new method that can also address the

situation where the weight information is not exactly known.

To show the differences between our method and two previous ones intuitively, ac-

cording to their principles, Table 7 is offered.

6. Conclusion

As well known, for a given decision making problem, there are main three procedures

that need to be solved: determining the weight information, calculating the alternatives’

comprehensive values, and ranking the alternatives. Considering the previous researches

about decision making with interval-valued intuitionistic hesitant fuzzy sets, we wrote this

paper and proposed two new aggregation operators that overall consider the interactions

between elements in a set. To cope with the situation where the weight information is

not exactly known, models for the optimal fuzzy measures and 2-additive measures are
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Table 7

The comparison of our method and two previous ones.

Our method Method in Joshi and Kumar (2016) Method in Zhang (2013)

Can the used operational laws

preserve the monotonicity?

Yes No No

Are the weights of criteria for the

different alternatives the same?

Yes No Yes

Are the interactive characteristics

between the weights considered?

Yes Yes No

Can the complementary, redundant

and independent characteristics

between the weights of elements be

reflected simultaneously?

Yes No No

Is the situation where the weighting

information is incompletely known

considered?

Yes No No

constructed. Then, we introduced a new decision-making method and offered a practical

decision-making problem to show the concrete application of the new theoretical results.

Meanwhile, comparison analysis is performed.

This paper focuses on the theoretical research, and we will continue to study the ap-

plication of the new approach in some other fields including the application in new prod-

uct screening, propulsion system selection problem, selecting suitable hotels, economic

production problem, evaluating machine tool, social media, green supplier selection, and

evaluation of the professor in a university. Furthermore, we shall research decision mak-

ing with other types of hesitant fuzzy sets and dynamic decision making models in the

setting of hesitant fuzzy environment.
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