
INFORMATICA, 2003, Vol. 14, No. 2, 167–180 167
 2003Institute of Mathematics and Informatics, Vilnius

Realistic Performance Prediction Tool for the
Parallel Block LU Factorization Algorithm

RaimondašCIEGIS, Vadimas STARIKOVǏCIUS
Vilnius Gediminas Technical University
Saulėtekio al. 11, LT-2040 Vilnius, Lithuania
e-mail: rc@fm.vtu.lt, vs@sc.vtu.lt

Received: March 2003

Abstract. This work describes a realistic performance prediction tool for the parallel block LU
factorization algorithm. It takes into account the computational workload, communication costs
and the overlapping of communications by useful computations. Estimation of the tool parameters
and benchmarking are also discussed. Using this tool we develop a simple heuristic for scheduling
LU factorization tasks. Results of numerical experiments are presented.

Key words: performance prediction tools, parallel algorithms, LU factorization, heuristic for
scheduling the tasks.

1. Introduction

Parallel computing is a powerful tool for the solution of the most complex real world
problems. The development of parallel algorithms and codes is in great demand and be-
comes more and more popular. Recently, in order to assist in the creation of efficient
parallel algorithms, a lot of attention are gaining such research topics as performance
evaluation and prediction (Pease, 1991), benchmarking (Hockney, 1991), automatic or
semi-automatic parallelization (Baravykaitė and Šablinskas, 2002; Baravykaitė et al.,
2002; Kennedyet al., 1992), scheduling of tasks of parallel algorithms (Amouraet al.,
1998).

Simple and accurate performance prediction can greatly contribute to the parallel
computing. Performance prediction tools are often used in parallel programming (see,
Fahringer, 1995). Using such tools, parallel developers can omit costly coding and de-
bugging stages and estimate the efficiency of parallel algorithms, ruling out inefficient
ones. Kennedyet al. (1992) states that the accurate and reliable performance estimations
are the most important features of any automatic or semi-automatic parallelization tool
for scientific programs on parallel systems.

Finally, in order to use the parallel computers efficiently and not to waste the com-
putational resources, we need simple in use and accurate performance prediction tools,
which can assess the performance of the parallel codes before the real computations are
done.



168 R. Čiegis, V. Starikovičius

The approaches to performance evaluation are reviewed by Bhuyan and Zhang (1995).
Although all Massively Parallel Processor (MPP) systems come up with some perfor-
mance tools, virtually all of them are run-time supported for performance evaluation (see,
Simonset al., 1995). We also note recent joint issues ofIEEE Computer (IEEE, 1995a)
and IEEE Parallel and Distributed Technology (IEEE, 1995b) which are dedicated to
parallel performance tools.

However, most of existing performance prediction tools lack the accuracy. This is
mainly due to oversimplifications in characterizing the workload and communication
overheads. Usually such prediction tools assume that every computational operation takes
the same time, what is very questionable on modern processors with complex memory
hierarchies (e.g., RISC processors). Another shortcoming is the estimation of collective
communication costs as a sum of point-to-point operations costs. Most performance pre-
diction tools are using theoretical models like the Phase Parallel Model (Xu and Hwang,
1996a), which are easier to implement and quite efficient for SPMD data-parallel pro-
grams. But such models can not estimate the overlapping of communications by useful
computations.

In Section 2, we propose a performance prediction model as a set of rules and guide-
lines in order to provide a systematic approach to creation of performance prediction tool
for specific parallel algorithm. We discuss consecutively how to characterize accurately
computational workload, communication costs, and overlapping of communications by
useful computations. We also discuss the issues of benchmarking and parameters evalua-
tion.

As example, a performance prediction tool for parallel LU factorization algorithm is
created. LU factorization was chosen because it and it’s parallel block algorithm are well
known (see, e.g., Golub and Van Loan, 1991). The structure of this algorithm is such
that the accurate estimation of communication costs and accounting for overlapping of
communications by useful computations are necessary features of the tool. Also, it is
well known that linear algebra is the main computational part in most scientific computer
applications. And finally, LU factorization is a part of well-known LINPACK and NASA
benchmarks. The created tool and prediction results are presented in Section 2.

In Section 3, using the developed performance prediction tool and results of the theo-
retical analysis of parallel LU factorization algorithm, we propose a new heuristic for
the scheduling of tasks in the parallel LU factorization algorithm. Performance results
obtained with the new heuristic are presented and compared with well known and usually
used cyclic and block partitioning schemes. Some concluding comments and remarks are
made in Section 4.

2. Performance Prediction Model for Parallel Algorithms

2.1. Computational Workload

In any performance prediction tool, first of all, we need to estimate the amount of work
performed by each processor in application (referred ascomputational workload). In or-
der to do that, some kind of metric and corresponding speed parameters are defined.



Realistic Performance Prediction Tool for the Parallel Block LU Factorization Algorithm 169

Metric. For scientific computing and signal processing applications where numerical cal-
culation dominates, a natural metric is the number offloating point operations (flop) that
need to be executed. This number should be determined by the inspection of the algorithm
or programming code.

However, it cannot be assumed that every floating point operation takes the same
amount of time. This uniform speed assumption does not hold on modern processors
with complex memory hierarchies. For instance on RISC processor of SP2 the computa-
tional speed can differ forty times (Xu and Hwang, 1996a). Using this simple approach
the accuracy of the prediction tool relies completely on the determination of one or sev-
eral (for the most work-heavy parts of code) speed parameters. The origin of the problem
is an attempt to avoid the detailed characterization of the memory hierarchy of the com-
puter node. The alternatives are to try to estimate the cache misses (see, Fahringer, 1995),
or to perform a detailed simulation of the specific processor architecture. For example,
the tool PERFORM developed by Heyet al. (1997) provides “rapid simulation” of se-
quential program performance for RISC processors with complex memory hierarchies.
It uses simulation methods at some intermediate level of abstraction with benchmarking
of function calls, data movement operations(load/store) to produce accurate performance
estimates in acceptable time.

Computing Speed Parameter γ. Benchmarking. Usually we do not have a possibility
to make such a simulation of processor architecture. Then we need to provide for our tool
the best possible computing speed parameter(s). Let denote the time of one flop byγ. It is
obvious that an attempt to use vendor-supplied, LINPACK, NASA or other benchmarks
for evaluation of speed parameter can lead to large accuracy errors in the predictions of
such tool.

So, we need appropriate benchmarks, which include the same cache effects. The best
possible solution is to use as benchmarks the main computational sequential parts of
parallel codes or “close” counterparts of them in order to create similar use of caches and
other memory layers. For example, in our performance prediction tool for parallel LU
factorization algorithm, we use as a benchmark a sequential version this algorithm with
matrix sizes equal to ones obtained after matrix distribution among processors.

In Table 1 we present the results of tests (benchmarking) for sequential LU factori-
zation algorithm on three computer nodes with different processor architecture:

• RS – IBM RS/6000 43P-140 workstation, PowerPC 604e at 200 Mhz, 96 MB, peak
390 Mflop/s (vendor supplied),

• SP2 node – IBM RS/6000 SP2 thin node, Power2 at 120 Mhz, 128 MB, peak 480
Mflop/s (vendor supplied),

• PM – Power Mac workstation, dual Motorolla G4 processor at 450Mhz, 512 MB,
peak 450 Mflop/s (single precision 660, double 1600) (vendor supplied).

Our sequential and parallel LU factorization algorithms are block algorithms (see,
Choi et al., 1995b). The most part of computations is performed in the multiple block
matrix multiplications. This allows us to use subroutines for matrix multiplication from



170 R. Čiegis, V. Starikovičius

Table 1

Block LU factorization algorithm. Speed benchmarking.

System (Library used) N r Time Speed

RS 3200 3200 2606,5 8,38

RS 3200 40 292,4 74,69

RS (ATLAS) 3200 50 175,9 124,2

SP2 3200 3200 217,1 100,64

SP2 3200 80 153,3 142,49

SP2 (ATLAS) 3200 80 57,47 380,72

PM 3200 3200 549,9 39,71

PM 3200 50 150,2 145,43

PM (ABSOFT) 3200 50 208,9 104,52

PM (ATLAS) 3200 40 51,9 420,98

PM 6400 50 1209,9 144,2

PM (ABSOFT) 6400 50 1687,9 103,52

PM (ATLAS) 6400 40 418,4 417,64

Single precision

PM 6400 80 1091,6 160,1

PM (ABSOFT) 6400 80 309,6 564,49

PM (ATLAS) 6400 80 329,9 529,60

the linear algebra libraries, which are available on corresponding system. We have used
our own implementation of the matrix multiplication and also the well-known and popular
ATLAS library and ABSOFT library on computer node from PM cluster. ATLAS library
automatically tunes to processor architecture and is very efficient. Among interesting
features of ABSOFT library we mention its support of vector instructions on Motorolla
G4 processor for single precision numbers.

In Table 1, we present the run times in seconds and the speed of computations given
in the usual for benchmarks (Hockney, 1991) unit Mflop/s (Millions of flops per second),
which is inverse ofγ. On each computer node, we have computed the tests first for non-
block version of the algorithm, when the block sizer is equal to the matrix sizeN , and
then for block versions with the optimal block sizes.

As was expected, even on the same system the values of speed parameter can differ up
to 15 times. Hence, our first conclusion is that the speed parameter for the performance
prediction tool should be evaluated running the same code version and block size as in
parallel code. Then the main cache effects are included into our model.

2.2. Communication Costs

Next, we need to estimate communication costs. This is a very important feature of par-
allel performance prediction tools, which is not needed in sequential tools. Numerous



Realistic Performance Prediction Tool for the Parallel Block LU Factorization Algorithm 171

metrics and benchmarks have been proposed for various parallel systems from Massively
Parallel Processors (MPPs) to workstation clusters (see, Fahringer, 1995; Hockney, 1991;
Xu and Hwang, 1996b).

A simple traditional method for quantifying communication costs is to obtain a cost
of communication operation as a sum of performed point-to-point operations costs. The
main problem is that the accuracy can be reduced significantly due to the lack of attention
to the topologies of interconnection networks on MPPs and dedicated clusters. Another
shortcoming is the use of vendor-supplied latency and bandwidth values.

In our performance prediction tool, we use an expression suggested by Hockney
(1991) to estimate the cost of broadcastingn items of data along a row or column of
the mesh of processors by

B(n, p) = K(p)(α + βn), (1)

whereα denotes the latency (the start-up time or the time needed to send a0 byte mes-
sage),β denotes the time for transmission of an elementary data (in our case 1 Byte)
(the inverse of the bandwidth defined in the communication benchmarks),p is the num-
ber of processors in a row/column, andK(p) is the cost function, which depends on
the topology of interconnection networks. For completely connected network we use the
cost functionK(p) = 1, for hypercube network –K(p) = log p, and for the LAN type
network –K(p) = p − 1.

In order to determine communication parametersα andβ, we use our own ping-pong
style benchmarks. Here the important factor is to use in the tests data packets of the same
size as in the sent/received operations of the parallel application. We obtain parametersα

andβ using least-square fitting of the measured timing data. Several sets ofα andβ can
be used for different ranges of message sizes if needed.

In Table 2, we present the results of our communication benchmarks on different
parallel systems from previous section.

Table 2

Communication systems benchmarking

Parallel System α β Bandwidth

RS Cluster (Ethernet Hub, 1MB/s) 1000µs 8 µs 0,95 MB/s

SP2 (HP Switch, US, 110 MB/s) 35µs 0,11µs 70 MB/s

PM cluster (Baystack switch, 10 MB/s) 78µs 0,8µs 9,5 MB/s

2.3. Performance Simulation

The main goal of our performance prediction tool is to characterize accurately the over-
lapping of communications by useful computations. This is a key feature of the prediction



172 R. Čiegis, V. Starikovičius

tool for many parallel algorithms, without which even very accurate predictions of com-
putational workload and communication costs will not produce good final results. Parallel
LU factorization algorithm is exactly of that kind. Therefore, we chose it as an example.

Most of the other performance prediction tools are lacking this property. Usually,
abstract theoretical models like the Phase Parallel Model (Xu and Hwang 1996a) are
proposed to cover important parallel programming paradigms (see, Brinch Hansen 1995).
Such tools are quite efficient for SPMD data-parallel programs and easier to implement.

In order to estimate the overlapping of communications by useful computations, our
tool simulates the performance of each processor, which participates in parallel run. The
tool has the same structure as the parallel algorithm. Instead of real computations and
communications, it uses above-defined metrics and parametersγ, α, β. Such a simulation
model enables us to make accurate performance predictions not only on homogeneous
processors systems, but also on heterogeneous systems with differentγ, α, β. It allows
us also to use more sophisticated models for the estimation of communication overhead.
They can take into account the order of communications between processors in collective
operations (e.g., broadcast, scatter). We also can simulate asynchronous non-blocking
and other communications.

A time complexity of such simulation model isO(np). When the performance pre-
diction tool is usedO(n) times, as it will be done in the next section, the running time for
largen andp can be quite significant. The solution of this drawback can be a modification
of the simulation model. For parallel LU factorization algorithm it is quite clear that there
is no need to simulate each processor from the start to the finish. At the beginning all pro-
cessors can be divided into groups with “identical” computation times. Thus we need to
simulate only one member of a group and to control the number and the composition of
each group. However, in the worst case we again can reach a situation when the number
of groups is equal to the number of processors.

3. Performance Prediction Tool for the Parallel LU Factorization Algorithm

Following the rules and guidelines defined above, we have created a performance pre-
diction tool for parallel LU factorization algorithm. To explain the ideas of performance
simulation, we present below a simplified scheme of our tool for the parallel block LU
factorization algorithm with 1D block data distribution among processors. Here we as-
sume that communications are asynchronous.

Performance Prediction Tool

Ti = 0, i = 1, 2, . . . , p // We use timers for each processor
do k = 1, M // N = M × r

// Processor with k-th pivot column performs
LU factorization of block Akk = LkkUkk

Tmaster = Tmaster +
2r(r2 − 1)

3
γmaster



Realistic Performance Prediction Tool for the Parallel Block LU Factorization Algorithm 173

// Master computes k-th column of L matrix:
// Lik = AikU−1

kk , i = k + 1, . . . , M

Tmaster = Tmaster + (M − k)r2γmaster

Mmaster = Mmaster − 1 // The number of local columns

// Master broadcasts the pivot column to
// the other processors

Tmaster = Tmaster + K(p)
(
α +

(
(M − k)r2 +

r(r − 1)
2

)
β
)

// Slave processors receive the pivot column
do i = 1, p, i �= master

if Ti < Tmaster then Ti = Tmaster

end do

// All processors compute Ukj blocks: Ukj = L−1
kk Akj

// and update their part of matrix A

do i = 1, p

Ti = Ti + Mi

(
r2 + 2(M − k)r2

)
end do

end do
T = Tmaster // the predicted run time

In order to evaluate the effectiveness of this tool, we made numerical experiments.
The parallel algorithm was executed on a cluster of RISC workstations connected with
LAN, which was described in Sections 2.2 and 2.3. We collect here the parameters of
parallel system, which were obtained from our benchmarks and used in the tool:

α = 1000 µs, β = 8 µs, γ = 0, 013 µs.

In Table 3, we give the total CPU timesT spent during realization of parallel LU fac-
torization algorithm and predicted timesTpr obtained with the help of our prediction
tool. Two series of numerical experiments were done with matrix sizesN = 2400 and
N = 3000. Herep denotes the number of processors. The optimal block sizer = 40 was
chosen after preliminary computations. Matrix was distributed among processors using
standard 1D cyclic partitioning scheme (Choiet al., 1995a). As we can see, the predicted
computation times are very close to real CPU times.

Remark 1. We get from Table 3 that the optimal number of processors isp = 2 for a
smaller problem withN = 2400 andp = 3 for the larger problem withN = 3000. These
results show that in many cases it is not optimal to use a maximum number of processors.

4. Task Scheduling for Parallel LU Factorization Algorithm

Scheduling of the tasks of weighted directed acyclic graphs is one of the most impor-
tant problems in parallel computing. To schedule simply means to allocate a set of tasks



174 R. Čiegis, V. Starikovičius

Table 3

Performance of the prediction tool for LU factorization algorithm

p T Tpr T Tpr

N = 2400 N = 2400 N = 3000 N = 3000

1 119.1 119.8 235 234

2 86.0 84.2 157 155

3 88.7 87.7 152 152

4 99.7 100.9 166 169

5 117.0 118.1 194 194

6 134.0 137.0 221 222

or jobs to resources in such a way that the optimum performance is obtained. Finding a
scheduling algorithm that minimizes the parallel execution time is anNP -complete prob-
lem. The main research efforts in this area are focused on heuristic methods for obtaining
near-optimal solutions in a reasonable time (see, e.g., Amouraet al., 1998; Djordjevíc
and Tošíc, 1996). Recently an alternative approach, based on the genetic algorithms, to
efficiently solve the scheduling problem becomes popular (see, Zomayaet al., 1999). A
task scheduling algorithm for a graph describing a nonlinear optics problem is considered
by Čiegis and Šilko (2002).

In this section, using the developed performance prediction tool, we propose a new
heuristics for the scheduling of tasks in parallel LU factorization algorithm. First, the
results of the theoretical analysis of parallel LU factorization algorithm are given. They
provide a basis for constructing better schedules, i.e., distributions of matrix among pro-
cessors. In Subsection 4.1, we present results on the efficiency of parallel LU factorization
algorithm, when only computational costs are taken into account. Then in Subsection 4.2,
we study communication costs of the algorithm for the block and cyclic matrix mappings
onto processors. Finally, in Subsection 4.3, we propose a new heuristic for the scheduling
of tasks in parallel LU factorization algorithm. The new distribution scheme is compared
with the well known cyclic and block partitioning schemes.

4.1. Efficiency of Parallel LU Factorization Algorithm

In this section we briefly summarize the well-known results on the efficiency of paral-
lel LU factorization algorithm, when communication overheads are neglected. Detailed
proofs of all lemmas and theorems of Subsection 4.1 and Subsection 4.2 are given in our
paper (̌Ciegiset al., 2000).

First, we assume that the coefficient matrixA is mapped onto processors using
1D and 2D block decomposition schemes. Block partitioning puts successive elements
(columns/rows of the matrix) into the same processors, whereas cyclic partitioning allo-
cates them round-robin across processors (Choiet al., 1995b). For 2D partitioning the 2D
mesh of processors is formed.



Realistic Performance Prediction Tool for the Parallel Block LU Factorization Algorithm 175

Let p be the number of processors,N the size of the matrixA. For a fixed number of
processorsp and sufficiently largeN , we get the following asymptotical estimates of the
efficiency.

Lemma 4.1. In the case of block matrix decomposition the efficiency Ep of the parallel
LU factorization is given by:

Ep,1D ≈ 2
3

, Ep,2D ≈ 1
3

.

The inefficiency of LU factorization with block data distribution is due to processor
idling resulting from an uneven load distribution during computations, despite the even
initial load distribution.

The efficiency of the parallel LU factorization algorithm is increased if the matrix is
partitioned among processors using thecyclic data mapping.

Lemma 4.2. In the case of cyclic matrix decomposition the efficiency Ep of the parallel
LU factorization is given by:

Ep,1D ≈ 1 , Ep,2D ≈ 1 .

4.2. Communication Complexity Analysis

In this subsection we show that the block and cyclic distribution schemes have quite
different communication costs. We assume that the processors work asynchronously, that
is no processor waits for the others to finish an iteration of LU factorization algorithm
before starting the next one. Each processor first computes and sends any data destined
for the other processors and only then performs the remaining computations using the
data it has. Hence, the processor is idle only if it waits to receive data to be used.

Let assume that we use the completely connected communication network. Then we
put K(p) = 1 into the equation (1) and the cost of broadcastingn items of data along a
row or column of the mesh of processors is estimated by

Tb = α + βn.

The following two theorems give conditions when data communications are overlapped
by useful computations (see,Čiegiset al., 2000).

Theorem 4.1. For 1D decomposition the broadcast communication is overlapped with
computations if the following condition

m � 1 +
β

2γ
+

α

2(N − k)γ
(2)

is satisfied, where k is the step number in LU factorization algorithm, m = N/p.



176 R. Čiegis, V. Starikovičius

Theorem 4.2. In the case of 2D square grid of processors the overlapping of the broad-
cast communication with computations takes place if the following condition

M � β

2γ
+ 1.5 +

√(
β

2γ
+ 1.5

)2

+
α

γ
(3)

is satisfied, where M = N/
√

p

The important consequence from Theorem 4.2 is that for 2D data partitioning the
latency coefficientα can not be neglected even for large values ofN .

Next, we study total communication costs during the implementation of all steps of
the LU factorization algorithm in 1D case.

Theorem 4.3. If conditions of Theorem 4.1 are not satisfied then the non overlapped
communication overhead occurs

• during each step of LU factorization algorithm with the cyclic matrix decomposi-
tion scheme (in total N − 1 times),

• only once per each block, i.e., p − 1 times, using the block data decomposition.

It follows from Theorem 4.3 that the block partitioning of the matrix is better than
cyclic one if communication overheads are compared. Thus the optimal data distribution
must take into account properties of both these distributions and automatically tune to the
paticular problem sizes and the computer parameters.

4.3. Heuristic for Scheduling Tasks

In this section, we propose a simple heuristic for scheduling the tasks of LU factoriza-
tion algorithm onto processors. This heuristic uses essentialy the created performance
prediction tool for the parallel LU factorization algorithm.

Taking into account the results of Theorem 4.1 and Theorem 4.3, we propose the
following data distribution algorithm:

Matrix Distribution among Processors

1. The lastJ columns (and rows in 2D case) of the matrix are distributed according
the block partitioning scheme.

2. The remainingN−J columns (and rows in 2D) are distributed according the cyclic
partitioning scheme.

3. Using the proposed performance prediction tool, we find the optimal value ofJ :

min
1�J�N

Tpr(J) = Tpr(J0) .



Realistic Performance Prediction Tool for the Parallel Block LU Factorization Algorithm 177

We note that this heuristic algorithm coincides with the block partitioning ifJ0 = N ,
and with the cyclic partitioning ifJ0 = 1.

In Table 4, we present the realT and predictedTpr CPU times of the parallel LU
factorization algorithm obtained with cyclic and heuristic partitionings on RS cluster.
The matrix size was takenN = 3000.

Table 4

Comparison of the results for cyclic and heuristic partitionings

cyclic heuristic

p T Tpr T Tpr

1 235 234 235 234

2 157 155 154 153

3 153 152 129 129

4 166 170 118 122

5 194 194 118 122

As we see, our heuristic produced partitioning schemes with a better results for two,
three and four processors. It is interesting to note that for five processors the heuristic
recommended to use only four processors.

We have also carried out a number of simulations by scheduling an1024×1024 matrix
in order to compare block, cyclic, and heuristic partitionings. The following computer
parameters were used in our analysis (see, Amouraet al., 1998):

α = 136µs, β = 3.2µs, γ = 0.18µs. (4)

In Figs. 1, 2 we compare the speed-upsSp for the block, cyclic and heuristic distributions
for three networks: a) completely connected network, b) hypercube, c) LAN. 1D and 2D
matrix partitionings are investigated in our experiments.

5. Conclusions

A performance prediction model is proposed as a set of rules and guidelines in order to
provide a basis in creation of performance prediction tool for parallel algorithms. The
use of performance simulation is promoted. As example, a performance prediction tool
for the parallel LU factorization algorithm is created, which shows good agreement be-
tween predicted and real run times. The created tool enables us to answer the following
questions:

1. What performance can be achieved with the parallel algorithm?

2. What data distribution should be used?

3. How many processors should be used for a given size of the matrix?



178 R. Čiegis, V. Starikovičius

1D connected network 2D connected network

Fig. 1. Predicted speed-upsSp of the parallel LU factorization algorithm as a function of number of processorsp
for the completely connected network.

1D hypercube network 2D hypercube network

1D LAN network 2D LAN network

Fig. 2. Predicted speed-upsSp of parallel LU factorization algorithm as a function of number of processorsp
for the LAN and hypercube networks.



Realistic Performance Prediction Tool for the Parallel Block LU Factorization Algorithm 179

The tool is used to create a new heuristic for the scheduling of tasks of the parallel
LU factorization algorithm. It is shown that the proposed heuristic is better than the well
known and usually used cyclic and block partitioning schemes.

References

Amoura, A., E. Bampis and J. König (1998). Scheduling algorithms for parallel gaussian elimination with
communication costs.IEEE Transactions on Parallel and Distributed systems, 9, 679–686.

Baravykaiṫe, M., R. Belevǐcius and R.̌Ciegis (2002). One application of the parallelization tool of master–slave
algorithms.Informatica, 13(4), 393–404.

Baravykaiṫe, M., and R. Šablinskas (2002). The template programming of parallel algorithms.Mathematical
Modelling and Analysis, 7(1), 11–20.

Bhuayan, L., and X. Zhang (1995). Tutorial on on multiprocessor performance measurement and evaluation.
IEEE Computer Society Press, 9, 679–686.

Brinch Hansen, P. (1995).Studies in Computational Science: Parallel Programming Paradigms. Prentice Hall,
New Jersey.

Čiegis, R., V. Starikovǐcius and J. Wásniewski (2000). On the efficiency of scheduling algorithms for parallel
Gaussian elimination with communication delays.Lecture Notes in Computer Science, 1947, 75–82.

Čiegis, R., and G. Šilko (2002). On the efficiency of scheduling algorithms for parallel Gaussian elimination
with communication delays.Lecture Notes in Computer Science, 2028, 75–82.

Choi, J., J. Demmel, I. Dhillon and J. Dongarra (1995a). Scalapack: a portable linear algebra library for distri-
bution memory computers – design issues and performance.LAPACK Working Note 95.

Choi, J., J. Dongara and D. Walker (1995b). The design of a parallel dense linear algebra software library.
Numerical Algorithms, 10, 379–399.

Djordjević, G., and M. Tošíc (1996). A heuristic for scheduling task graphs with communication delays onto
multiprocessors.Parallel Computing, 22 1197–1214.

Fahringer, T. (1995). Estimating and optimizating performance for parallel programs.IEEE Computer, 28(11),
47–56.

Golub, G. H., and Ch. F. Van Loan (1991).Matrix Computations. The Johns Hopkins University Press, Baltmore
and London.

Hey, T., A. Dunlop and E. Hernandez (1997). Realistic parallel performance estimation.Parallel Computing,
23, 5–21.

Hockney, R. (1991). Performance parameters and benchmarking on supercomputers.Parallel Computing, 17,
1111–1130.

IEEE (1995a). Special issue on performance evaluation tools.IEEE Computer.
IEEE (1995b). Special issue on performance evaluation tools.IEEE Parallel and Distributed Technology.
Kennedy, K., C. MacIntosh and M.S. Kinley (1992). Static performace estimation in a parallelising compiler.

Technical Report, Department of Computer Science, Rice University.
Pease, D. (1991). PAWS: A performance evaluation tool for parallel computing systems.IEEE Computer, 22(1),

18–29.
Simons, M., C. Pancake and J. Yan (1995). Performance evaluation tools for parallel and distributed systems.

EEE Computer, 28, 16–19.
Xu, Z., and K. Hwang (1996a). Early prediction of mpp performance: the SP2, T3D, and Paragon experiences.

Parallel Computing, 22, 917–942.
Xu, Z., and K. Hwang (1996b). Modeling communication overhead: MPI and MPL performance on the SP2

system.IEEE Parallel and Distributed Technology, 9–23.
Zomaya, A. Y., C. Ward and B. Macey (1999). Genetic scheduling for parallel systems: comparative studies

and performance issues.IEEE Transactions on Parallel and Distributed Systems, 10(8), 795–812.



180 R. Čiegis, V. Starikovičius

R. Čiegis has graduated from Vilnius University Faculty of Mathematics in 1982. He
received the PhD degree from the Institute of Mathematics of Byelorussian Academy of
Science in 1985 and the degree of Habil. Doctor of Mathematics from the Institute of
Mathematics and Informatics, Vilnius in 1993. He is a professor and a head of Mathe-
matical Modeling Department of Vilnius Gediminas Technical University. His research
interests include numerical methods for solving nonlinear PDE, parallel numerical meth-
ods and mathematical modeling in nonlinear optics, biophysics, technology.

V. Starikovičius has graduated from Vilnius University Faculty of Mathematics in 1998.
He received Master degree in mathematics. In 2002 he received the PhD degree from Vil-
nius University. Now he works in Vilnius Gediminas Technical University. His research
interests include mathematical modelling of porous media materials, parallel algorithms,
numerical methods for hyperbolic equations.

Lygiagrečiojo blokinio LU faktorizacijos algoritmo efektyvumo

↪ivertinimo ↪irankis

RaimondašCIEGIS, Vadimas Starikovičius

Nagriṅejamas naujas lygiagreči ↪uj ↪u algoritm↪u vykdymo laiko prognozavimo↪irankis. Pirmiausia
aptarta skaǐciuojamosios dalies ir duomen↪u persiuntimo kašt↪u ↪ivertinimo metodika. Parodyta, kad
nustatant modelio konstantas, būtina atsižvelgti↪i uždavinio dalies, tenkančios kiekvienam proce-
soriui, dyd↪i. Vienas svarbiausi↪u naujojo↪irankio bruož↪u tas, kad↪ivertinama skaǐciavimo ir duomen↪u
persiuntimo proces↪u sinchroninio vykdymo galimyḃe. Tai pasiekama emuliuojant kiekvieno pro-
cesoriaus darb↪a. ↪Irankio efektyvumas iliustruojamas blokinio LU faktorizacijos algoritmo anal-
ize. Pasīulytas naujas duomen↪u paskirstymo algoritmas ir ištirtas jo efektyvumas. Parodyta, kad
šis duomen↪u paskirstymas efektyvesnis už klasikinius ir dažniausiai naudojamus blokin↪i ir ciklin ↪i
paskirstymus.


