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Abstract. The special class of networks are presented. Based on unreach­
able parts of sl1bgraphs the overlappingly decomposed net.works are defined. The 
special decomposit.ion scheme of those networks is applicated for shortest path 
problem, dynamic programming and synthetic neural nets archit.ecture. 
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1. Introd uction. There are networks that. may be covered 
by overlappingly ;;ubnetworks in suer, a way that, one subnetwork 
differs from anotj';er in elements which can not reach elements from 

! 
other neighbour su bnetwork and this may be esta.blished on basis' 
of t.opologic.al properties of the netwcrk. tor the overlapping)y de­
composed netwofk~ or OD-networks we have suggested the special 
scheme for finding shortr:·st path bet.ween the fixed nodes. It is 
interesting that operative storag~ requirements for this procedure 
depend only on topological properties of the networks . 

. Tf the problem of discrete programming may be interpreted 
a", the shortest path probJern in large scale OD-network t.hen pre­
sented method enables to solve the problem with smaller storage 
requirements than using other methods (Richter, 1982; Hu, 1968j 
Tufekci, 1983). The another area of OD-networks applications is 
in large scale full connected back-prooogat.ing synthetic neural nets 
architecture (VY \.kercet aL .. if/90). If we can'prl'sent neural .. et as 
conjunction of some OD-nets then we have shown t 1.:' It IS VO.:;Sl· 

hIe to rea.lice l".rge sCl:.le full connected' bf'hvren l,.yers neural net 
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in the some number smaller independent neural nets locally con­
nected between layers which have only one common last output 
layer (Walker et al., 1990). . 

2. The unreachable elements in sub'letworks. Let G = 
(V, E) be a directed network. Let us define sets: 

D( v, G) := {w E V: w is reached from v or v is reached from 
win G}j 

D(A, V):= U D(v, G); 
ilEA 

G(A) is a subnetwork which is generated by set A C V, i.e., 
G(A):= (A,E(A», where E(A):= {(v,w) E E:v,w EA}. 

We shall define: 
pes, t) - the set of nodes in directed path from s to t in G; 
P*(s, t) - the set of nodes in the path from s to t in G(A)j 
PA (s, t) - the set of nodes in shortest path from s to t in G(A)j 
c(P(s,t)) - the length (cost) of path P(s,t); 
A:= V\A. 
Let us assume that in network G there are no more paths the 

length of which is equal to the length P$(s, t), where s, t - are fixed 
nodes. 

Lemma 1. (3v E A\PA(s,t):D(v,G) nA = 0) - Cv f/. P*(s,t». 

Proof. Proof follows from the fact that all the paths which 
contain v belong to G(A). 

The nodes which satisfy Lemma 1 are shown in Fig. 1. Those 
nodes will be named isolated nodes in subnetwork G(A). 

I~emma 2. (3v E D(A,G)n(A\PA(s,t»\D(A,G(V\PA(s,t»))­

(v if- P"{s,i.)). 

Proof. Let v E pes, t) and pes, t) n A ::fi 0. We shall show that 
it is I)Ossible to construct the path which does not contain v and is 
shorter tha.n P( s, t). 

Let 3w E pes, t)nA. It follows from condition of the lemma that 
p(s,t)nPA(s,t)\{s,t} = {Sl,S2,; .. ,SJ:}::fi 0. 

Wh€n k = 1, then pes, t) is comparison of two parts pes, sd 
and P(s), t), one of which necessarily belongs to G(A) and v belongs 
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G· (V,E) -----

-----
Fig. 1. leA) - the isolated nodes in subnetwork G(A). 

to this part. Let v E P(s, SI) c A. As p~ (s, t) is the shortest in 
subnetwork G(A)/ so P~(s,sd is shorter than P(s,sd. Therefore 
after substitutioq of part P(s, sd by part PA (s, sd we shall obtain 
a shorter path which doesn't contain node v. 

Let k ~ 2. In this case it is possible to select u, w E pes, t) n 
P;t(s,t)\{s,t} so that P(s,t) crosses P;t(s,t) at these nodes in con­
trary directions, and so that v E P( u, w) and between u and w there 
are no more nodes from P;t(s,t) in the part P(u,w). 

If it is !lO" possible to select such nodes u and w, then v is 
found in the path pes, t) either before pes, t) crosses P;t(s, t) for a 
first ~:me in node Si and P(S,Sl) C A, or after P(s,t) crosses PA(s,t) 
for i(~ last time in node SI; and P(Sk, t) EA. In this case we can use 
the same way of thinking as when k = 1. 

Let us say, that the above mentioned u and w exi'st. Then 
P(u,w) C A and in the path P(s,t) thE part P(u,w) is substituted 
by the part PA (u, u'). The obtained new path will be shorter aut' 
will not contain node v. 

In such a way for each path pes, t): v E P(s, t) and P(c, ,ilA:f; 0 
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/ 
\ 

'---- H~) --------", 
.A 

Fig. 2. J(A) = {v: v satisfy the condition of Lemma 2}. 

\ 

we can construct a shorter path, which doesn't contain node v. As 
according to the assumption we consider P*(s, t) to be the only one 
path of such length, then v f/. P*(s, t). Lemma is proved. 

The example of nodes ~vhich satisfied condition from Lemma 2 
is shown in Fig. 2. 

3. The overlappingly decomposed families. Lemmas 1 
and 2 show the existence of .·letwork elements which can not belong 
to the shortest path and this may be established on basis of topo­
logical properties of these subnetworks. So, there exist networks, 
that may be covered by subnetworks in such a way, that one differs 
from a.nother in un perspective elements . 

. DEFINITION 1. The family of sets {Aa, AI, •.. , An: Aj C V} will 
be named a overlappingly decomposed family of network G = (V, E), 
If the following conditions are satisfied (nodes s,t - are fixed): 
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where: 

The overlappingly decomposed networks 

(a) (j A- =V' 1=0 J , 

(b) 3P(s,t)CAj , j=O,l, ... ,n; 

(c) Aj\Aj+1 C M(Aj) =10, J = 0, 1, ... , n -1, 

M(Aj) :=Aj\D(Bj,G) U (D(Bj, G)n 

(Aj \PA)s, t»\D( Bj ,G(F\P~j(s, i»), 
j 

Bj :=V\CU Ai). ,=0 
Network G in this case will be named overlappingly decomposed 

network. 

Theorem 1. Let {Ao,A 1 , ••. ,An} - be na.med overlappingly 
decomposed. Then 

c(p~o(s,t» ~ c(P.t(s,t») ~ '" ~ c(p;Js,t») = c(p"(s,t)); 

and 

P"'(s, t) E {P~o(s, t), PA, (8, t), ... , PA:Js, iH· 
Proof. We shall notice, tha.t M(Aj) (j = 0,1, ... , n - i.) - are the 

nodes, sa.tisfying 6e conditions of Lemmas 1, 2 in tbe formulation 
of which A is sub~tituted by Aj, and G -- by G(AJ U B,;). 

The correctnhss of the inequalities folkws from 
PA)s, t) C Aj+b j = 0, 1, .... n - 1. 

Thus c(PA:/s, t) ;?; ~(PA:HI (5, t)). 
Let 3P{s,t) ti {PAo, ... ,PA.(s,t)} and c(i(s,t) < c{P(s,t»). 

Then 3e, v: I) ~ I; < y ~ ti' are such a.s 
P(s,tirl.t1e\{s,t}¥0 and p(s,t)nA,,\{s,-Z}f-0. 

Twc cases are possi bIe: 
(i)4.e nA ... \{s,t} = 0; 

ni) Ae nA ... =10. 
In the first case it follows from the definition, that 317: e < 7J < 

v: A'1 n Av \{s,t} =I 0 and P(s. t) n A'I \{s, t} -j:. 0" so it is enough to 
consider only tlle second case. 

If P(s,t) n A{(AdJ: 0, then doesn't exist. the node v'E P(s,t~ '; 
M(Ae), which could be isoiat~d in subnetwork O(Ae), becausr- PC!;, t)n 
A ... \{s,t} =10. So the set ,p(s,t)nM(.4d contains nOj"i'"atisfying 
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Lemma. 2. It follows, that c(PA (s,t») < c(P(s,t»), which contradicts . ( 

to the assumption, that the shortest path is P(s,t). 
If p(s,t)nA",i\{s,t} i:: 0, but p(s,t)nM(Ae) = 0, then appears 

'1]: 11 > 'I] > e and pes, t)nM(A'1) i:: 0. In this case Lemma 2 is applied 
to subnetwork G(A,,) in g~neral network G(A'1 U B'1)' The theorem 
is proved .. 

, For a connected network G we can suggest the following formal 
procedure for construc.ting the overlappingly' decomposed family 
and finding the shortest path between the fixed nodes .s and t. 

Procedure ODF. 
Step 1. Let us take Ao C V: IAol < IVI and M(Ao).::f: 0; 

X := Ao - the considered set of nodes at a given moment; 
S := V\Ao - the set of unconsidered nodes; 
i := 0 - the counter of paths, which do not cross each other 

nodes in network G(X), the maximum vaJue q; 

l := 0 - the number of possible ways of selecting nodes from 
the set S, these nodes will be used for constructing the following 
subnetwork in the overlappingly decomposed family, the maximum 
value of the counter is p; 

J(X) := 0; K(X):= 0 -additional sets. 
Step 2. i:= i + 1; 

if i > q or there are noi-th paths, which cross nodes of other 
paths, th·,m we proceed to Step 4; 

with the help of known algorithm we find Pii(s,t)- the j;,.th 
shortest path between the nodes which do not cross n~es of other 
paths; 

ii S = 0 we proceed to Step 6. 
Step 3. Vve form a set of un perspective nodes M(X); if IM(X)I ~ 

f., we pr'oceed to Step 2, otherwise S := S\J(X). 
Step 4. l:= 1+ 1; 

if I > p then we proceed to Step 6; otherwise we. form a set 
J«X) c S in the l-th way. 

Step 5. If i > q then X := X\J(X) U /«X), otherwise X := 

.X\M(X) U K(X) and I := 0; 
i::;: 0; 
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, J(X) :=K(X); 
go to Step 2: 

The otlerlappingly decomposed networks 

Step 6. 1f:5 = 0 then Pi/(s, t) - is "'ne of the shortest paths (if 
there are several of them) in network G, otherwise we state that the 
constructing of overlappingly decomposed family was unsuccessful. 

It is obvious that this general procedure requires O(IXI) op­
erative storage. The time necessary for the procedure ODF, if to 
assume that Ao is the given set and do not take into account time, 
which is used for the relation with th~ outside storage, may be 
evaluated O(pIV12jr), where r:= min{IM(X)I > o}. 

It is interesting that the operative storage requirements in this 
procedure depend not on the size of network, but only on its topo­
logical properties, which condition the size of subset X. 

4. One ,class of overlappingl! decomposed networks. 
DEFINITION 2. By (m, k, r) - network we mean a k-Ievel (k ~ 3) 

directed network G = (V, E), in every level of which there arc m 
successively from 1 to m enumerated nodes (let us say, that levels 
are also enumerated from 1 to k) and the condition is satisfied: 

(u, w) E E {::} la(u) - a(w)1 ~ r, r = 1,2,3, ... , mj2, 
where a(v) mean~ the number of node v in the level. . 

The exampl4.s of (m, k, r)-networks are demonstrated in Fig. 3: 
We shall define (m, k, r)-subnetwork in (m, k, r)-network, then 

the subnetwork, ,containing nodes, numbers of which in levels are 
from 1 to 1'. . 

Let us indicate Po := min{p: all nodes in (m, k, r)-subnetwork v 
which a(v) = 1 - are isolated }. 

Let us inc!icate xCv) number of layf:" (level) to which depend 
node v in (m, k, r)-network or (I', k, r)-subnetwork and p(J-l) - the 
number of isolated nodes from (I', k, r)-subnetwork. 

Theorem 2. Let G = (V,E) is (m,k,r)-network. Then the 
following conditions are satisfied: 

(1) If v and u there are nodes from (m, k" r)-network, then 
v E D(v, G) {:> la(u) - a( v)1 ~ rlx(u) - x( v)l. 

(2) J-lo = 1 + r(k - 1). 



K. Lasinskas 367 

1 

2. .z 

:, 3 

.~ ~ 

(4:3,1) ~ 

(5,6, I) 

(8,3,2) (8,3,3) 

Fig. 3. (rn, k, r)-networks. 

(3) Let v is isola.ted node from (1-', k, r)-subnetwork (tl1e set of 
nodes let us indicate X), a.nd let I-' ) 1-'0 and . 

.,() { k/2, . k mod 2 = 0, 
A,V ~ (k _ 1)/2 + 1, k mod 2:1 O. 

Then all nodes from the set 

{w E V: w is reachable from v} 

{ { k/2 k mod 2 = 0, } 
n u EX: ,,(u) ~ (k ~ 1)/2, k mod 2:1 o. 
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are isolated. 

(4) Let X be the set of nodes (Jl,k,r)-subnetwork and Jl;> Jlo· 
'Let v is isolated node from this subnetwork and 

JC(v) ;> {~£: 1)/2 + 1, ! :~~ ; ~~: 
Then all nodes (rom the set . 

{w E V: v is reachable from w} 

{ X wI) { k/2, k mod 2 = 0, } 
n uE : .. ,u ~- (k-l)/2+1, kmod2~0. 

are isolated. 
( ) { -k + k(k - 2)r/4, k mod 2 = 0, 
5 p(Jlo) =k + (k _ 1)2r /4, k mod 2 t= 0. 

(6) p(Jl) = p(Jlo) + k(Jl- Jlo), (Jl;> Jlo), 
(7) The node v -js isolated in (Jl, k, r)-subnetwork then and only 

then, when next conditions are satisfi.ed; 

'f wI ) ~ { k/2, k mod 2 = 0, 
1 A,V (k _ 1)/2+ 1, _ k mod 2 ~ 0, 
then a(v) ~ 1 + (JC(v) - l)r + (Jl- Jlo); 

jf JC(v) ~ { (£: 1)/2 + 1, !- :: ; ~ ~: 
then a(v) < 1 + (k ~ JC(v»r + (Jl- Jlo). 

I 

Proof. (1), Ffllows from (m, k, r)-networks definition. 
(2) From #0 definition follows that first node in first level' 

(or layer) in (mo,'k,r)-subnetwork is isolated. Then follows that all 
nodes in level k w~ich are reachable from such node must depend 
(Jlo,k, r)-subnetwork. ,The maximal number such node in level k is 
1 + (k - l)r. 

(3) -Let u is any node from indicated set. We shall proof that 
it is"isolated. We shall show that D+(u, G) U D-(u,G) c X, where 
D+(u,G) := {w E V:w is reachable from u}, D-(u,G):= {w E V: u is 
reachable from w}.D+(u,G) C D+(v,G), because u is reachable from 
v, but D+(v,G) t X, Qecause v is isolated. Those D+(u,G) C X. 
We must only show that D""(u, G) C X. Let us say that exist z fJ X 
and z E D-(u,G). From property (1) and Definition 2 follows that 
Jl ;> a(v) + (k - ~v»b' The~efore Jl ;> JlO then Jl ;> a(v) + (k ~')r. 
The node uis reachable from v. Then from (1) follows that a(u) < 
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a(v) + (Jr(U)- X{v»r. But u is also reachable from z. Then using last 
inequality we receive: 

. a(z) ~ a(u) + (x(u) - Jr(z)}r ~ a(v) + (x(u) - x(z»r 

~ a(v) + {(le - 2)r, le mod 2 = 0, 
. (le - l)r, le mod 2;e O. 

From assumption that z;' X follows a(z) > 1') a(v) + (k - l)r. 
T~erefore last two inequalities with a(z) we receive contradicts each 
other. Than follows D-(u,G) C X and u is isolated. 

(4) Proof follows· from (3) in the same network with inter­
changed orientation. 

(5) We must detect the number of isolated nodes in (1'0, le, r)­
subnetwork. The set of isolated nodes cosist from conjunction the 
sets defined in ·properties (3) and (4). We will detect the number of 
nodes reachable from v: xCv) = 1, a(v) = 1 and the number of nodes 
from which is reachable the node w: Jr(w) = le, a(w) = 1. From (1) 
follows that the number of nodes which are reachable from v and 
depend to level j, where 

. ) {1e/2, le mod 2 = 0, 
) (le - 1)/2 + 1, le mod 2;e 0 

is equal 1+ (j - l)r. The same we can detect about ~he number of 
nodes in level 1, where 

1 ) {1e/2, le mod 2 = 0, 
(le - 1)/2 + 1,. le mod 2;e 0 

from which the node wis reachable. Then general number of iso­
lated nodes is: 

p(I'O) = 

"/2 
2L(I+(j-1)r), kmod2=0, 
i=l 
("-1)/2 

2 L (1 + (j - l)r) + (1 + (le -1)r/2), le mod 2:f 0. 
j=1 

Using formula about sum of arithmetical progression we receive 
final. equation. 

(6) Proof follows fr<?m fact that all nodes v, which a(v) < 1'-1'0 
are isolated. . 

. (7) Proof follows from properties (1), (2), (3). 
Let G = (V,E) be such network that G(V\{8,t})is (m,le,r)· 

network, where 8 and t are fixed n6des. Such network G is overlap-
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pingly decomposed network, because it may be covered by subnet­
works satisfying the Definition 1. One of the rules of subnetwork 
selection is as follows: 

(iO) G(Ao) is selected so that G(Ao\{s,t}) would make (J.l,k,r)­
subnetwork, where p > po. 

(i1) G(Aj), where j = 1,.:., n and is constructed according to 
the formula: 
Aj := Aj-l \{v E Aj_l:a(V) Et jc} u {v: a(v) Et m + jc},6 := p - Po + 1. 

In order to establish the unperspectiveness of a node it is 
enough to verify, whether a certain inequality from Theorem 2 is 

- satisfied. For such netwQrk G we can suggest the following proce­
dure, which is a certain variant of ODF procedure. 

Procedure ODFMKR. 
Step 1. We select Ao according to the Rule (iO); 

X:= Ao; j:= 1; S:= V\Ao; 
Step 2. We find PX(s,t) in network G(X U {s,t}); if S = 0 we 

proceed to Step 6. 
Step 3. We form M(X) - un perspective nodes according to the . , 

Rule (i1). ' i 

(il) . 

I . 

Step 4. We form J(X) - joined nodes according to the Rule. 
j 

. Step 5. X:=; X\M(X)U J(X); S:= S\J(X); i := j + 1; go to 
Step 2. 

Step 6. The output PX(s, t) - the shortest path in network G. 

This procedure calls for a following number of operations 
O(lk«p - 2r)(2r + 1) + r(3r + 1»), where 1 := [(m - p)/6] + 1 and 
the necessary storage requirements may be equal O(kp). When us­
ing a simple nondecompositional algorithm: number of operations 
- O(kp(2r + 1»), storage requirements - O(kp). The comparison of 
computational times of procedure ODFMKR ~nd nondecomposi­
tional algorithm is presented in Table 1. 

More detailed ODF procedure applications for solving discr'te 
optimization problems was presented in publications (Garliauskas, 
LaSinskas, 1990; LaSinskas, 1990). 
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Table 1. The comparison of computational times of proc~dure 
ODFMKR and nondecompositional algorithm 

ID k r J.' Nondecompositional. ODFMKR 
algorithm time (sec) time (~E'C) 

30 3 1 3 0.234 0.422 .. .. " 5 0.266 0.313 .. " " 10 0.219 0.281 
SO 3 1 '3 0.3?5 0.719· .. . " ... 5 0.266 0.437 

" " ... 
10 0.313 0.375 

" " " 15 0.328 0.328 
50 3 2 5 0.437 1.450 

" " " 10 0.453 0.719 

" .. .. 15 0.375 0.562 
60 3 1 3 0.344 0.875 ... .. . " 5 0.375 0.609 

" " " 10 0.406 0.43.7 
60 3 .2 5 0.578 2.190 

" " " 10 0.531 0.687 
60 3 3 7 0.641 3.250 

" " " 12 0.562 1.05 
60 5 1 5 0.5 2.16 

" " " 10 0.453 0.719 
60 5 2 9 0.609 4.72 

" ". " 20 0.766 1.02 
80 3 1 3 0.406 L08 

" .. " 10 0.437 0.641 
" . .. .. 20 0.391 0.531 
80 3 5 15 1.06 2.91 .. " " 30 1.34 1.84 

80 3 6 15 1.37 5.94 

" .. " 30 1.34 1.56 

" .. " 40 1.23 1.58 

5. The overlappingly decomposed networks and ma-
troids. It is naturally to think that some theoretical results of 
matroid theory (Aigner, 1969) may be usefully applied in systems 
modeling connected with properties which makes possible .to de-
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compose the systems and investigate them with the help of some 
parallel procedure. We have proved theorem which shows connec­
tion between matroids and overlappingly decomposed families dis­
cussed in publications (Garliauskas; La.sinskas, 1999; 
Laiinskas, 1990) (e~rly we ha.ve used concept "successively decom­
poeed" but it is not exact because thepossihilities of parallel search 

. of graph are hidden; therefore there is more accepta.ble to use con­
cept "overlappingly decomposed"). 

Let G = (V, E) be a directed network. We shall define: J(A) = 
{v e A: v is unreacha.ble from the nodes V\A in G}, D( a) = {x E ~.r: x 
is reachable from a in G}. 

A directed graph G is weakly connected if there is at least one 
directed path between every pair of nodes in G, Le., the undirected 
graph obtai?ed by ignoring the edge directions in G is connected. 

DEFINITION 3. The family F of subsets S is said to be a family 
of independent sets of matroid on S if the following conditions are 
satisfied: 

(1) 0e F; 
(2) A e F&B ~ A - B e F; 
(3) A, Be F&IAI = IBI + 1- 3z e A\B:B U {x} E F. 

Theorem 3. The family of sets T = {BD, Bl •... ,Bm : Bj C 
V, I{Bj) = 0, VC C Bj - G( C) is weakly connected, j = 0,1, ... ,m} 
in the network G = (V, E) is the family of independent sets of 
a mattoid on V. 

Proof. The conditions (1) and (2) are automatically satisfied. 
Let A, BeT and IAI = IBI + 1. We must proof that 3x E A\B: B U 

{x} e T. There are following cases (a) BC A; (b) B n A = 0; (c) 
B n A ~ 0&B\A # 0. 

Case (a) The proof follows from the se€on.a condition (2). 
Case (b) Since G(A) is weekly connected 3a: D(a) ~ 0 in sub­

graph- G(A). Let us form a subset B U {a}. Then I(B U {a}) = 0 

since 1(8) = 0 and a is connected at least with one vertice from 
A\(BU{a}). 

Case (c) Let Vz E A\B ~ I(BU{x}) ~ 0. We will show that it 
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is impossible. 
Let yE I(BU {~}). Then fl'E A\B. So ~ == y and 3B" C B which 

separate ~ and V\(B U {~}). Since V~ E A\B -- ~ E I(B U {~}) and 
VC c AG(C) is weekly connected then it follows 3y E AnB:y E D(:c). 
But it is easy to see that for every subset 8 C V!Z E J(8)&3y E 

D(z) -+ y E 1(8). So it follows that 3y E I(B U {z}) n B but that 
contradicts with a fact that I(B) = 0; i.e., BET. The theorem is 
proved. 

6. The overlappingly decomposed networks application 
by synthetic neural network architecture (an example). 
There is problem to decrease the number of intersections between 
connections in neural net. We shall show how this problem could 
be solved using overlappingly decomposed networks and adding 
additional nodes and layers. This idea may be applicate by back­
propagation neural net projection. 

Let we have the net as in Fig.· 4: 

)(1 1 1 yl 

Fig. 4. The full connected two-lay.~red neural network. 

This net has 72 intersections. Lets make the next nets trans­
formation: 

(1) the net "duplication": the "duplicated" net in second layer 
has the same neurons but neurons pairs (1, 2) and (3,4) exchange 
nle. .. .a.C!!. 
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'(2) the additional layer leading in to net: 'this layer consist 
from four neurons; 
. (3) the connections between last layer and additional layer are 
organized so that in each neuron from additional layer come edges 
from "duplicated" neurons with same number (Fig. 5.) 

The weights between first and second la.yer correspond weights 
matrix. The outputs in second layer are next:' 

, 3 

liP) = sign(~)ilZi)' 1I~1) = sign(Eti2zi)' 
. i=1 I i=1 

4 . 4 ... 

1I~1) = sign ( E ti3Zi). lIi1) = sign (E ti4Zi)' 
i=' i=3 

4 '. 4 

1I~') = sign(Eti1Zi). 1I~') = sigJi(~)i2Zi). 
i=3 i=4 

1 2 

1I~') = sign(l: 'J3Zi)' lIi') = sign(EtJ4Zi)" 
. J=1 1=1 

Index (1) and (2) correspon~ different "duplicated" neurons. 
Now we shall sho,.. what connection musfbe between second layer 
and additional later that filial outputs in transformed net (Fig. 5) 
will be same as in the initial net (Fig. 4). . 

Let 4j (i = 1; •.. ,4) be weights between neurons from second 
lay~r in first "duplIi~ated" net and last additional layer and let bi (i = 
1, ... ,4) be weights between neurons from second layer in second 
"duplicated" net a.nd last layer. Then the outputs in transformed 
net and initial net will be equal if next condition will satisfied: 

sign(a;lIP)+bill~2»=1Ii (i=I, ... ,4), (*) 

where 1/j = sign,(. ;E tJiZJ), - outputs in the initial net . 
.1=1 

Let indicate ttj = arg(lIf1», s, = arg(lIf2» tht;ln (*) is equivalent 

sign(aisign(ui) + bisign(sj» = sign(uj + Si), i = 1, ... ,4. 

Now it is easy to see that this equation is satisfied when !li ; ~IUil 
and hi = ISil. 
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Fig. 5. The neural network received after the transformation. 

So we receive that transformed network work as initial network 
but intersections number in transformed net is only 13; 

This example may be easy to generalize when we have two 
layered network consist from m neurons in each layer. The gener­
alization for three layered net is more complicated. 

7. Conclusions. The procedure OnF enable to find the short­
est path in large-scale overlappingly decomposed network 
when the known methods of decomposition are not easily directly 
applied because of large-scale cut sets. 

It is known that the method of dynamic programming takes 
large storage requirements for solving problems of discrete pro­
gramming. If the problem may be interpreted as the shortest path 
problem in overlappingly decomposed network then in subnetworks 
from overlappingly decomposed family it is possible to apply the 
method of dynamic programming. This enables to solve the prob­
lem with small storage requirements using some parallel indepen­
dent process. 

The overlappingly decomposed networks are close with some 
properties of matroids. Some theoretical results of matroid the-
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ory (Aigner, 1969) may be usefully applied in systems modeling 
connected with properties which makes possible to decompose the 
systems and investigate them with the help of some parallel proce­
dure. 

The properties of overlappingly decomposed networks may be 
applied for solving synthetic neural networks architecture problems . 
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