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Abstract. In this paper an exploratory classification, so called open set problem, is investigated.
Open set recognition assumes there is incomplete knowledge of the world at training time, and un-
known classes can be submitted to an algorithm during testing. For this problem we elaborated a
theoretical model, Double Probability Model (DPM), based on likelihoods of a classifier. We devel-
oped it with double smoothing solution in order to solve technical difficulties avoiding zero values
in the predictions. We applied the GMM based Fisher vector for the mathematical representation
of the images and the C-SVC with RBF kernel for the classification. The last contributions of the
paper are new goodness indicators for classification in open set problem, the new type of accura-
cies. The experimental results present that our Double Probability Model helps with classification,
the accuracy increases by using our proposed model. We compared our method to a state-of-the-art
open set recognition solution and the results showed that DPM outperforms existing techniques.

Key words: open world problem, open set, image classification, unknown class, double probability
model.

1. Introduction to Open Set Problem

There are many works dealing with multi-class classification that incorporates labelled
and unlabelled data. The reason of usage of both of them comes from the costs of the
machine learning process. Namely, in some cases labelled instances are often expensive,
difficult, or time consuming to obtain, as they require the efforts of experienced human
annotators. Meanwhile unlabelled data may be relatively easy to gather, but there has
been few ways to use them. This kind of learning requires less human effort and gives
higher accuracy, it is of great interest both in theory and in practice. This is useful in
many areas, e.g. person (Szűcs and Marosvári, 2015) and character identification (Zhu
and Goldberg, 2009) in multimedia data (the latter one is solved by clustering procedure).
This topic belongs to semi-supervised learning theory (Bauml et al., 2013), where there
are usually only small amount of labelled data with a large amount of unlabelled data.
Semi-supervised learning falls between unsupervised learning and supervised learning,
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and it can learn from both labelled and unlabelled instances. This can be combined by
active method, like active clustering based classification method, which clusters both the
labelled and unlabelled data with the guidance of labelled instances, then queries the label
of the most informative instances in an active learning phase and after that classifies the
data set (Szűcs and Henk, 2015).

In all researches mentioned above the unlabelled instances belong to known classes
(in the test set the new instances should be categorized into one of known classes also),
but in an exploratory learning a new type of task occurs.

The task to be addressed is related to what is called open-set or open-world recognition
problems (Bendale and Boult, 2015; Scheirer et al., 2014), i.e. classification problems in
which the recognition system has to be robust to unseen categories. Formally, given K

known classes (categories) in the training set, and the task is not only to classify the new
instances into known categories, but also to recognize when an instance does not belong
to any of the known classes. This new category is called unknown class, thus the test set
contains K + 1 classes. The task is an extended version of the single-label classification,
because after training K classes the decision should be drawn among K + 1 alternatives.

After this formalization we organize the rest of this paper as follows. First we summa-
rize the related literature in this area, then in Section 3 we present our suggestion, so called
Double Probability Model (DPM) for open set problem. In the next section our solution
for image classification is presented. Section 5 contains the proposed new goodness in-
dicators for classification in this problem, and the next one presents experimental results,
finally in the last one we describe our conclusion.

2. Related Work

The aim of our task was to identify data from classes that are not previously seen by a
machine learning system during training. There are several works dealing with similar
problem, since real-world tasks in computer vision often touch upon open set recognition
(i.e. multi-class recognition with incomplete knowledge of the world and many unknown
inputs). Some of those works use a new variant of SVM capable to solve the rejection
problem, e.g. Support Vector Data Description (SVDD) (Tax and Duin, 2004), and the
One-class SVM (Schölkopf et al., 2001; Cevikalp and Triggs, 2012), RO-SVM (Zhang
and Metaxas, 2006) determines the instance labels, and the rejection region during the
training phase simultaneously. Furthermore, in the literature binary classification models
have been proposed specifically for open set visual recognition tasks. Scheirer et al. (2014)
developed a Compact Abating Probability model (CAP model), where the probability of
class membershipdecreases in value (abates) as points move from known data toward open
space. Based on the CAP model, they described a new variant of SVM, the novel Weibull-
calibrated SVM (W-SVM) for open set recognition, which combines useful properties of
statistical extreme value theory for score calibration with one-class and binary SVMs.
Scheirer et al. (2014) claim that W-SVM outperforms their previous solutions, namely
the 1-vs-Set Machine (Scheirer et al., 2013) and the PI -SVM (Jain et al., 2014); besides,
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they included several other approaches in their experimental evaluation, which were all
outperformed by W-SVM. In this paper we compare our solution to the W-SVM and
discuss the results (see Section 6.3). The 1-vs-Set Machine algorithm (Scheirer et al.,
2013) sculpts the decision space from the marginal distance of one-class or binary SVM
with a linear kernel, so that it can reduce open space risk. This approach simply assigns
class labels to instances during test. On the other hand, PI -SVM (Jain et al., 2014) is
developed for estimating the unnormalized posterior probability of class inclusion. The
idea is based on knowledge of rejection the large set of unknown classes even under an
assumption of incomplete class knowledge if an accurate model could be built for positive
data for any known class without overfitting. The solution is formulated as modelling
positive training data at the decision boundary, where the statistical extreme value theory
can help. Bendale and Boult (2015) defined Open World recognition and presented the
Nearest Non-Outlier (NNO) algorithm which adds object categories incrementally while
detecting outliers and managing open space risk.

3. Double Probability Model

3.1. Theoretical Model

In this section we present our Double Probability Model, which is based on likelihoods of
a classifier. After training the classifier is able to give predictions with reliability values
(scores) for each class. The range of the scores depends on the classifier type (sometimes
it is from 0 to 1), but it can be any range; only one condition is required, namely the larger
score for class Ci should represent larger likelihood to being member of class Ci . In the
training set or in a validation set the instances with corresponding scores are investigated
in each class. The ground truth is known in this set, so the positive elements can be selected
from each class. Denote the set of scores of the positive and negative instances of class Ci

by SPi
and SNi

, respectively. The set of negative instances of a class is the union positive
instances of all other classes, as can be seen in Eq. (1).

SNi
=

⋃

j 6=i

SPj
. (1)

In order to get conditional probability that a new instance belongs to class Ci provided
by it’s score, cumulative distribution function (CDF) of score values in SPi

should be
calculated, and we created a “reverse” CDF of values in SNi

(see Eqs. (2) and (3)).

FPi
(x) = p(Ci |score < x), (2)

FNi
(x) = p(Ci |score > x). (3)

Note that the sum of these probabilities is not always equal to 1 (this is not required).
We constructed the so called Double Probability Model based on CDF and “reverse” CDF
functions. After these calculations the predicted class should be decided at a new instance.
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The focus is on the likelihood of unknown class compared with any of the known classes.
Before the comparison, the probabilities of the known classes should be calculated. We get
scores (scorei for class i) for a new instance, as outputs of the prediction of the original
classifiers, and based on them the probability of the ith class can be expressed as we
describe in Eq. (4) and the expression for the probability of class CK+1 can be seen in
Eq. (5).

PCi
= FPi

(scorei)

K
∏

j=1,j 6=i

FNj
(scorej ), (4)

PCK+1
=

K
∏

j=1

FNj
(scorej ), (5)

PCK+1
> max

i
{PCi

}. (6)

If the condition described by the inequality in Eq. (6) is true, then the decision in
prediction of this new instance will be unknown class. Otherwise the prediction is based
on the original classifier, i.e. the decision will be the class with the largest score. The
decision in prediction of the j th test instance is formalized in Eq. (7).

jdecision =

{

K + 1 | PCK+1
> maxi{PCi

},

argmaxj {scorej } | otherwise.
(7)

3.2. Double Smoothing

In order to avoid zero probabilities in the product we used smoothing. In this smoothing
we add dummy data to the data set, one value to the minimum and another one to the
maximum of the range, so we call it double smoothing. This double smoothing method
slightly modifies the cumulative distribution function, but it helps with creating non-zero
CDF. At the double smoothing the number of data increases by two in each CDF. If the
number of scores (i.e. the size of the validation data) is large enough, then the modified
CDF (modified by smoothing) tends to the original CDF. Let us suppose that we have N

data: score1, score2, . . . , scoreN . Between scorei and scorei+1 the value of CDF changes
from i

N
to (i+1)

(N+2)
, so the difference of them can cause the smoothing error (se), described

in Eq. (8).

se =

∣

∣

∣

∣

i + 1

N + 2
−

i

N

∣

∣

∣

∣

=

∣

∣

∣

∣

N − 2i

(N + 2)N

∣

∣

∣

∣

. (8)

If i = N
2

, then se is zero, and the maximum of the smoothing error will be at i = N ,
as can be seen in Eq. (9).

max
i

(se) =
1

N + 2
. (9)
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The smoothing error tends to zero as N becomes infinite. Let us denote the number of
elements in the original (i.e. before smoothing) CDF of the j th class by Nj . The maximal
error caused by double smoothing can be derived by Eq. (10).

Maxerror-smoothing =

K
∏

j=1

1

Nj + 2
. (10)

4. Image Classification

We tested the Double Probability Model with image classification. Following the general
trend, we applied the BoW (Bag-of-Words) model (Fei-Fei et al., 2007; Chatfield et al.,
2011; Lazebnik et al., 2006) for the mathematical representation of the images and we used
SVM (Support Vector Machine) (Boser et al., 1992; Cortes and Vapnik, 1995; Chatfield et

al., 2011) for classifier. We should note that the DPM can be used with any classification
process, as long as it provides probability values for each possible category.

The key idea behind the BoW model is to represent an image (based on its visual
content) with so-called visual code words while ignoring their spatial distribution. This
technique consists of three steps: (i) feature detection, (ii) feature description, (iii) image
description as usual phases in computer vision. For feature detection we used the Harris-
Laplace corner detector (Harris and Stephens, 1988; Mikolajczyk and Schmid, 2004),
and SIFT (Scale Invariant Feature Transform) (Lowe, 2004) to describe them. Note that
we used the default parameterization of SIFT proposed by Lowe; therefore the descriptor
vectors had 128 dimensions. To define the visual code words from the descriptor vectors,
we used GMM (Gaussian Mixture Model) (Reynolds, 2009; Tomasi, 2004), which is a
parametric probability density function represented as a weighted sum of (in this case
256) Gaussian component densities; as can be seen in Eq. (11).

p(X | λ) =

K
∑

j=1

ωjg(X | µjoj ), (11)

where ωj , µj and oj denote the weight, expected value and the variance of the j th Gaus-
sian component respectively, furthermore K = 256. We calculated the λ parameter with
ML (Maximum Likelihood) estimation by using the iterative EM (Expectation Maximiza-
tion) algorithm (Dempster et al., 1977; Tomasi, 2004). We performed K-means clustering
(MacQueen, 1967) over all the descriptors with 256 clusters to get the initial parameter
model for the EM. The next step was to create a descriptor that specifies the distribution of
the visual code words in an image, called high-level descriptor. To represent an image with
high-level descriptor, the GMM based Fisher vector (see Eq. (12)) was calculated (Per-
ronnin and Dance, 2007; Reynolds, 2009). These vectors were the final representations
(image descriptor) of the images.

F = ▽λ logp(X | λ) (12)
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where logp(X | λ) is the probability density function introduced in Eq. (11), X de-
notes the SIFT descriptors of an image and λ represents the parameter of GMM (λ =

{ωjµjoj |j = 1 . . .K}).
For the classification subtask we used a variation of SVM, the C-SVC (C-support vec-

tor classification) (Boser et al., 1992; Cortes and Vapnik, 1995) with RBF (Radial Basis
Function) kernel. The one-against-all technique was applied to extend the SVM for multi-
class classification. We used Platt’s (Platt, 2000) approach as probability estimator, which
is included in LIBSVM (A Library for Support Vector Machines) (Chang and Lin, 2011;
Huang et al., 2006). At this point we can decide whether to use the Double Probability
Model for filtering out the test samples that possibly came from a previously unseen cate-
gory, or keep the original predictions of the classifier (SVM). The CDF and reverse CDF
(Eqs. (2) and (3)) can be calculated based on the class membership probabilities (in a
validation set).

5. New Goodness Indicators for Classification in Open Set Problem

We call the instances with known class, and the instances with unknown class in test set by
known test samples and unknown test samples, respectively. Note that the unknown classes
are different from the known classes and the learning system has no information about their
existence or size. The aim of the proposed model is to detect the unknown test samples
with the greater accuracy. The detection part is covered by the DPM, but there are some
different ways of calculating the accuracy to take these detections into consideration. The
traditional accuracy (Eq. (13)) is not an appropriate indicator for measuring the goodness
of the results, because it does not consider the unknown (unseen) categories; i.e. even so
a test sample belongs to an unknown class it will automatically be classified into one of
the known categories, what reduces the accuracy and this reduction depends on the ratio
of the unknown test samples.

We introduce so called extended accuracy denoted by AccuracyE : it discards the result
of the test samples that are predicted as unknown, and then it calculates the accuracy on
this reduced result set (see Eq. (14)). This way we are able to measure the efficiency of our
proposed model by comparing it to the general case when the test samples are not filtered
out.

Accuracy =

∑

i∈K∪U I (Y ′
i = Yi)

|K ∪ U |
, Yi ∈ CK ∪ CU , Y ′

i ∈ CK , (13)

AccuracyE =

∑

i∈K∪U I ((Y ′
i = Yi)&(Y ′

i ∈ CK ))
∑

i∈K∪U I (Y ′
i ∈ CK )

, Yi , Y
′
i ∈ CK ∪ CU , (14)

where I is an indicator function and its value is 1 if the condition in Equation 14 is true,
otherwise 0. The K and U are the sets of known and unknown instances (in the test set),
CK , CU are the sets of known and unknown classes, respectively (the unknown label is
only one class, but CK typically contains more known classes). Furthermore, Yi and Y ′

i

denote the real and predicted class label of the ith image.
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With the above modification we eliminate the test samples that are predicted as un-
known by the DPM. While this method of calculation is good for comparison, it does not
accurately reflect the classification power on the unknown; therefore a new type of accu-
racy (see Equation 15) is needed to evaluate such open set problem, denoted by AccuracyO

(where the subscript O refers for open set problem). The decision for a test sample is drawn
among K + 1 alternatives; thus with the AccuracyO we evaluate those decisions among
K + 1 categories.

AccuracyO =

∑

i∈K∪U I (Y ′
i = Yi)

|K ∪ U |
, Yi , Y

′
i ∈ CK ∪ CU . (15)

We can use the traditional recall (R), precision (P ) metrics on the decisions of DPM,
i.e. the percentage of the correctly filtered out images. We calculate these metrics in the
following ways:

Rfilter =

∑

i∈U I (Y ′
i = Yi)

|U |
, Yi ∈ CU , Y ′

i ∈ CK ∪ CU , (16)

Pfilter =

∑

i∈U ′ I (Y ′
i = Yi)

|U ′|
, Yi ∈ CK ∪ CU , Y ′

i ∈ CU , (17)

where U ′ = {instancei |Y
′
i ∈ CU }.

6. Experimental Results

6.1. Experimental Environment

For conducting our experiments, we used the Caltech101 (Fei-Fei et al., 2004) collection
which consists of 8677 images from 101 categories; and we created numerous data sets by
randomly sampling the classes from the total data set. These subsets fit into six different
types. The training set was formed from 70% of the images in the randomly selected
known classes, and the test set contains the other 30% images from the known classes
complemented by all of the unknown images. The reason behind isolating the unknown
images is that the learning system is not allowed to use them, so all unknown images are
basically unknown test samples. We randomly selected some of the known classes, and
repeated this operation 20 times, so that we can take the average of the 20 results. We chose
two different unknown sets, and we defined three different numbers of known classes to
sample, therefore we had total of six types, as can be seen in Table 1. As we mentioned
previously, we had 20 data sets of every type, so total of 120 data sets. In the rest of the
paper we will consider only the types, instead of the individual data sets one by one; later
on when we present the results of the data types, we mean the averaged results of the 20
individuals.

In case of Airplanes5, Airplanes10 and Airplanes20 data sets the known categories
were sampled from 100 classes, while in case of Faces5, Faces10 and Faces20 data sets
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Table 1
Types of the data sets which were created by randomly selecting the

categories of Caltech101 collection.

Name Number of known classes Unknown set

Airplanes5 5 airplanes
Airplanes10 10 airplanes
Airplanes20 20 airplanes
Faces5 5 faces + faces easy
Faces10 10 faces + faces easy
Faces20 20 faces + faces easy

they were sampled from 99 classes. This means that the number of unknown classes were
1 and 2; the number of unknown test samples were 800 and 870, respectively. We created
such basic test bed where the numbers of known test samples and unknown test samples
were equal, and we achieved this by randomly selecting the appropriate amount from the
larger set in each test (i.e. downscaled the unknown set if the known set was smaller and
vice versa). We measured the results at 11 sampling points, as the percentage of the number
of unknown test samples were increasing from 0 to 50 (by 5 percent at each step, so the
basic test bed was modified according to this downsampling). Note that during the training
our machine learning solution can use only known images (and none of the images with
unknown class), and it has not got any information about “unknown ratio in the test set”,
so DPM does not know how many images should be filtered out as unknown instance.

6.2. Evaluation of Double Probability Model

In the following we present the experimental results of our proposed Double Probability
Model in six diagrams (Fig. 1) and in four tables (Tables 2–5). The diagrams in Fig. 1
show that our proposed model has a positive influence on the AccuracyE ; in case of each
test the usage of DPM is beneficial, because it is able to filter out many unknown images.

Regarding Pfilter the Faces20 and Airplanes20 tests were the best, in these cases the
predictions of our model were approximately 75% correct (see Table 5 for details). We
got the lowest Pfilter on the Faces5 test and it was 0.563 which means that the true positive
detections were higher then the false ones even in this “worst” case.

We also calculated the Rfilter metric for every test and we experienced that increasing
the percentage of the unknown test samples in the whole test set Rfilter did not significantly
change (±0.02), thus we only present this metric at the last sampling point (i.e. when
numbers of known and unknown test samples were equal): Airplanes : 0.741, Faces5 :
0.730, Airplanes10 : 0.551, Faces10 : 0.611, Airplanes20 : 0.234, Faces20 : 0.550. We
can see that in the majority of tests our proposed model detected more than half of the
unknown test samples, moreover, in case of Airplanes5 and Faces5 only a quarter of the
unknown set remained undetected.

The tables below summarize the total result of our experiments with Double Proba-
bility Model. The meaning of the first column at the left is similar to the x-axis of the
diagrams above, it represents the percentage of the unknown test samples. In addition to
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Fig. 1. Results got on the six different data set types. Each diagram shows the AccuracyE (average AccuracyE of 20 tests) with or without using our proposed Double Probability
Model and the AccuracyO (average AccuracyO of 20 tests); represented as dashed, dotted and solid lines, respectively. The accuracy is on the y-axis and the percentage of the
unknown test samples is on the x-axis.



362 D. Papp, G. Szűcs

Table 2
AccuracyE , Q1 and Q3 metrics with or without using DPM evaluated on the results of Airplanes5 and Faces5

test data set types.

% Airplanes5 Faces5

Without DPM With DPM Without DPM With DPM

AVG Q1 Q3 AVG Q1 Q3 AVG Q1 Q3 AVG Q1 Q3

0 0.547 0.419 0.634 0.647 0.557 0.720 0.531 0.398 0.630 0.730 0.638 0.807
5 0.517 0.396 0.601 0.639 0.547 0.720 0.502 0.376 0.596 0.718 0.620 0.792
10 0.490 0.377 0.569 0.629 0.534 0.716 0.475 0.357 0.567 0.707 0.587 0.792
15 0.463 0.355 0.536 0.619 0.523 0.716 0.449 0.336 0.534 0.701 0.564 0.792
20 0.436 0.334 0.505 0.610 0.502 0.716 0.423 0.318 0.502 0.686 0.530 0.792
25 0.409 0.313 0.474 0.601 0.485 0.716 0.397 0.297 0.472 0.672 0.518 0.792
30 0.382 0.292 0.444 0.592 0.464 0.716 0.370 0.277 0.440 0.657 0.494 0.792
35 0.354 0.272 0.412 0.582 0.437 0.716 0.344 0.258 0.408 0.643 0.463 0.792
40 0.327 0.251 0.380 0.570 0.412 0.716 0.318 0.238 0.378 0.625 0.427 0.792
45 0.300 0.230 0.348 0.558 0.382 0.715 0.291 0.218 0.346 0.610 0.389 0.792
50 0.273 0.210 0.317 0.543 0.361 0.702 0.265 0.199 0.315 0.593 0.344 0.792

Table 3
AccuracyE , Q1 and Q3 metrics with or without using DPM evaluated on the results of Airplanes10 and

Faces10 test data set types.

% Airplanes10 Faces10

Without DPM With DPM Without DPM With DPM

AVG Q1 Q3 AVG Q1 Q3 AVG Q1 Q3 AVG Q1 Q3

0 0.635 0.561 0.717 0.676 0.609 0.727 0.643 0.601 0.734 0.745 0.654 0.851
5 0.602 0.532 0.679 0.658 0.607 0.709 0.609 0.570 0.695 0.723 0.620 0.830
10 0.571 0.504 0.645 0.642 0.590 0.686 0.578 0.539 0.659 0.704 0.604 0.797
15 0.539 0.477 0.608 0.620 0.556 0.668 0.545 0.509 0.623 0.686 0.588 0.767
20 0.508 0.448 0.573 0.602 0.524 0.643 0.514 0.480 0.587 0.663 0.573 0.758
25 0.476 0.420 0.537 0.580 0.503 0.606 0.482 0.450 0.550 0.642 0.567 0.734
30 0.444 0.393 0.501 0.560 0.491 0.575 0.449 0.420 0.513 0.624 0.528 0.734
35 0.412 0.365 0.465 0.536 0.469 0.559 0.417 0.390 0.476 0.604 0.494 0.711
40 0.381 0.337 0.430 0.514 0.441 0.544 0.385 0.361 0.440 0.577 0.459 0.676
45 0.349 0.309 0.394 0.490 0.414 0.521 0.353 0.330 0.404 0.551 0.414 0.655
50 0.318 0.281 0.359 0.463 0.382 0.485 0.321 0.301 0.367 0.527 0.381 0.634

the averaged metric we also included the Q1 and the Q3 (first and third quartiles) statisti-
cal indicators to give a comprehensive view about the performance of our model. Figure
1 already showed that the averaged results are better when we use DPM, but by looking
at and comparing the Q1, Q3 values of AccuracyE in Tables 2–4 we can notice that even
every Q1 and Q3 is higher in case of using Double Probability Model; moreover, in some
cases the Q1 with DPM outperforms the Q3 without DPM. Based on these results we
conclude that our proposed model efficiently filters out the unknown test samples.

As we discussed before, AccuracyO is the appropriate evaluation of the results and its
value is barely changing (see left part of Table 5) as we increase the percentage of the
unknown test samples. The reason for this is that our model is able to classify the known
and unknown test samples as efficient as SVM classifies the known classes. For example,
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Table 4
AccuracyE , Q1 and Q3 metrics with or without using DPM evaluated on the results of Airplanes20 and

Faces20 test data set types.

% Airplanes20 Faces20

Without DPM With DPM Without DPM With DPM

AVG Q1 Q3 AVG Q1 Q3 AVG Q1 Q3 AVG Q1 Q3

0 0.671 0.607 0.701 0.705 0.644 0.757 0.668 0.604 0.710 0.718 0.652 0.763
5 0.637 0.576 0.666 0.675 0.614 0.753 0.634 0.573 0.674 0.700 0.640 0.752
10 0.604 0.545 0.630 0.648 0.589 0.724 0.601 0.543 0.639 0.682 0.635 0.744
15 0.570 0.516 0.596 0.618 0.561 0.688 0.567 0.513 0.603 0.663 0.622 0.733
20 0.537 0.485 0.560 0.589 0.533 0.654 0.534 0.483 0.568 0.645 0.594 0.723
25 0.503 0.455 0.526 0.558 0.503 0.616 0.501 0.453 0.532 0.625 0.570 0.714
30 0.470 0.425 0.491 0.526 0.471 0.590 0.467 0.422 0.497 0.605 0.542 0.704
35 0.436 0.394 0.456 0.493 0.439 0.550 0.434 0.392 0.462 0.583 0.508 0.691
40 0.403 0.364 0.421 0.460 0.407 0.513 0.401 0.362 0.426 0.560 0.472 0.678
45 0.369 0.334 0.386 0.428 0.378 0.478 0.367 0.332 0.390 0.537 0.435 0.664
50 0.336 0.303 0.351 0.395 0.347 0.434 0.334 0.302 0.355 0.509 0.400 0.640

Table 5
AccuracyO and Pfilter metrics evaluated on the results of all types of test data sets; A and F denote Airplanes

and Faces, respectively.

AccuracyO Pfilter

% A5 F5 A10 F10 A20 F20 A5 F5 A10 F10 A20 F20

0 0.547 0.531 0.635 0.643 0.671 0.668 0.000 0.000 0.000 0.000 0.000 0.000
5 0.562 0.545 0.632 0.640 0.649 0.663 0.108 0.069 0.126 0.076 0.129 0.143
10 0.573 0.559 0.632 0.641 0.630 0.660 0.186 0.132 0.235 0.151 0.268 0.263
15 0.586 0.576 0.627 0.642 0.609 0.655 0.259 0.198 0.314 0.222 0.365 0.357
20 0.598 0.587 0.625 0.640 0.589 0.652 0.325 0.251 0.392 0.284 0.445 0.445
25 0.612 0.602 0.622 0.641 0.568 0.648 0.389 0.308 0.460 0.346 0.511 0.516
30 0.626 0.615 0.620 0.644 0.545 0.645 0.447 0.364 0.523 0.409 0.562 0.578
35 0.640 0.629 0.618 0.648 0.524 0.641 0.500 0.417 0.579 0.467 0.612 0.629
40 0.652 0.640 0.616 0.646 0.501 0.638 0.547 0.466 0.627 0.517 0.654 0.677
45 0.664 0.654 0.614 0.646 0.482 0.635 0.590 0.517 0.674 0.564 0.701 0.719
50 0.675 0.663 0.612 0.647 0.461 0.630 0.632 0.563 0.715 0.610 0.739 0.757

in case of Airplanes10 the AccuracyO = 0.635 at the first sampling point (where every

test sample is known) and AccuracyO = 0.612 at the last sampling point, while it only

slightly fluctuates between them.

The overall results showed that the DPM is a useful technique to find the unknown test

samples. One possible downside of the model is that it is less successful in case of small

number of positive samples per category, because DPM cannot set up accurate CDF and

reverse CDF if this issue is present; although this “negative” attribute is due to the way of

its composition.
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6.3. Comparison with the Weibull-Calibrated SVM (W-SVM)

In this subsection we present the results of the comparison of our proposed Double Prob-
abilty Model and the state-of-the-art W-SVM introduced by Scheirer et al. (2014). We
tested the W-SVM on each data sets (total of 120) and evaluated the AccuracyO and
Pfilter metrics, then compared them to the ones given by DPM. Figures 2 and 3 show
the AccuracyO and the Pfilter metrics, respectively. As can be seen in the diagrams below,
DPM has better performance in case of each data set type than W-SVM, and this implies
that it would (most likely) outperform all the other techniques that were tested in Scheirer
et al. (2014). Table 6 gives a summary of the comparison by presenting the values of
AccuracyO and Pfilter for each data set types given by DPM and W-SVM.

The W-SVM is basically built up from θ one-class SVMs trained on positive examples
and θ one-against-all binary SVMs, where θ denotes the number of classes. It has two
parameters: one of them is δτ (fixed to 0.001 for all experiments in Scheirer et al., 2014),
which is used to adjust the minimum threshold to consider data points in CAP model, and
δR is the level of confidence needed in the estimation of W-SVM. It is important to note
that W-SVM was introduced and validated on LETTER and MNIST data sets, where the
recognition rate is higher than in image collections that contain photos of outdoor, natural
scenes. Therefore, we suspected that a parameter optimization is necessary before going
on and testing the W-SVM on each data sets. We used a separate 10-class data set for
the optimization and found that δτ = 0.1 and δR = 0.1 is an appropriate setting for such
type of images (the default setting of W-SVM is δτ = 0.001 and δR = 0.1). We decided
not to modify the value of δR , because by systematically increasing or decreasing this
parameter, the AccuracyO and Pfilter were not converging to a global maximum. On the
other hand, increasing δτ resulted better detection rate on the unknown test samples up
to a point (δτ = 0.1), where the number of false positive detections became high and it
started to decrease both the AccuracyO and Pfilter metrics. In Fig. 2, we present the results
of W-SVM, which were produced by the default and the optimized settings; thereby the
difference between these options were demonstrated and therefore Fig. 3 and Table 6 show
only the results given by the optimized W-SVM.

We highlighted the higher values in each pair of rows in the table above and as can be
seen, Double Probability Model has better performance than the Weibull-calibrated SVM
at almost each case. There are only a few examples when W-SVM gave higher metrics
and most of them got on the Faces5 data set. From these results we may conclude that our
solution is more efficient than the W-SVM and the other methods that were previously
overcome by it.

7. Conclusion

We presented our theoretical model called Double Probability Model, which is based on
likelihoods of any classifier. The proposed model creates cumulative distribution functions
on the positive samples and reverse cumulative distribution functions on the negative ones
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Fig. 2. Results got on the six different data set types by evaluating DPM and CAP W-SVM with δτ = 0.001 and δτ = 0.1 parameter settings; represented as solid, dashed and
dotted lines, respectively. The AccuracyO (average AccuracyO of 20 tests) is on the y-axis and the percentage of the unknown test samples is on the x-axis.
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Fig. 3. Percentages of the correctly detected unknown test samples got on the six different data set types by evaluating DPM and CAP W-SVM; represented as solid and dotted
lines, respectively. The Pfilter (average Pfilter of 20 tests) is on the y-axis and the percentage of the unknown test samples is on the x-axis.
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Table 6
Comparison of AccuracyO and Pfilter metrics got on the results of all types of test data sets between DPM and

W-SVM methods; A and F denote Airplanes and Faces, respectively.

% AccuracyO Pfilter Method

A5 F5 A10 F10 A20 F20 A5 F5 A10 F10 A20 F20

0 0.547 0.531 0.635 0.643 0.671 0.668 0.000 0.000 0.000 0.000 0.000 0.000 DPM
0.495 0.420 0.563 0.486 0.513 0.505 0.000 0.000 0.000 0.000 0.000 0.000 W-SVM

5 0.562 0.545 0.632 0.640 0.649 0.663 0.108 0.069 0.126 0.076 0.129 0.143 DPM
0.499 0.432 0.554 0.480 0.500 0.502 0.088 0.073 0.095 0.080 0.063 0.126 W-SVM

10 0.573 0.559 0.632 0.641 0.630 0.660 0.186 0.132 0.235 0.151 0.268 0.263 DPM
0.502 0.444 0.546 0.475 0.488 0.499 0.162 0.139 0.170 0.147 0.121 0.228 W-SVM

15 0.586 0.576 0.627 0.642 0.609 0.655 0.259 0.198 0.314 0.222 0.365 0.357 DPM
0.505 0.455 0.539 0.469 0.476 0.497 0.230 0.199 0.236 0.210 0.175 0.315 W-SVM

20 0.598 0.587 0.625 0.640 0.589 0.652 0.325 0.251 0.392 0.284 0.445 0.445 DPM
0.509 0.465 0.531 0.464 0.464 0.494 0.295 0.254 0.295 0.266 0.227 0.390 W-SVM

25 0.612 0.602 0.622 0.641 0.568 0.648 0.389 0.308 0.460 0.346 0.511 0.516 DPM
0.513 0.476 0.523 0.458 0.451 0.491 0.355 0.310 0.349 0.318 0.277 0.457 W-SVM

30 0.626 0.615 0.620 0.644 0.545 0.645 0.447 0.364 0.523 0.409 0.562 0.578 DPM
0.516 0.487 0.515 0.452 0.439 0.488 0.412 0.362 0.399 0.368 0.325 0.516 W-SVM

35 0.640 0.629 0.618 0.648 0.524 0.641 0.500 0.417 0.579 0.467 0.612 0.629 DPM
0.520 0.498 0.507 0.447 0.427 0.485 0.465 0.413 0.447 0.415 0.372 0.569 W-SVM

40 0.652 0.640 0.616 0.646 0.501 0.638 0.547 0.466 0.627 0.517 0.654 0.677 DPM
0.523 0.509 0.499 0.442 0.415 0.483 0.515 0.462 0.491 0.458 0.418 0.617 W-SVM

45 0.664 0.654 0.614 0.646 0.482 0.635 0.590 0.517 0.674 0.564 0.701 0.719 DPM
0.527 0.520 0.491 0.436 0.402 0.480 0.564 0.509 0.535 0.501 0.464 0.661 W-SVM

50 0.675 0.663 0.612 0.647 0.461 0.630 0.632 0.563 0.715 0.610 0.739 0.757 DPM
0.530 0.531 0.483 0.430 0.390 0.477 0.608 0.554 0.576 0.541 0.509 0.702 W-SVM

(i.e. on the union of the positive samples of all other classes) for each category. Using
these functions DPM estimates whether a test sample is coming from an unseen category.
In order to avoid zero probabilites our model applies double smoothing. We tested the
DPM at image classification, where the representation of the images were based on visual
content and we used SVM for classifier. To evaluate and compare our model we defined
new goodness indicators, which are extended and modified (open-set problem) variants
of the general accuracy and are able to measure the influence of DPM. Our experiments
showed that the proposed Double Probability Model is able to filter out a large portion of
the unknown test samples, thus it increases the classification accuracy, and it outperformed
the prior state-of-the-art W-SVM.
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