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Abstract. The special class of networks are presented. Based on unreach-
able parts of subgraphs the overlappingly decomposed networks are defined. The
special decomposition scheme of those networks is applicated for shortest path
problem, dynamic programming and synthetic neural nets architecture.

Key words: networks connzctivity, nnreachable nodes, subnetwork, shor-
test path, matroid, synthetic neural network.

1. Introcduction. There are networks that may be covered
by overlappingly ‘ubnetworks in suck a way that one subnetwork
differs from anotlier in elements which ran not reach elements from
other neighbour subnetwork and this may be cstablished on basis
of topolagical properties of the netwerk. For the overiappingly de-
composed networks or OD-networks we have suggested the special
scheme for finding shoriest path between the fixed nodes. It is
interesting that operative storage requirements for this procedure
depend culy on topological properties of the networks.

¥ the problem of discrete programming may be interpreted
a. the shortest path problen: in large scale OD-network then pre-
sented method enables to solve the problem with smaller storage
requirenients than using other methods (Richter, 1982; Hu, 1965;
Tufekei, 1983). The another area of OD-networks applications is
in large scale full connected back-provogating synthetic neural nets
architecture (W Ykercet al.., 19980}, If we can present neural .2t as
conjunction of some OD-nets then we have shown th: " it is poasi-

ble to realize large scele full connected between |.yers peural net
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in the some number smaller independent neural nets locally con-
nected between layers which have only one common last output

layer (Walker et al., 1990).

2. The unreachable elements in subietworks. Let G =
(V,E) be a directed network. Let us define sets: '
D(v,G) :={w € V:w is reached from v or v is reached from
‘ win G};
D(A, V) = B D(v, G);
G(A) is a subnetwork which is generated by set A C V, i.e.,
G(4) := (A, E(A)), where E(A) := {(v,w) € E:v,w € A}.
We shall define:
P(s,t) — the set of nodes in directed path from s to t in G;
P*(s,t) — the set of nodes in the path from s to t in G(A);
Pj(s,t) — the set of nodes in shortest path from s to ¢ in G(A);
¢(P(s,t)) - the length (cost) of path P(s,t);
A:=V\A.
Let us assume that in network G there are no more paths the
length of which is equal to the length P*(s,t), where s, — are fixed
nodes.

Lemma 1. (3v € A\P;(s,1): D(v,G)NA = D) — (v & P*(s,1)).
Proof. Proof follows from the fact that all the paths which
contain v belong to G(A4).

The nodes which satisfy Lemma 1 are shown in Fig. 1. Those
nodes will be named isolated nodes in subnetwork G(4).

Lemma 2. (3 € D(A, O)N(A\Pi(s,)\D (A, G("\Pi(s,)) =
(v F(s,i}). .

Proof. Let v € P(s,t) and P(s,t) N A # 2. We shall show that
it is possible to construct the path which does not contain v and is
shorter than P(s,t).

Let 3w € P(s,t)NA. It follows from condition of the lemma that

P(s, )N Pi(s,t)\{s,1} = {s1,52,:..,8:} # D.

When k = 1, then P(s,t) is comparison of two parts P(s,s;)

and P(s;,t), one of which necessarily belongs to G(4) and v belongs
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G+ (V.E)

Fig. 1. I(A) - the isolated nodes in subnetwork G(4).

to this part. Let v € P(s,s;) C A. As Pi(s,t) is the shortest in
subnetwork G(A), so' P;(s,s;) is shorter than P(s,s;). Therefore
after substitutionf of part P(s,s;) by part Pji(s,s1) wé shall obtain
a shorter path which doesn’t contain node . '

Let k > 2. In this case it is possible to select u,w € P(s,t) N
Pi(s,t)\{s,t} so that P(s,{) crosses Pj(s,t) at these nodes in con-
trary directions, and so that v € P(u, w) and between u and w there
are no more nodes from Pj(s,t) in the part P(u, w).

If it is noi possible to select such nodes u and w, then v is
found in the path P(s,t) either before P(s,t) crosses Pj(s,t) for a
first t'me in node s; and P(s, s1) C A, or after P(s,t) crosses P4(s, )
for e last time in node sg and P(sg,t) € A. In this case we can use
the same way of thinking as when k = 1.

Let us say, that the above mentioned u and w exist. Then
P(u,w) C A and in the path P(s,t) the part P(u,w) is substituted
by the part Pj{u,u). The obtained new path will be shorter and
will not contain node v. '

In such a way for each path P(s,t):v € P(s,t) and Pi<. ,NA# @
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Fig. 2. I(A) = {v:v satisfy the condition of Lemma 2}.
1 .
we can construct a shorter path, which doesn’t contain node v. As
according to the assumption we consider P*(s,t) to be the only one
path of such length, then v ¢ P*(s,t). Lemma is proved.

The example of nodes which satisfied condition from Lemma 2
is shown in Fig. 2.

3. The overlappingly decomposed families. Lemmas 1
and 2 show the existence of ietwork elements which can not belong
to the shortest path and this may be established on basis of topo-
logical properties of these subnetworks. So, there exist networks,
that may be covered by subnetworks in such a way, that one differs
from another in unperspective elements.

.DerFiNiTioN 1. The family of sets {Ao, A1,...,4n:4; C V} will
be named a overlappingly decomposed family of network G = (V, E),
if the following conditions are satisfied (nodes s,t - are fixed):
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(@) G 45 =v;
(b) IP(s,t)C 4, j=0,1,...,m;
(¢) A\Ajy1 CM(4;)#£ 9, 7=0,1,...,n=1,
where:
M(4;) :==A;\D(B;,G) U (D(B;,G)Nn
(A,-\P;j(s,t))\D(Bj,G(V\P;J_(s,t))},

B :=V\(‘,Qo As).
Network G in this case will be named overlappingly decomposed
network.

Theorem 1. Let {Ag,A;,...,A,} - be named overlappingly
decomposed. Then

c(Pjo(s,t)) > c(le(s,t)) Z...2 c(P;“(s,t)) = ¢(P%(s,1));

and
P*(s,t) € {Py,(s,t), Py,(s,t),...,Px (5,0)}

Proof. We shall notice, that M{4;) (j =0,1,...,n~ i} ~ are the
nodes, satisfying the conditions of Lemmas 1, 2 in the {formulation
of which A is substituted by #j, and G — by G(4, U B;}.

The correctness of the inequalities follows from

P;j(s,t) C 441, 1=0,1,....n-1.
Thus c(P;j(s,t)) 2z q(P2j+l(s,t)).

Let 3P(s,2) ¢ {P4,,-.., P;_(5,0)} and c(F{s,0)) < =(P"(s,1)).

Then 3¢,0:0 €< £ < » & n are such as
ﬁ(&t} NAN{st} # and P(s, ) N A\{s,i} # &

Twe cases are possible:

(1Y A: n A \{s,t} = &;

(1) AsnA, £8.

In the first case it follows from the definition, that Iné < <
v: A, N AN{s,t} # @ and P(s,1) N A,\{s,t} # B,, so it is enough to
consider only the second case.

It ﬁ(s,t) N M(A¢) # D, then doesn’t exist. the node v'e P(s,t,
M(Ag), which could be isoiated in subnetwork G(A¢), becauss Ble, 0N
AN{s,t} # D. So the set ,?(&,t) N M(Ag) contains no.+ saiisfying
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. Lemma 2. It follows, that c(Pj, (s,t)) < ¢(P(s,t)), which contradicts
to the assumption, that the shortest path is f’(s,t).
If P(s,1) NA;i\{s,t} # @, but P(s,t) " M(A¢) = D, then appears

v >n>§€and ﬁ(s,t)nM(A,,) # . In this case Lemma 2 is applied
to subnetwork G(A4,) in general network G(A, U By). The theorem
is proved. .

: For a connected network G we can suggest the following formal
procedure for constructing the overlappingly decomposed family
and finding the shortest path between the fixed nodes s and ¢.

Procedure ODF.

Step 1. Let us take Ao C V:]A4o| < |V| and M(Ap) # <;

X := Ag — the considered set of nodes at a given moment;

S := V\A4¢ - the set of unconsidered nodes;

i := 0 — the counter of paths, which do not cross each other
nodes in network G(X), the maximum value ¢;

I := 0 - the number of possible ways of selecting nodes from
the set S, these nodes will be used for constructing the following
subnetwork in the overlappingly decomposed family, the maximum
value of the counter is p; :

J(X):=@; K(X):=D - additional sets.

Step 2. i=i+1;

if £ > ¢ or there are no i-th paths, which cross nodes of other
paths, then we proceed to Step 4;

with the help of known algorlthm we find P;("(s,t) — the i-th
siortest path between the nodes which do not cross nodes of other
%th%

3 & = § we proceed to Step 6.

f"p 3. We form a set of unperspective nodes M(X); lf [M(X)]| €

£, Wwe proceed o Step 2, otherwise S := S\J(X).
..‘i‘ep 4. =141

i 1 > p then we proceed to Step 6; otherwise we form a set
KE{X}) ¢ S in the I-th way.

B. Ifi > g then X := X\J(X)U K(X), otherwise X :=
/{\Mz’ UK(X)and I:=0;
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J(X) = K(X);
go to Step 2. _

Step 6. If S = 0 then P§(s,t) ~ is nne of the shortest paths (if
there are several of them) in network G, otherwise we state that the
constructing of overlappingly decomposed family was unsuccessful.

It is obvious that this general procedure requires O(|X|) op-
erative storage. The time necessary for the procedure ODF, if to
assume that A is the given set and do not take into account time,
which is used for the relation with the outside storage, may be
evaluated O(p|V|?*/r), where r := min{|M(X)| > 0}.

It is interesting that the operative storage requirements in this
procedure depend not on the size of network, but only on its topo-
logical properties, which condition the size of subset X.

4. One class of overlappingly decomposed networks.

DEFINITION 2. By (m, k,r) — network we mean a k-level (k 2> 3)
directed network G = (V, E), in every level of which there arc m
successively from 1 to m enumerated nodes (let us say, that levels
are also enumerated from 1 to k) and the condition is satisfied:

(v,w) € F & la(u)—a(w)l <, r=1,23,...,m/2,

where a(v) means the number of node v in the level. -

The examplés of (m, k, r)-networks are demonstrated in Fig. 3.

We shall define (m, k, rj-subnetwork in (m, k, r)-network, then
the subnetwork, containing nodes, numbers of which in levels are
from 1 to p. )

Let us indicate po := min{y : all nodes in (m, k, r)-subnetwork v
which a(v) = 1 - are isolated }.

~ Let us indicate x(v) number of layer (level) to which depend

node v in (m,k,r)-network or (u,k,r)-subnetwork and p(u) - the
number of isolated nodes from (u, k, r)-subnetwork.

Theorem 2. Let G = (V,E) is (m,k, r) netwod\ Then the
following conditions are satisfied:

(1) If v and u there are nodes from (m, I;., r)-network, then
v € D(v,G) & la(u) — a(v)| < r|x(u) — #(v)].
(2) po=1+r(k—1).
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Fig. 8. (m,k,r)-networks.

(3) Let v is isolated node from (g, k, r)-él;bnétwo;k (the set of
nodes let us indicate X ), and let p > pp and o
k2, kmod 2=0,
(o) < {(k— 1)/241, Emod 240,
Then all nodes from the set ’ '
{w € V:w is reachable from v} o
) kf2, k mod 2 =10,
”{"e X: %(u) < {(k— 1)/2, k mod 2 £ 0. }
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ar:a isolated.
(4) Let X be the set of nodes (p, k, r)-subnetwork and p = po-

Let v is isolated node from this subnetwork and
k mod 2=0,

k/2,
V)2 (k< 1)/24+1, kmod2#0,
Then aII nodes from the set ‘ o
- {w € V:v is reachable from w}
. k/2, k mod 2 =0,
”{"GX"‘(") 3-{(1:- 1)/2+1, kmod2£0. }

are isolated.
_[k+k(k-2)r/4, kmod2=0,
(5) Pluo) = { k+(k=1)r/4, k mod 2#0.
(6) (1) = p(po) + k(p ~ po), (1 > po)-
(7) The node v is isolated in (u,k, r)-subnetwork then and only
then, when next conditions are satisfied;

, . k/2, k mod 2=0,
if "(”)g{(k—l)/zﬁ-l, Emod 2#£0,
then a(v) < 1+ (x(0) ~ )r + (1 — pio);

. k/2, kmod 2=0,
if )2\ (k2 1)/241, Kmod 2£0,

then a(v) < 1 + (k ~ %(v))r + (g — po)-

Proof. (1). Follows from (m, k, r)-networks definition.

(2) From j, definition follows that first node in first level’
(or layer) in (mg, k, r)-subnetwork is isolated. Then follows that all
nodes in level k which are reachable from such node must depend
(po, k, r)-subnetwork. The maximal number such node in level k is
1+ (k- Dr.

(3) . Let u is any node from mdlca,ted set. We shall proof that
it is isolated. We shall show that D+(u,G)U D~ (4,G) C X, where
D+(u G) := {w € V:w is reachable from u}, D~ (u,G) := {w € V:u is
reachable from w}.D*(u,G) C D¥(v,G), because u is reachable from
v, but D*(v,G) C X, because v is isolated. Those D*(4,G) C X.
We must only show that D~(u,G) C X. Let us say that exist 2 ¢ X
and z € D~ (u,G). From property (1) and Definition 2 follows that
g > a(v) + (k - 5(v))g, Thetefore p > po then p > a(v) + (k- ).
The node u is reachable from v. Then from (1) follows that a(u) <

i
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a(v)+ (x(u) x(v))r But uis also rea,chable from z. Then using last
inequality we receive:
 a(2) S a(u) + (x(u) — x(2))r < a(v) + (x(u) = x(2))r
k-2, kmod2=0
<.“(”)+{§k-1§r, kmod 240, '

From assumption that z ¢ X follows a(z) > p 2 a(v) + (k= D)r.
Therefore last two inequalities with a(z) we receive contradicts each
other. Than follows D~ (u,G) C X and u is isolated.

(4) Proof follows from (3) in the same network with inter-
changed orientation.

(5) We must detect the number of 1solated nodes in (uo, k,r)-
subnetwork. The set of isolated nodes cosist from conjunction the
sets defined in properties (3) and (4). We will detect the number of
nodes reachable from v: x(v) = 1, a(v) = 1 and the number of nodes
from which is reachable the node w: x(w) = k, a(w) = 1. From (1)
follows that the number of nodes which are rea,chable from v and
depend to level j, where ;

k/2, k mod 2= 0,
iz {(k 1)/241, kmod 240
is equal 14 (j — I)r. The same we can detect about the number of

nodes in level 1, where ,
E/2, = kmod2=0,

P2Uk-1/2+1, Emod2#0
from which the node w is reachable. Then general number of iso-
lated nodes is:

k/2
23 (1+ (G -1)r), kmod 2=0,
plpo) = 2:11) /2
2 Y (L+G =)+ 1+ k- 1)r/2), kmod 2#0.

j=1
Using formula Jabout sum of arithmetical progression we receive
final equation. :
(6) Proof follows from fa.ct that all nodes v, which a(v) < p—po
are isolated. . ‘
. (7) Proof follows from properties (1), (2), (3).
Let G = (V,E) be such network that G(V\{s,t}) is (m,k,r)-
network, where s and ¢ are fixed nodes. Such network G is overlap-
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pingly decomposed network, because it may be covered by subnet-
works satisfying the Definition 1. One of the rules of subnetwork
selection is as follows:

(10) G(Ao) is selected so that G(Ao\{s,t}) would make (g, k,r)-
subnetwork, where u > up.

(i1) G(A;), where j = 1,...,n and is constructed according to
_the formula:

Aj = Aj\{ve 4j_1:a(v) < jo}U {via(v) K m+jé}, 6 :=p—po+ 1.

In order to establish the unperspectiveness of a node it is
enough to verify, whether a certain inequality from Theorem 2 is
- satisfied. For such network G we can suggest the following proce-
dure, which is a certain variant of ODF procedure. '

Procedure ODFMKR. .
Step 1. We select Aq according to the Rule (10),
, X :=Ao; ji=1; S:=V\Ag;

Step 2 We find Px(s t) in network G(XU{st}); if S= we
proceed to Step 6.
~ Step 3. We form M(X) - unperspechve nodes according to the
Rule (i1). /‘

Step 4. We form J(X) - joined nodes accordmg to the Rule,
(i1). ,

~Step 5. X : X\M(X) UJ(X); S:=S\J(X); j:==j+1; go to
Step 2.

Step 6. The output Px(s,t) — the shortest path in network G.

This procedure calls for a following number of operations
O(1k((u — 27)(2r + 1) + r(3r + 1))), where 1 := [(m — p)/6] + 1 and
the necessary storage requirements may be equal O(kp). When us-
ing a simple nondecompositional algorithm: number of operations
- O(kp(2r + 1)), storage requirements — O(kp). The comparison of
computational times of procedure ODFMKR and nondecomposi-
tional algorithm is presented in Table 1.

More detailed ODF procedure applications for solving discr ~te
optimization problems was presented in publications (Garliauskas,
Lasinskas, 1990; Lasinskas, 1990).
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Table 1. The comparison of computational. times of procédure
ODFMKR and nondecompositional algorithm

m k r I Nondecompositional - ODFMKR
- algorithm time (sec) - time (sec)
30 3 1 3 S 0.234 " 0.422
> o 5 ‘ 0.266 0.313
> » » 10 ) 0.219 0.281
50 3 1 3 0.375 0.719
» 2 5 . 0.266 0.437
» » 10 0.313 0.375
? ? ? 15 0.328 0.328°
50 3 2 5 . 0437 1.450
» » » 10 0.453 0.719.
» » » 15 0315 0,562
60 3 1 3 0.344 0875
» » » 5 0.375 0.609
» » » 10 0.406 . 0.437
60 3 2 5 0.578 2.190
» » » 10 0.531 0.687
60 3. 3 7 0.641 3.250
» » » 12 0.562 - 1.05 -
60 5 1 5 0.5 _ 2.16
» » » 10 0.453 _ 0.719
60 5 2 9 ©0.609 - 472
» » » 20 0.766 1.02
80 3 1 3 0.406 1.08
» ? » 10 ' 0.437 ' ©0.641
» » » 20 0.391 0.531
80 3 5 15 1.06 2.91
o » » 30 1.3¢ 1.84
80 3 6 15 1.37 " 5.94
» » » 30 1.34 186
» » » 40 1.23 1.58

t

5. The overlappingly decomposed networks and ma-
troids. It is naturally to think that some theoretical results of
matroid theory (Aigner, 1969) may be usefully applied in systems -
modeling connected with properties which makes possible to de-
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compose the systems and investigate them with the help of some
parallel procedure. We have proved theorem which shows connec-
tion between matroids and overlappingly decomposed families dis-
cussed in publications (Garliauskas, LaSinskas, 1990;
Laginskas, 1990) (early we have used concept "successively decom-
poted” but it is not exact because the possibilities of parallel search
- of graph are hidden; therefore there is more acceptable to use con-
cept "overlappingly decompeosed”).

Let G = (V,E) be a directed network. We shall define: [(4) =
{v € A:v is unreachable from the nodes V\A in G}, D(e) = {z € V:2
is reachable from a in G}. i

A directed graph G is weakly connected if there is at least one
directed path between every pair of nodes in G, i.e., the undirected
graph obtained by ignoring the edge directions in G is connected.

DEFINITION 3. The family F of subsets S is said to be a family
of independent sets of matroid on S if the following conditions are
satisfied:

(1) 2eF;

(2) A€ F4BC A— B¢F;

(3) A, BEF&|A|=|B|+1—3z€ A\B:BU{z}€F.

Theorem 3. The family of sets r = {Bo,By....,Bn : B; C
V,I(Bj)= @, YC C B; — G(C) is weakly connected, j =0,1,...,m}
in the network G = (V,E) is the family of independent sets of
a matroid on V.

Proof. The conditions (1) and (2) are automatically satisfied.
Let A, B € 7 and JA| = |B|+ 1. We must proof that 3= € A\B:BU
{z} € . There are following cases (a) BC 4; (b) BnA=8; (c)
BNA#@UB\A#D.

Case (a) The proof follows from the second condition (2).

Case (b) Since G(A) is weekly connected Ja: D(a) # @ in sub-
graph G(A). Let us form a subset BU {a}. Then {BU {a}) = @
since I(B) = @ and a is connected at least with one vertice from
A\(BU {a}).

Case (c) Let Vz € A\B — I(BU {z}) # @. We will show that it
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is impossible.

Let y € I(BU{z}). Then y€ A\B. So z = y and 3B* C B which
separate ¢ and V\(B U {z}). Since Vz € A\B — z € I(B U {z}) and
VC C AG(C) is weekly connected then it follows 3y € ANB:y € D(z).
But it is easy to see that for every subset S C V:z € I(S)&3y €
D(z) — y € I(S). So it follows that 3y € I(BU {z}) N B but that
contradicts with a fact that I(B) = @, i.e., B € 7. The theorem is
proved. :

8. The overlappingly decomposed networks application
by synthetic neural network architecture (an example).
There is problem to decrease the number of intersections between
connections in neural net. We shall show how this problem could
be solved using overlappingly decomposed networks and adding
additional nodes and layers. This idea may be applicate by back-
propogation neural net projection.

Let we have the net as in Fig. 4:

ul

ya

'y4

Fig. 4. The full connected two-layered neural network.

This net has 72 intersections. Lets make the next nets trans-
formation:

(1) the net "duplication”: the "duplicated” net in second layer
has the same neurons but neurons pairs (1, 2) and (3, 4) exchange

nlanac.
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(2) the additional layer leading in to net: this layer consist
from four neurons;

(3) the connections between last layer and additional layer are
organized so that in each neuron from additional layer come edges
from "duplicated” neurons with same number (Fig. 5.)

The weights between first and second layer correspond welghts
matnx The outputs in second layer are next:

(l) = slgn(Zt,lz,) yg‘) = sngn(zs:t,zz,)
)=l / j=1
vV = sisn( Z tjazi) ’ ysl) = sign ( Z‘: tj4 3:)
. j;z . j=3
4 - 4
¥ =sign(2tjlz,-), v = slgn(zt,zz,),
j=3 j=4
2

ng) = sisn(tt,'szj); (2) = sxgn(Zt,-w,-).’

=1 j=1

Index (1) and (2) correspond different duplicated” neurons.
Now we shall show what connection must be between second layer
and additional layer that final outputs in transformed net (Fig. 5)
will be same as in the initial net (Fig. 4). :
Let a;(i = 1,...,4) be weights between neurons from second
layer in first ”dumlcated” net and last additional layer and let b; (i =
.,4) be weights between neurons from second layer in second
”duplica.ted” net and last layer. Then the outputs in transformed

net and initial net will be equal if next condition will satisfied:

- sign(aig{V +byM)=u  (i=1,...,9), *)
where Y= sigq( i tj.-zj) - outputs in the initial net.
Let indica.teJ u; = arg(y‘ )), 8= arg(y,(z)) then (#) is equivalent
sign (a;sign(u;) + bisign(s;)) = sign(u; + &), i=l...,4

Now it is easy to see that this equation is satisfied when = "fuil
and b; = ls.-l.
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Fig. 5. The neural network received after the transformation.

So we receive that transformed network work as initial network
but intersections number in transformed net is only 13:

This example may be easy to generalize when we have two
layered network consist from m neurons in each layer. The gener-
alization for three layered net is more complicated.

7. Conclusions. The procedure ODF enable to find the short-
est path in large-scale overlappingly decomposed network
when the known methods of decomposition are not easily directly
applied because of large-scale cut sets.

It is known that the method of dynamic programming takes
large storage requirements for solving problems of discrete pro-
gramming. If the problem may be interpreted as the shortest path
problem in overlappingly decomposed network then in subnetworks
from overlappingly decomposed family it is possible to apply the
method of dynamic programming. This enables to solve the prob-
lem with small storage requirements using some parallel indepen-
dent process.

The overlappingly decomposed networks are close with some
properties of matroids. Some theoretical results of matroid the-
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ory (Aigner, 1969) may be usefully applied in systems modeling
connected with properties which makes possible to decompose the
systems and mvestlgate them with the help of some parallel proce-
dure.

The properties of overlappmgly decomposed networks may be
applied for solving synthetic neural networks architecture problems.
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